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Abstract. Cryptographic S-boxes are fundamental in key-iterated sub-
stitution permutation network (SPN) designs for block ciphers. As a
natural way for realizing Shannon’s confusion and diffusion properties
in cryptographic primitives through nonlinear and linear behavior, re-
spectively, SPN designs served as the basis for the Advanced Encryption
Standard and a variety of other block ciphers. In this work we present a
methodology for minimizing the logic resources for n-bit affine-power S-
boxes over Galois fields based on measurable security properties and find-
ing corresponding area-efficient combinational implementations in hard-
ware. Motivated by the potential need for new and larger S-boxes, we
use our methodology to find area-optimized circuits for 8- and 16-bit
S-boxes. Our methodology is capable of finding good upper bounds on
the number of XOR and AND gate equivalents needed for these circuits,
which can be further optimized using modern CAD tools.

Keywords: S-box design and construction, 16-bit S-boxes, composite
Galois fields, S-box combinational circuits

1 Introduction

In order to enable area-efficient hardware implementations of block ci-
phers based on the key-iterated substitution permutation network (SPN)
design principle, such as the Advanced Encryption Standard (AES) [13],
the logic resources for each component or operation in the algorithm must
be reduced as much as feasible. Traditionally, research efforts to minimize
such resources have focused on the S-box - the only nonlinear operation in
the algorithm. Minimizing the area required for the AES S-box has been
the subject of intense research because combinational implementations of
this component often consume a majority of the total logic needed for the
algorithm. In addition, with the prevalence of side-channel attacks such
as DPA and CPA [22, 4], combinational designs are necessary for secure
implementations that cannot be easily exploited by these attacks.



To aid the implementation of future cryptographic primitives that
rely on S-boxes, we present a comprehensive methodology for construct-
ing and implementing cryptographically significant S-boxes with the goal
of low-area combinational logic defined in terms of the number of XOR
and AND gate requirements. An affine-power S-box S(x) is a composite
function S(x) = A(P (x)) consisting of a highly nonlinear power mapping
P over a binary Galois field and an affine transformation A. In devel-
oping our methodology we build upon the exhaustive mixed basis ap-
proach of Canright [6] and combinational logic minimization techniques
of Boyar and Peralta [2] used for the AES S-box. Our methodology is
composed of three steps: finding suitable affine-power S-box construc-
tions, programmatically and exhaustively searching for implementation
parameters (i.e. subfield decompositions and basis representations) that
permit area-optimized circuits, and then efficiently mapping them into
technology dependent resources using modern CAD tools.

We applied our methodology to find area-optimized 8- and 16-bit
S-boxes over binary Galois fields. Using the affine-inverse construction
leveraged by the AES S-box, we exhaustively searched for area-optimized
S-boxes over GF (28) defined by all 30 irreducible polynomials over GF (2)
of degree 8. Our search produced an 8-bit S-box with 103 XOR and 36
AND gates using the field polynomial t(v) = v8 +v6 +v5 +v4 +v2 +v+1,
surpassing Canright’s optimized S-box circuit for the AES, which uses
a different field polynomial, by a single XOR gate prior to further logic
optimization techniques. We also found new implementation parameters
for the AES S-box that yield a reduction in a single XOR gate prior to the
application of Boyar and Peralta’s logic optimization techniques. In addi-
tion, for the 21 smallest irreducible polynomials of degree 16 over GF (2),
we found several 16-bit S-box constructions that have small area foot-
prints. For example, we found a set of implementation parameters that
permit an area-optimized circuit composed of 1238 XOR and 144 AND
gates. Even smaller gate counts were achieved for other polynomials.

2 Related Work

S-boxes in key-iterated SPN algorithms are often constructed as an affine
transformation composed of an inverse power mapping over some Ga-
lois field, as is the case for the AES. This particular power mapping has
many desired cryptographic properties that, in practice, effectively ren-
der many known cryptanalysis attacks ineffective. Consequently, much
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of the research on low-area implementations for the affine-power S-boxes
has focused on minimizing the combinational logic required for the mul-
tiplicative inverse calculation over binary Galois fields.

Out of all known methods to compute the multiplicative inverse in
GF (2n), the use of subfield decomposition has been the most effective
and accepted technique for implementing low-area circuits. Using com-
posite field arithmetic, the inverse can be computed using the Itoh-Tsujii
inversion algorithm [17] or by direct decomposition to bitwise operations
over GF (2) [30]. Under the assumption that the elements in a particular
field are represented using a normal basis, the number of multiplications
required in the Itoh-Tsujii inversion algorithm still yields complex com-
binational logic for small fields. In comparison, direct decomposition to
GF (2) has yielded significantly smaller circuits [33, 34, 24, 6, 26, 27, 3, 2].

To date, the smallest AES S-box using composite field arithmetic and
other combinational logic minimization techniques is due to Boyar and
Peralta, who found an implementation that required only 83 XOR/XNOR
and 32 AND gates [2]. This fell below the previous area record of 104 XOR
and 36 AND gate count by Canright in 2005 [6], which was found by trying
all mixed basis representations of the field GF (((22)2)2) to reduce the cost
of relevant arithmetic when computing the multiplicative inverse and then
factoring all basis change matrices needed to map between GF (28) and
GF (((22)2)2). Boyar and Peralta improved upon Canright’s results by
swapping his GF ((22)2) inversion circuit for their own optimized version
and then performing subsequent combinational logic minimization on the
entire S-box circuit. Given the effectiveness of this two-phase approach,
we model our methodology after both of them.

3 Quantified Security of S-Boxes

With the continued improvement of cryptanalytic attacks that include dif-
ferent forms of linear and differential cryptanalysis [23, 1] and algebraic
analysis [8, 10], among many others [16, 18, 21], it is critically important
that cryptographic S-boxes do not exhibit weaknesses that can be ex-
ploited by these attacks. For example, linear cryptanalysis of SPN-based
block ciphers exploits the existence of some linear combinations of input
and output bits in the substitution step that occur with high (or low)
probability [23]. Therefore, highly nonlinear S-boxes are ideal to reduce
the probability that such linear combinations can be found and effectively
exploited. To determine if an S-box has this property, we may compute the
nonlinearity Nl(S) of a particular S-box mapping S : GF (2)n → GF (2)m
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as:

Nl(S) = min
c∈Sm

2

{Nl(c ·S)} = min
c∈Sm

2

{Nl(c0f0⊕ c1f1⊕ · · ·⊕ cm−1fm−1)}, (1)

where

Nl(f) = 2n−1 − 1

2
max

u∈GF (2)n
|Wf (u)| (2)

is the nonlinearity of a Boolean function f : GF (2)n → GF (2), fi are the
m coordinate functions of S for i = 1, . . . ,m, · is the inner product oper-
ator of two Boolean functions, and Wf (u) =

∑
x∈GF (2)n(−1)f(x)⊕(u·x) is

the Walsh transform of f with respect to the input function u [12]. Other
cryptographic metrics of interest include: the maximum and minimum
entries of the linear and difference distribution table [23, 1], δ-differential
uniformity [28, 29], resiliency and correlation immunity [7], component
algebraic immunity [7], XL and XLS algebraic immunity [25, 8], interpo-
lation polynomial algebraic complexity [18, 13], and branch number [13].

All of these metrics can be computed within a reasonable amount
of time for single n-bit S-boxes over fields GF (2n) when n ≤ 16. For
example, directly computing the differential uniformity can be done in
O(23n) time, which is feasible for a single 16-bit S-box. This complexity,
however, prohibited such computations for all 16-bit S-boxes considered
in this work. By computing these metrics for S-box candidates we may
quantitatively compare the security of different constructions. In gen-
eral, we seek to build S-boxes that have high nonlinearity, low differential
uniformity, high resiliency, high algebraic immunity, and high algebraic
complexity. We focus on these metrics when selecting possible S-box con-
structions in the first step of our methodology. In this step we find an
affine transformation that can be composed of a suitable power mapping
for the S-box. We describe this procedure in the following section.

4 Constructing Suitable S-Boxes

Our focus is on S-boxes built from power mappings over Galois fields, i.e.
functions of the form S(x) = xd where x ∈ GF (2n) and 0 ≤ d < 2n.
While other possible constructions exist, such as those based on the well-
defined cryptographic properties of Boolean functions, there are several
limitations that make these difficult to use in practice. For instance, they
typically do not have compact algebraic expressions, which implies that
hardware and software implementations often use lookup tables for such
mappings. This may be acceptable for small n-bit S-boxes (i.e. n ≤ 8),
but not for n ≥ 16.
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Power mappings of the form S(x) = xd over the field GF (2n) are
typically classified by their exponents d. The known exponents of power
mappings over GF (2n) for even n with substantially high nonlinearity
and good differential uniformity properties are shown in Table 1.

Table 1: Cryptographically-significant power mappings.
Name Exponent (d) Ref.

Inverse −1 ≡ 2n − 2 [29]

Gold 2k + 1, gcd{k, n} = 1 for some 1 ≤ k ≤ 2n − 1 [9]

Kasami 22k − 2k + 1, gcd{k, n} = 1 for some 1 ≤ k ≤ n/2 [9]

Dobertin 24k+3k+2k+k − 1 over GF (2n) with n = 5k [9]

Niho 2m + 2m/2 − 1 over GF (2n) with n = 2m+ 1 and m even [9]

2m + 2(3m+1)/2 − 1 over GF (2n) with n = 2m+ 1 and m odd

Welch 2m + 3 over GF (2n) with n = 2m+ 1 [9]

Since these S-boxes are intended for block ciphers, it is natural to
impose the additional requirement that they are bijective. By Fermat’s
Little Theorem it is easy to see that this only occurs when gcd{d, 2n−1} =
1. Interestingly, with this restriction and the constraint n = m = 16, many
of the possible values for d are discarded and only the inverse exponent
remains. See [35] for a proof of this claim.

Although these power mapping exponents are very well studied in
the literature, we did not settle with them as the only candidates. In
fact, for 8-bit S-boxes, we exhaustively computed the nonlinearity and
δ-differential uniformity of all power mappings over GF (28) using the
AES field polynomial to determine if there exists suitable candidates that
could be studied further. We found that there are only 8 distinct power
mapping exponents and inverses (d, d−1) such that δ = 4 and NL =
112, the optimal values for such power mappings: (127, 253), (191, 251),
(223, 247), (239, 239), (247, 223), (251, 191), (253, 127), (254, 254). We did
not perform similar computations for 16-bit S-boxes, simply because these
computations are much more expensive. Also, since it is not necessary that
an S-box be invertible (i.e. if the block cipher using the S-box is operated
in CTR-mode), then we need to only find area-optimized circuits for either
d or d−1.

After finding a candidate S-box construction with reasonable non-
linearity and δ-differential uniformity, our next task was to modify the
constructions to increase the algebraic complexity (note that the algebraic
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Input: S(·), S−1(·), GF (2n), n, d
Output: M, c
done := False
repeat

M := RandomMatrix(GF (2), n, n)
c := RandomElement(GF (2n))
if det(M) 6= 0 then

valid := True
ForwardPairs, InversePairs := [ ]
for each x ∈ GF (2n) do

if x is not a fixed point then

z := Mxd + c
ForwardPairs := Append(ForwardPairs, (x, z))

x′ := (M−1(z + c))d
−1

InversePairs := Append(InversePairs, (z, x′))
end
else

valid := False
break

end

end
if valid = True then

p(y) := Interpolate(ForwardPairs)
p−1(y) := Interpolate(InversePairs)
if #p(y) > n and #p−1(y) > n then

return M, c
end

end

end

until done = False

Algorithm 1: Probabilistic affine transformation search procedure,
where #p(y) (resp. #p−1(y)) is the number of terms in the interpo-
lation polynomial p(y) (resp. p−1(y)).

expression of an interpolation polynomial for an S-box defined solely by a
power mapping consists of a single term). In order to avoid interpolation
attacks, such expressions should have more terms (be more complex).
Perhaps the most common technique for increasing the complexity is to
compose an affine transformation of one such power mapping. Cui and
Cao [11] proved that the algebraic complexity for any affine-power S-box
over GF (2n) is bounded by n+1. Algorithm 1 presents a probabilistic pro-
cedure to search for an appropriate affine transformation for affine-power
S-boxes, characterized by a matrix M and constant vector c. Using the
same rationale for the affine transformation selection presented by Dae-
men and Rijmen in [14], this procedure searches for affine transformations
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that have a “complex algebraic expression if combined with the inverse
mapping” and, together with the inverse operation, have “no fixed points
and no opposite fixed points.” In this context, a fixed point or opposite
fixed point occurs when there exists an element x ∈ GF (2n) such that
S(x) ⊕ x = 0n or S(x) ⊕ x = 1n. Since there are no known attacks that
exploit the existence of fixed points, we opted to lift this constraint if
the pair M and c provide more opportunities for logic optimization than
pairs that do not yield any fixed points.

5 Searching for Area-Efficient Tower Field Constructions

There are a variety of isomorphic representations for the fields GF (28)
and GF (216). Using composite arithmetic to compute the multiplicative
inverse requires arithmetic operations such as addition, multiplication,
squaring, and scaling (i.e. multiplication by a constant) in the subfields.
The complexity of such arithmetic heavily depends on the representa-
tion of elements in the subfields. Polynomial arithmetic is generally more
computationally efficient with polynomials of a smaller degree. This can
be shown by deriving the expressions for the arithmetic operations in
these subfields. For example, given an element ε ∈ GF (((22)2)2) (where
r(x) = x2 + x+Π defines GF ((22)2)) represented in a polynomial basis
[1, X] with subfield coefficients δ1 and δ2, ε

−1 can be computed as

ε−1 = δ1(δ
2
2 + δ1δ2 + δ21Π)−1x+ (δ1 + δ2)(δ

2
2 + δ1δ2 + δ21Π)−1.

If ε is represented in a normal basis [X,X16], the expression becomes

ε−11 = ((δ1δ2 + (δ1 + δ2)
2Π)−1δ2)x

16 + (δ1δ2 + (δ1 + δ2)
2Π)−1δ1)x.

Deriving a general expression for inversion in GF ((22)4) depends on
numerous factors, including the coefficients of the polynomial r(x) and
the basis representation. Given the numerous possibilities, we omit such
derivations here, but it should be intuitively clear that the higher-degree
polynomials representing elements in GF ((22)4) will lead to less compact
expressions than the simple quadratic extension case in which we can
always find an irreducible polynomial r(x) with a unit x coefficient. Con-
sequently, we focus on the tower fields GF ((((22)2)2)2) and GF (((22)2)2)
for GF (216) and GF (28), respectively. Using such isomorphic representa-
tions, the cost of all arithmetic operations with respect to the subfields
using a polynomial and normal basis is given in Table 2.
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Table 2: Cost of arithmetic in GF ((q2)2) with respect to subfield
GF (q2) (A)ddition, (M)ultiplication, (Sq)uare, (I)nversion, (Sc)ale, and
(SS)quare-scale operations for polynomial and normal basis representa-
tions.

Operation Polynomial Basis Normal Basis

Inverse 3M + 2A+ 1I + 1SS 3M + 2A+ I + 1SS
Add 2A 2A

Multiply 3M + 4A+ 1Sc 3M + 4A+ 1Sc
Square 2Sq + 1Sc+ 1A 3A+ 2Sq + 1Sc

To this end, let t(v) be a degree 16 (8) irreducible polynomial over
GF (2) for GF (216) (analogously GF (28)), s(y) = y2 + Ψy + Λ, be the
irreducible polynomial for GF ((((22)2)2)2), r(x) = x2 + Θx + Π be the
irreducible polynomial for GF (((22)2)2), q(w) = w2 + Ωw + Σ be the
irreducible polynomial for GF ((22)2), and finally p(v) = v2 + v + 1 be
the only irreducible polynomial for GF (22). We enforce Ψ = Θ = Ω = 1
to simplify field arithmetic. Also, we denote by V , W , X, and Y roots
of the polynomials for the fields GF (22), GF ((22)2), GF (((22)2)2), and
GF ((((22)2)2)2), respectively, and refer to the forward and inverse basis
change matrices needed to map elements from GF (28) and GF (216) to
their isomorphic tower field partners as T and T−1.

Each irreducible polynomial for the fields GF (22),. . . ,GF ((((22)2)2)2)
will have two distinct conjugate roots, which we denote as the sets {V, V 2},
{W,W 4}, {X,X16}, and {Y, Y 256}. A polynomial basis for any field can
be formed by selecting one of these roots as a basis element in conjunction
with the identity element 1, e.g. [1, V ] or [1, V 2] forGF (22), whereas a nor-
mal basis requires that both roots are used. For each possible combination
of basis elements we then programmatically determine the combinational
complexity of subfield arithmetic needed to compute the inverse.

For each combination of basis elements we also perform several arith-
metic and logic optimizations. For instance, as Satoh [34] mentions, it is
possible to save on the number of gates required for a circuit if there ex-
ists two GF ((2m)2) multipliers that have a shared input. This is because
both the polynomial and normal multipliers need to compute the sum of
the two coefficients for the input elements, as shown in Figure 1. There-
fore, every shared input factor will save one addition in the subfield. In
addition, polynomial and normal multipliers for elements in GF ((22)2)
and GF (((22)2)2) each have three subfield multipliers that will share a
common factor, thus saving additional sub-subfield addition operations.
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D'1

D'2
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Fig. 1: XOR gate reduction for two GF ((22)2) multipliers with a shared
input B. The single XOR gate is saved by not recomputing the sum of
the two B coefficients B1 and B2 of when B is represented in a normal
basis.

We also make use of the optimizations to the square-scale operations per-
formed by Canright [6]. At a high level, such optimizations are used to
derive compact expressions for the square-scale operations given particu-
lar values of Π, which can only take a fixed number of values in order to
make r(x) irreducible over GF ((22)2). We refer the reader to [35] and [6]
for further discussion of these optimizations.

Our S-box construction program written in Magma [5] does not sup-
port exhaustive common subexpression elimination. This is primarily due
to the fact that Magma does not support normal basis representations for
finite field elements. Furthermore, exhaustively searching for all common
subexpressions in all 432 possible inversion and square-scale algebraic ex-
pressions over GF (((22)2)2) was outside the scope of this work. Future
work will explore programmatically deriving such compact expressions in
order to achieve lower gate counts. Also, it is important to note that,
because we do not automatically apply the full set of Canright’s opti-
mizations, our gate counts will be upper bounds on the total number of
gates. That is, the software that was written to count the number of gates
for each field representation and basis selection will produce a result that
is larger than or equal to what is presented in Canright’s work, and as
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Fig. 2: High-level diagram for a merged S-box circuit. The sel signal is
used to toggle encryption and decryption modes.

shown in his detailed report, other optimizations can be applied to lower
this bound even further. After the tower field implementation parameters
have been identified, we then utilize the logic minimization techniques of
Paar [31] and Boyar and Peralta [3] to reduce the XOR gate count for the
basis change matrices, which are merely linear mappings represented as
straight-line programs (SLPs). An SLP for a binary matrix-vector multi-
plication expression is a finite sequence of lines of the form u := λv+µw,
where λ and µ are elements in GF (2), u, v, and w are variables, and some
lines are output of the corresponding multiplication.

In addition to these algebraic and gate-level optimizations, we also
follow in the footsteps of Satoh [34] and Canright [6] by performing logic
minimizations on merged S-box designs. The merged S-box design simply
pairs the forward and inverse S-box operations into the same circuit that
use the same inversion component, where the output is determined by a
simple multiplexer. A high-level overview of the merged circuit is shown in
Figure 2. We optimize the matrices T−1/(MT)−1 and MT/T separately.

6 New S-Box Constructions and Implementations

We measure the complexity, or cost, of a particular S-box as the total
number of XOR and AND gates required in a combinational circuit imple-
mentation. To determine this cost for merged S-box circuits we measure
the cost of the basis transformation matrices T and T−1 merged with the
affine transformation matrices M, the cost of a single inversion circuit,
and the weight of the affine constant c. For fixed M and c, we perform an
exhaustive search over all mixed basis representations of the S-box field
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to find an upper bound on the gates required for the inversion circuit.
We then use the logic optimization technique of Boyar and Peralta [2] to
reduce the number of XOR gates required for the merged basis change
and affine transformation matrices.

For 16-bit S-boxes, there are 128 choices for s(y), eight choices for
r(x), two choices for q(w), and only one choice for p(v) that have a trace
of unity. Since each of these polynomials has two distinct conjugate roots
that can be used to represent the respective field elements with a polyno-
mial or normal basis, there are exactly three basis element combinations
in all degree-two extension subfields of GF (216). Consequently, there is
a total of 165888 possible cases to consider for a single polynomial t(v).
Since the basis change matrices depend on the representation of GF (216),
and there are 4080 candidates for t(v), this means that we must consider
about 6 × 108 possible cases to find a minimal transformation. Due to
computational limitations, we selectively focused on the 21 smallest t(v)
polynomials when searching for 16-bit S-box implementation parameters.
For 8-bit S-boxes, there are only 30 candidate s(v) polynomials with
smaller basis change matrices, so we did not have to impose a similar
computational restriction.

We applied our methodology to find 8-bit S-boxes over GF (28) and
new 16-bit S-boxes over GF (216). For the 8-bit S-box case, we used Can-
right’s optimizedGF (((22)2)2) inversion circuit when exhaustively search-
ing for suitable implementation parameters. To perform this search, we
consider all inverters which have a normal basis for GF ((24)2) because
the shared multiplication factor saves 5 XOR gates over inverters with
a polynomial basis for GF ((24)2). After Canright’s optimizations, these
S-boxes have anywhere from 66 to 68 XOR gates and 36 AND gates for
the inverter [6]. Since the GF (28) irreducible polynomial determines the
number of XOR gates required for the basis change matrices T and T−1,
we then considered all 30 degree 8 irreducible polynomials for GF (28)
to derive such basis change matrices. For each candidate inversion cir-
cuit and pair of basis change matrices T and T−1, we then applied the
linear circuit minimization heuristic described by Boyar and Peralta in
[3] to reduce the required XOR gates. This procedure was repeated for
each irreducible polynomial t(v) for GF (28) and the basis representation
that yielded the smallest number of required XOR and AND gates was
recorded. Our results from this experiment for merged S-box designs are
summarized in Table 2 in Appendix A.
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We were able to improve upon Canright’s S-box design using the AES
polynomial by a single XOR gate, before logic gate optimizations such
as using NAND/NOR instead of AND/XOR gates. With the same nor-
mal bases and coefficients Π and Σ, we found a different embedding of
GF (((22)2)2) into GF (28) that yielded merged basis change and affine
transformation matrices able to be implemented in only 37 XOR gates,
as opposed to 38 found by Canright (see Figure 3 for the basis change
matrices and corresponding SLP for proof). This single gate is saved in
our field isomorphism and by applying Boyar and Peralta’s optimization
technique for the merged matrices T−1/(MT)−1 and MT/T.

Out of all 30 degree 8 irreducible polynomials over GF (2), we found
that t(v) = v8 + v6 + v5 + v4 + v2 + v + 1 permitted an S-box circuit
with the smallest area requirement of only 103 XOR and 36 AND gates
(see Table 3). Using this selection of t(v), the basis change matrices to
map an element α ∈ GF (28) represented in a polynomial basis to β ∈
GF (((22)2)2) represented with the bases [1, V ], [W,W 4], and [X,X16],
where this tower field uses the coefficients Σ = v and Π = (v+ 1)w4 +w,
require at most 35 XOR gates in the merged S-box design (see the SLP in
Figure 4 for proof). Further area improvements for this S-box are likely
possible by applying Boyar and Peralta’s SLP minimization techniques, in
addition to CAD-driven optimizations. However, even in its current state,
this design surpasses Canright’s optimized circuit for the AES S-box,
and as such may be of value for implementations of future cryptographic
algorithms.

We then considered the 21 smallest degree 16 irreducible polynomi-
als t(v) over GF (2) in search for area-optimized 16-bit S-boxes. This
search yielded several S-box constructions with small gate counts prior to
(linear) logic optimizations of the basis change matrices. For the small-
est irreducible polynomial t(v) = v16 + v5 + v3 + v + 1, we found a
set of implementation parameters that permitted a circuit with a total
of 1238 XOR and 144 AND gates. This candidate, shown in Figure 5,
uses the basis sets [1, V ], [1,W ], [1, X], [Y 256, Y ] to represent elements in
GF ((((22)2)2)2) and its respective subfields, where Σ = v, Π = vw + v,
and Λ = (vw + v)x+w. The affine transformation and basis change ma-
trices used to obtain the circuit are shown in Figure 5. A larger subset of
these constructions are shown in Table 4 of Appendix A.
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T−1 =



1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 1 0 0 1 1 1 1


T =



0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0


Forward SLP for T−1/(MT)−1 Inverse SLP for MT/T

1) y5 = x7

2) t8 = x1 + x7

3) t9 = x2 + t8

4) y6 = t9

5) t10 = x6 + t9

6) y2 = t10

7) t11 = x0 + x3

8) y8 = t11

9) t12 = x2 + t10

10) t13 = x4 + t12

11) y11 = t13

12) t14 = x1 + t11

13) y12 = t14

14) t15 = x0 + x5

15) t16 = x0 + t9

16) y3 = t16

17) t17 = x0 + t14

18) y10 = t17

19) t18 = x2 + t15

20) y13 = t18

21) t19 = x3 + t9

22) y1 = t19

23) t20 = x3 + t10

24) y15 = t20

25) t21 = x2 + t20

26) y9 = t21

27) t22 = x5 + t13

28) y7 = t22

29) t23 = t10 + t15

30) y0 = t23

31) t24 = t13 + t14

32) y4 = t24

33) t25 = x0 + x6

34) t26 = t24 + t25

35) y14 = t26

1) y15 = x5

2) t8 = x2 + x4

3) y0 = t8

4) t9 = x3 + x6

5) y8 = t9

6) t10 = x1 + t8

7) t11 = x5 + t10

8) t12 = x2 + t9

9) y6 = t12

10) t13 = x7 + t11

11) y5 = t13

12) t14 = x0 + t13

13) y10 = t14

14) t15 = x0 + x4

15) y1 = t15

16) t16 = x0 + t8

17) y3 = t16

18) t17 = x0 + t12

19) y13 = t17

20) t18 = x1 + x6

21) y11 = t18

22) t19 = t16 + t18

23) t20 = x1 + x7

24) y2 = t20

25) t21 = x1 +t 9

26) y7 = t21

27) t22 = x2 + x6

28) y14 = t22

29) t23 = x7 + t19

30) y9 = t23

31) t24 = t9 + t11

32) y12 = t24

33) t25 = t9 + t19

34) y4 = t25

Fig. 3: Forward SLP for T−1/(MT)−1 and inverse SLP for MT/T for
use in Canright’s design of the AES S-box [6]. Collectively, they require
37 XOR gates to implement.
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z = S(x) =



0 0 0 0 1 1 0 1
1 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 1 0 0 1 1 1 1
1 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 1 0 1 0





y7
y6
y5
y4
y3
y2
y1
y0


+



0
0
0
0
1
0
0
0


x = y−1 = (S−1(z))−1 =



1 1 0 0 1 0 1 1
1 1 0 0 0 0 1 1
0 1 1 0 1 0 1 0
0 1 0 1 0 1 1 0
1 0 0 1 1 0 0 1
1 0 0 1 1 0 1 1
0 1 0 1 0 0 1 1
1 0 0 0 0 0 1 0





z7
z6
z5
z4

z3 + 1
z2
z1
z0



T =



1 1 1 1 0 0 1 0
0 0 0 0 1 0 1 0
1 1 1 0 1 1 0 0
0 1 0 1 1 1 0 1
1 0 1 1 1 1 1 0
1 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0


T−1 =



0 0 0 0 0 0 1 0
0 0 1 0 0 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 1
1 0 0 0 1 1 1 0
0 0 1 0 0 0 0 1
1 1 0 0 1 1 1 0
0 1 0 1 1 0 0 1


Forward SLP for T−1/(MT)−1 Inverse SLP for MT/T

1) y0 = x6

2) y9 = x2

3) t8 = x0 + x4

4) t9 = x6 + t8

5) y11 = t9

6) t10 = x1 + x7

7) t11 = x5 + t9

8) y4 = t11

9) y15 = t11

10) t12 = x3 + t10

11) t13 = x4 + t12

12) y7 = t13

13) y14 = t13

14) t14 = x0 + t10

15) y3 = t14

16) t15 = x2 + t9

17) y2 = t15

18) t16 = x2 + x7

19) y5 = t16

20) t17 = t8 + t16

21) t18 = x1 + t11

22) y6 = t18

23) t19 = x3 + t9

24) y12 = t19

25) t20 = x6 + t12

26) y8 = t20

27) t21 = t10 + t17

28) y13 = t21

29) t22 = t11 + t17

30) y1 = t22

31) t23 = t14 + t15

32) y10 = t23

1) y2 = x1

2) y14 = x0

3) t8 = x0 + x1

4) t9 = x2 + x4

5) t10 = x3 + x6

6) t11 = x5 + t8

7) y13 = t11

8) t12 = t8 + t9

9) y15 = t12

10) t13 = x0 + t10

11) y0 = t13

12) t14 = t12 + t13

13) y6 = t14

14) t15 = x3 + x4

15) y3 = t15

16) t16 = x6 + t12

17) t17 = x3 + x7

18) y5 = t17

19) t18 = x4 + t11

20) y7 = t18

21) t19 = x2 + t18

22) y10 = t19

23) t20 = x3 + t12

24) y4 = t20

25) t21 = x4 + x6

26) y9 = t21

27) t22 = t11 + t14

28) y12 = t22

29) t23 = t11 + t16

30) y1 = t23

31) t24 = t15 + t16

32) y8 = t24

33) t25 = x0 + t17

34) t26 = t18 + t25

35) y11 = t26

Fig. 4: The 8-bit S-box and basis change matrices for polynomial t(v) =
v8+v6+v5+v4+v2+v+1. The vector y is the inverse of the element x in
GF (28) (or 0̄ if x = 0). Accordingly, the output y = S−1(z) is inverted in
the same way to obtain the original element x. The forward S-box SLP for
T−1/(MT)−1 and inverse S-box SLP for MT/T are also shown, which
collectively require 35 XOR gates to implement.
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z = S(x) =



0 0 1 0 0 0 0 1 0 0 1 1 1 1 1 0
1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0 1 0 1 0 0 1 1
1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1
0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 1
0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1
0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 1
1 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 1 1 1 0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1
1 0 1 0 0 1 0 1 1 0 0 1 0 0 0 1
0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1
1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0
1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0





y15
y14
y13
y12
y11
y10
y9
y8
y7
y6
y5
y4
y3
y2
y1
y0



+



0
1
0
0
0
1
0
1
1
0
1
1
0
1
1
1



x = y−1 = (S−1(z))−1 =



0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1
1 1 0 1 0 0 1 0 1 0 1 1 1 1 0 1
1 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0
0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0
1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1
1 0 1 0 0 0 0 0 0 1 1 0 1 0 1 1
0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0
0 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1
1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1
1 0 0 0 0 1 0 1 1 1 0 0 1 0 1 0
1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1
1 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1
0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1





x15
x14 + 1
x13
x12
x11

x10 + 1
x9

x8 + 1
x7 + 1
x6

x5 + 1
x4 + 1
x3

x2 + 1
x1 + 1
x0 + 1



T =



0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1
0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1
1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1
1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1
0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0
0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0
1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 1
0 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1
0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 0
0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 1 1 0 1 1 0 0 0 0



T−1 =



1 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
1 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0
0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0
0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0
0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0
1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0
1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0
1 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0
1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0
0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0
0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0
0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0
1 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1



Fig. 5: The 16-bit S-box and basis change matrices for the polynomial
t(v) = v16 +v5 +v3 +v+1. The vector y is the inverse of the element x in
GF (216) (or 0̄ if x = 0). Accordingly, the output y = S−1(z) is inverted
in the same way to obtain the original element x.
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7 Conclusion

In this work we presented a comprehensive methodology for identifying
cryptographically significant S-box constructions based on power map-
pings over GF (2n) and searching for composite-field representations that
permit low-area hardware implementations. We applied our technique to
8-bit S-boxes defined over GF (28) using all 30 degree 8 irreducible poly-
nomials and found several circuits with area-optimized implementations
on par with or surpassing the AES equivalent (pending CAD optimiza-
tions). Motivated by a potential need for larger S-boxes, we then scaled
up our procedure to 16-bit S-boxes. We believe this methodology and our
results may be useful in the design of future cryptographic algorithms.
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2. Joan Boyar and René Peralta. A Small Depth-16 Circuit for the AES S-Box. IFIP
Advances in Information and Communication Technology, Springer Berlin Heidel-
berg 376 (2012), 287-298.

3. Joan Boyar, Philip Matthews, and René Peralta. Logic Minimization Techniques
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Applications. Academic Press (2009).

16



13. Joan Daemen and Vincent Rijmen. Advanced Encryption Standard (AES) (FIPS
197). Technical report, Katholijke Universiteit Leuven/ESAT (2001).

14. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES-the Advanced
Encryption Standard. Springer (2002).

15. Hans Dobbertin. Almost Perfect Nonlinear Power Functions onGF (2n): The Welch
Case. IEEE Transactions on Information Theory 45(4) (1999), 1271-1275.

16. Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks
for AES-like Permutations. Fast Software Encryption, Springer Berlin Heidelberg
(2010).

17. Toshiya Itoh and Shigeo Tsujii. A Fast Algorithm for Computing Multiplicative
Inverses in GF (2m) Using Normal Bases. Information and Computation 78.3 (1988),
171-177.

18. Thomas Jakobsen and Lars R. Knudsen. The Interpolation Attack on Block Ci-
phers. 4th International Workshop on Fast Software Encryption LNCS, Springer
1267 (1997), pp. 28-40.
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A S-Box Constructions

In this appendix we provide detailed parameters for a variety of S-box
constructions. A basis B = [βn1 , βn2 ] is used to represent an arbitrary ele-
ment α ∈ GF ((qm)2) as α = a1β

n1+a2β
n1 for some a1, a2 ∈ GF (qm). The

basis element powers n1 and n2 are chosen such that B is a polynomial or
normal basis. In particular, if n1 = 0, then B must be a polynomial basis
where n2 ∈ {1, qm}. If n1 6= 0 and n2 6= 0 then B must be a normal basis.
The order of normal basis elements in B depends on how Magma selects
primitive elements. Specifically, if βq

m
is chosen as the primitive element

then our S-box construction program will fix the basis B = [βq
m
, β].

In the following tables we encode each irreducible polynomial t(v),
constant c, and binary matrix (T, T−1, and M in row order), which are
described in Sections 4 and 5, as a hexadecimal string. Σ, Π, and Λ, the
irreducible polynomial coefficients described in Section 5, are shown with
a polynomial basis. We also use the notation IF!v to denote the embedding
of v into the field IF, where IF = GF (28) or IF = GF (216) for 8 and 16-
bit S-boxes, respectively. The subfield bases are exactly as described in
Section 5. Finally, the Inv. and Total fields denote the number of XOR
gates required for the multiplicative inverse and merged S-box circuits,
respectively.
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