Wheel and Star-critical Ramsey Numbers for Quadrilateral

Wu Yali, Sun Yongqi*
School of Computer and Information Technology
Beijing Jiaotong University
Beijing 100044, P. R. China
yqsun@bjtu.edu.cn
and
Stanisław Radziszowski ${ }^{\dagger}$
Department of Computer Science
Rochester Institute of Technology
Rochester, NY 14623, USA
spr@cs.rit.edu

Abstract

The star-critical Ramsey number $r_{*}\left(H_{1}, H_{2}\right)$ is the smallest integer k such that every red/blue coloring of the edges of $K_{n}-K_{1, n-k-1}$ contains either a red copy of H_{1} or a blue copy of H_{2}, where n is the graph Ramsey number $R\left(H_{1}, H_{2}\right)$. We study the cases of $r_{*}\left(C_{4}, C_{n}\right)$ and $R\left(C_{4}, W_{n}\right)$. In particular, we prove that $r_{*}\left(C_{4}, C_{n}\right)=5$ for all $n \geqslant 4$, obtain a general characterization of Ramsey-critical (C_{4}, W_{n})-graphs, and establish the exact values of $R\left(C_{4}, W_{n}\right)$ for 9 cases of n between 18 and 44 .

Keywords: Ramsey number; wheel; cycle; Hamiltonian graph
Mathematics Subject Classifications: 05C55, 05C38

[^0]
1 Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph $G=$ $(V(G), E(G))$, we denote the order of G by $p(G)=|V(G)|$. The Ramsey arrowing operator \rightarrow is a logical predicate, which holds for graphs G, H_{1} and H_{2}, written $G \rightarrow\left(H_{1}, H_{2}\right)$, if and only if for all partitions $E(G)=E_{1} \cup E_{2}$ into two sets (colors) E_{1} contains H_{1} or E_{2} contains H_{2}. The Ramsey number $R\left(H_{1}, H_{2}\right)$ is the smallest n such that $K_{n} \rightarrow\left(H_{1}, H_{2}\right)$. Any edge 2-coloring witnessing $K_{n} \nrightarrow\left(H_{1}, H_{2}\right)$ will be called an ($H_{1}, H_{2} ; n$)-coloring, which can be seen as a graph not containing H_{1} and without H_{2} in the complement. The star-critical Ramsey number $r_{*}\left(H_{1}, H_{2}\right)$ is the smallest k such that $K_{n}-K_{1, n-k-1} \rightarrow\left(H_{1}, H_{2}\right)$, where $n=R\left(H_{1}, H_{2}\right)$ [12].

If $V(G) \cap V(H)=\emptyset$, then the graph $G+H$ on vertices $V(G) \cup V(H)$ has the edges $E(G) \cup$ $E(H) \cup\{u v: u \in V(G), v \in V(H)\}$. For $S \subseteq V(G), G[S]$ denotes the subgraph induced in G by S, and $G \backslash S=G[V(G) \backslash S]$. For $v \in S$, let $N_{G[S]}(v)=\{u: u \in S \wedge u v \in E(G)\}$ and $d_{G[S]}(v)=\left|N_{G[S]}(v)\right|$. If $S=V(G)$, we simply write $N(v), d(v)$, and $N[v]=N(v) \cup\{v\}$. $\delta(G)$ and $\Delta(G)$ are the minimum and maximum degrees in G, respectively. $\alpha(G)$ denotes the order of the maximum independent set in $G, \kappa(G)$ is the vertex connectivity of $G . P_{k}$ is the path on k vertices, C_{k} is the cycle of length k, T_{k} is a k-vertex tree, and W_{k+1} is the wheel graph, where a hub is connected by k spokes to $C_{k} . K_{m, n}$ is the complete $m \times n$ bipartite graph, in particular $K_{1, n}$ is the star graph. K_{n}^{m} is the complete m-partite graph with each part of order n.

It is known that $R\left(C_{4}, W_{4}\right)=10, R\left(C_{4}, W_{5}\right)=9$ and $R\left(C_{4}, W_{6}\right)=10$ (cf. [18]). Tse [21] determined the values of $R\left(C_{4}, W_{m}\right)$ for $7 \leqslant m \leqslant 13$. Dybizbański and Dzido [7] proved that $R\left(C_{4}, W_{m}\right)=m+4$ for $14 \leqslant m \leqslant 16$, and $R\left(C_{4}, W_{q^{2}+1}\right)=q^{2}+q+1$ for prime powers $q \geqslant 4$. They also gave an upper bound on $R\left(C_{4}, W_{m}\right)$ for $m \geqslant 11$. The concept of star-critical Ramsey numbers was introduced by Hook and Isaak [12]. They proved that $r_{*}\left(C_{4}, C_{3}\right)=5$, $r_{*}\left(T_{n}, K_{m}\right)=(n-1)(m-2)+1, r_{*}\left(n K_{2}, m K_{2}\right)=m$ for $n \geqslant m$, and $r_{*}\left(C_{4}, P_{n}\right)=3$ for $n \geqslant 3$.

Recall that $R\left(C_{4}, C_{n}\right)=n+1$ for $n \geqslant 6$ [14]. The main results of this paper are as follows:
Theorem 1. For all $n \geqslant 6$, any $\left(C_{4}, C_{n} ; n\right)$-graph is in one of the graph sets $\mathcal{F}_{i}, 1 \leqslant i \leqslant 4$, as in Definition 4.

Theorem 2. $r_{*}\left(C_{4}, C_{n}\right)=5$ for all $n \geqslant 4$.
Theorem 3. $R\left(C_{4}, W_{m}\right)= \begin{cases}m+4, & \text { for } 18 \leqslant m \leqslant 21, \\ m+5, & \text { for } m=27, \\ m+6, & \text { for } 35 \leqslant m \leqslant 37, \text { and } \\ m+7, & \text { for } m=44 .\end{cases}$
Definition 4. Graph sets $\mathcal{F}_{j}, 1 \leqslant j \leqslant 4$, are defined on vertices $\left\{v, x_{1}, \ldots, x_{n-2}, y\right\}$. We present them in Figure 1. In each case the distinguished vertex $v \in V\left(F_{j}^{i}\right)$ is of maximum degree, $X=N(v)$, and X induces i disjoint edges $i K_{2}$ in F_{j}^{i}. We describe these graphs in detail as follows.
(1) $F_{1}^{i} \in \mathcal{F}_{1}, d(v)=n-2$, and $N(y)=\emptyset$;

$$
F_{1}^{i}[X]=(n-2 i-2) K_{1} \cup i K_{2} \text { for } 0 \leqslant i \leqslant(n-2) / 2
$$

(2) $F_{2}^{i} \in \mathcal{F}_{2}, d(v)=n-2, N(y)=\left\{x_{n-2}\right\}$, and $d_{F_{2}^{i}[X]}\left(x_{n-2}\right)=0$;

$$
F_{2}^{i}[X]=(n-2 i-2) K_{1} \cup i K_{2} \text { for } 0 \leqslant i \leqslant(n-3) / 2
$$

(3) $F_{3}^{i} \in \mathcal{F}_{3}, d(v)=n-2, N(y)=\left\{x_{n-2}\right\}$, and $d_{F_{3}^{i}[X]}\left(x_{n-2}\right)=1$; $F_{3}^{i}[X]=(n-2 i-2) K_{1} \cup i K_{2}$ for $1 \leqslant i \leqslant(n-2) / 2$.
(4) $F_{4}^{i} \in \mathcal{F}_{4}, y=x_{n-1}$, and $d(v)=n-1$;

$$
F_{4}^{i}[X]=(n-2 i-1) K_{1} \cup i K_{2} \text { for } 0 \leqslant i \leqslant(n-1) / 2
$$

In all cases (i, j), one can easily see that the graphs F_{j}^{i} have no C_{4}, their complements have no C_{n}, and thus all of them are $\left(C_{4}, C_{n} ; n\right)$-graphs.

$(j=1)$ Family of graphs \mathcal{F}_{1}

$(j=3)$ Family of graphs \mathcal{F}_{3}

$(j=2)$ Family of graphs \mathcal{F}_{2}

$(j=4)$ Family of graphs $\mathcal{F}_{4}, y=x_{n-1}$

Figure 1: Structure of graphs in \mathcal{F}_{j} for $1 \leqslant j \leqslant 4$.

Some of the known results which will be used in our proofs are summarized in the next two theorems.

Theorem 5. [14] $R\left(C_{4}, C_{n}\right)= \begin{cases}7, & \text { for } n=3,5, \\ 6, & \text { for } n=4, \text { and } \\ n+1, & \text { for } n \geqslant 6 .\end{cases}$
Theorem 6. $[6,2,3,1]$ Let G be any graph of order $n \geqslant 3$. If G satisfies any of the following conditions, then it is Hamiltonian:
(a) $\delta(G) \geqslant\lceil n / 2\rceil$,
(b) For all $i<n / 2$, either $d_{i} \geqslant i+1$ or $d_{n-i} \geqslant n-i$, where $d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{n}$ is the degree sequence,
(c) $\alpha(G) \leqslant \kappa(G)$, or
(d) G is 2-connected and $\sigma_{3}(G) \geqslant n+\kappa(G)$, where

$$
\sigma_{3}(G)=\min \left\{\sum_{i=1}^{3} d\left(v_{i}\right):\left\{v_{1}, v_{2}, v_{3}\right\} \text { is an independent set in } G\right\} .
$$

2 Proof of Theorem 1

Lemma 7. For a graph G of order $n+m+1$ for $n \geqslant m \geqslant 2, n \geqslant 4$, such that $C_{4} \nsubseteq \bar{G}$, let v be a vertex of degree $\delta(G)=m, Y=N(v)$ and $X=V(G)-N[v]$, so $|X|=n$. If $K_{2}^{t} \subseteq G[X]$ for even n or $\left(K_{1}+K_{2}^{t}\right) \subseteq G[X]$ for odd $n\left(t=\left\lfloor\frac{n}{2}\right\rfloor\right)$, and each vertex of Y is adjacent to at least $n-1$ vertices of X, then G is Hamiltonian.

Proof. Note that since $\delta(G)=m$ and $G \backslash Y$ is disconnected, we have $\kappa(G)=m$, and $C_{4} \nsubseteq \bar{G}$ implies $\alpha(G) \leqslant 3$. If $m \geqslant 3$, then G is Hamiltonian by Theorem $6(c)$. So assume that $m=2$, $Y=\left\{y_{1}, y_{2}\right\}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. We can see that $d(v)=2, d\left(y_{1}\right), d\left(y_{2}\right) \geqslant n$, and $d\left(x_{i}\right) \geqslant n-2$ for $1 \leqslant i \leqslant n$. We will consider two cases: $n=4$ and $n \geqslant 5$.

Suppose that $n=4$, so $|V(G)|=7$. If there is a vertex in X, say x_{1}, which is nonadjacent to y_{1} or y_{2}, then y_{1} (or y_{2}) is adjacent to each vertex in $\left\{x_{2}, x_{3}, x_{4}\right\}$, and we can easily find a Hamiltonian cycle in G. If each vertex of X is adjacent to y_{1} or y_{2}, then the degree sequence of G is 2334444, and G is Hamiltonian by Theorem $6(b)$.

Finally, we can assume that $n \geqslant 5$. If T is an independent set of order 3 in G, then there are two subcases, say $T=\left\{x_{1}, y_{1}, y_{2}\right\}$ and $T=\left\{v, x_{1}, x_{2}\right\}$. If $T=\left\{x_{1}, y_{1}, y_{2}\right\}$, then $d\left(x_{1}\right)+d\left(y_{1}\right)+d\left(y_{2}\right) \geqslant 3 n-2$. If $T=\left\{v, x_{1}, x_{2}\right\}$, then we have $d(v)+d\left(x_{1}\right)+d\left(x_{2}\right) \geqslant 2 n$, and hence $\sigma_{3}(G)=2 n$. Now, we conclude that G is Hamiltonian by Theorem $6(d)$.

Proof of Theorem 1. First we prove that any $\left(C_{4}, C_{n} ; n\right)$-graph G for $n \geqslant 8$ is isomorphic to one of the graphs in $\mathcal{F}_{j}, 1 \leqslant j \leqslant 4$. Since $C_{n} \nsubseteq \bar{G}$, we have that \bar{G} is not Hamiltonian. By Theorem $6(a)$, we have $\delta(\bar{G})<\left\lceil\frac{n}{2}\right\rceil$ which implies $\Delta(G) \geqslant\left\lfloor\frac{n}{2}\right\rfloor$. Let v be a vertex of maximum degree and $X=N_{G}(v)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geqslant 4$. Since $C_{4} \nsubseteq G$, we have that $G[X]$ is isomorphic to $(k-2 i) K_{1} \cup i K_{2}$ for some $i \leqslant t=\left\lfloor\frac{k}{2}\right\rfloor$. Hence we have $K_{2}^{t} \subseteq \bar{G}[X]$ for even k or $\left(K_{1}+K_{2}^{t}\right) \subseteq \bar{G}[X]$ for odd k. Let $Y=N_{\bar{G}}(v)$, and observe that $|X| \geqslant|Y|$. Since $C_{4} \nsubseteq G$, each vertex $y \in Y$ is adjacent to at most one vertex in X in G, that is, it is adjacent to at least $k-1$ vertices in X in \bar{G}. If $d_{\bar{G}}(v) \geqslant 2$, then \bar{G} is Hamiltonian by Lemma 7 . Hence we need to consider $d_{\bar{G}}(v) \leqslant 1$, that is, $d_{G}(v)=n-2$ or $d_{G}(v)=n-1$.

For $d_{G}(v)=n-2, Y=\{y\}$, since $C_{4} \nsubseteq G, y$ is adjacent to at most one vertex in X. In this situation $G[X]$ is isomorphic to $(n-2 i-2) K_{1} \cup i K_{2}$ for some $i \leqslant t=\left\lfloor\frac{n-2}{2}\right\rfloor$, which is F_{1}^{i} for $0 \leqslant i \leqslant(n-2) / 2, F_{2}^{i}$ for $0 \leqslant i \leqslant(n-3) / 2$, or F_{3}^{i} for $1 \leqslant i \leqslant(n-2) / 2$.

If $d_{G}(v)=n-1$, then $Y=\emptyset$. Now $G[X]$ is isomorphic to $(n-2 i-1) K_{1} \cup i K_{2}$, which is one of the graphs F_{4}^{i} for $0 \leqslant i \leqslant(n-1) / 2$.

It remains to complete the proof for $n=6,7$. Using geng of nauty [15], we found that there are exactly $44 C_{4}$-free graphs of order 6 and $117 C_{4}$-free graphs of order 7 . Among them, we found $10\left(C_{4}, C_{6} ; 6\right)$-graphs and $12\left(C_{4}, C_{7} ; 7\right)$-graphs, respectively, and we checked that all of them are isomorphic to one of the graphs in $\mathcal{F}_{j}, 1 \leqslant j \leqslant 4$.

3 Proof of Theorem 2

In 1963, Ore [17] defined a graph to be Hamiltonian-connected if there is a Hamiltonian path between every pair of distinct vertices (see also an early survey by Dean et al. [5]). Theorem 8 will be used in the proof of the following Lemma 9.

Theorem 8. [17] Let G be a 2-connected graph with n vertices. If for every pair of nonadjacent vertices u and v we have $d(u)+d(v) \geqslant n+1$, then G is Hamiltonian-connected.

Hook and Isaak [12] proved that $r_{*}\left(C_{4}, C_{3}\right)=5$. We will extend their result to $r_{*}\left(C_{4}, C_{n}\right)$ for all $n \geqslant 4$. Let $\left(K_{1}+K_{2}^{m}\right)^{-}$be the graph obtained by dropping one of the $2 m$ edges between K_{1} and K_{2}^{m}.

Lemma 9. The graphs K_{2}^{m}, $\left(K_{1}+K_{2}^{m}\right)^{-}$and $K_{1}+\left(K_{1}+K_{2}^{m-1}\right)^{-}$are Hamiltonian-connected for all $m \geqslant 3$.

Proof. Let u and v be any two nonadjacent vertices of G as in Lemma 9. If $G=K_{2}^{m}$, then $d(u)+d(v)=4 m-4 \geqslant 2 m+1$. If $G=\left(K_{1}+K_{2}^{m}\right)^{-}$, then $d(u)+d(v) \geqslant 4 m-4 \geqslant 2 m+2$. For $G=K_{1}+\left(K_{1}+K_{2}^{m-1}\right)^{-}$, we notice that there is only one vertex of degree $\delta(G)=2 m-3$. Hence, we have $d(u)+d(v) \geqslant 4 m-5 \geqslant 2 m+1$. In all cases, these graphs are Hamiltonian-connected by Theorem 8.

Proof of Theorem 2. We first prove that $r_{*}\left(C_{4}, C_{n}\right)=5$ for all $n \geqslant 7$. Let \mathcal{G} denote the graph $K_{n+1}-K_{1, n-k}$ in this proof, $V(\mathcal{G})=\left\{v_{i}: 1 \leqslant i \leqslant n+1\right\}$, and $E(\mathcal{G})=E\left(K_{n}\right) \cup\left\{v_{i} v_{n+1}: 1 \leqslant\right.$ $i \leqslant k\}$. Since $R\left(C_{4}, C_{n}\right)=n+1$, hence it is sufficient to show that $\max \left\{k: \mathcal{G} \nrightarrow\left(C_{4}, C_{n}\right)\right\}=4$. For a red/blue coloring of the edges of \mathcal{G} witnessing $\mathcal{G} \nrightarrow\left(C_{4}, C_{n}\right)$, we use \mathcal{G}^{r} and \mathcal{G}^{b} to denote its red and blue subgraphs. Hence $C_{4} \nsubseteq \mathcal{G}^{r}$ and $C_{n} \nsubseteq \mathcal{G}^{b}$. Let $H=\mathcal{G}^{r}\left[\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right]$, and v_{n} be a vertex of maximum degree in H. By Theorem 1 , we know that H is isomorphic to one of the graphs in $\mathcal{F}_{j}, 1 \leqslant j \leqslant 4$.

We first consider the case $H=F_{1}^{0}$, and suppose $E(H)=\left\{v_{i} v_{n}: 1 \leqslant i \leqslant n-2\right\}$. Since $C_{4} \nsubseteq$ \mathcal{G}^{r}, v_{n+1} is adjacent to at most one vertex v_{i} for $1 \leqslant i \leqslant n-2$. Together with $v_{n-1} v_{n+1}, v_{n} v_{n+1} \in$ $E\left(\mathcal{G}^{r}\right)$, there are at most three red edges between v_{n+1} and $V(H)$. Since $F_{1}^{0} \subseteq H$ for any $H \in \mathcal{F}_{j}$, then in all cases there are also at most three red edges between v_{n+1} and $V(H)$.

Next we consider the graph \bar{H}, and set $W=\bar{H} \backslash\left\{v_{n}\right\}$ and $m=\lfloor(n-1) / 2\rfloor$. If n is even, then $\left(K_{1}+K_{2}^{m}\right)^{-} \subseteq W$. Lemma 9 and $C_{n} \nsubseteq \mathcal{G}^{b}$ imply that v_{n+1} is adjacent to at most one vertex of $V(W)$ in $\overline{\mathcal{G}}^{b}$. If n is odd, then $K_{2}^{m} \subseteq W$ or $\left(K_{1}+\left(K_{1}+K_{2}^{m-1}\right)^{-}\right) \subseteq W$. By Lemma 9 and $C_{n} \nsubseteq \mathcal{G}^{b}$, we also see that v_{n+1} is adjacent to at most one vertex of $V(W)$ in \mathcal{G}^{b}. So, $\max \left\{k: \mathcal{G} \nrightarrow\left(C_{4}, C_{n}\right)\right\}=4$, and the theorem holds for all $n \geqslant 7$.

For the special cases of $n=4,5,6$, we have $R\left(C_{4}, C_{n}\right)$ equal to 6,7 and 7 , respectively. Hence we need to show that $K_{6}-e \nrightarrow\left(C_{4}, C_{4}\right), K_{7}-P_{3} \nrightarrow\left(C_{4}, C_{n}\right)$ and $K_{7}-e \rightarrow\left(C_{4}, C_{n}\right)$ for $n=5,6$. The number of potential counterexamples (similarly as in the proof of Theorem 1) is very small, and we checked that none exist. Hence, $r_{*}\left(C_{4}, C_{n}\right)=5$ for all $n \geqslant 4$.

4 Proof of Theorem 3

The girth of a graph G is the length of its shortest cycle. A k-regular graph with girth g is called a (k, g)-graph. When the number of vertices in the (k, g)-graph is minimized then we call it a (k, g)-cage. We use $e x\left(n, C_{4}\right)$ to denote the maximum size of a C_{4}-free graph of order n. The graph of size ex $\left(n, C_{4}\right)$ is called an extremal graph, and let $E X\left(n, C_{4}\right)$ denote the set of all corresponding extremal graphs. Clapham, Flockhart and Sheehan [4] gave the exact values of $e x\left(n, C_{4}\right)$ for $n \leqslant 21$ and the graphs in $E X\left(n, C_{4}\right)$. Yang and Rowlinson [23] determined the exact values of $e x\left(n, C_{4}\right)$ for $22 \leqslant n \leqslant 31$ and the corresponding extremal graphs. Recently, Shao, Xu and $\mathrm{Xu}[20]$ established that $e x\left(32, C_{4}\right)=92$. It was conjectured by Erdős that for $n=q^{2}+q+1$, where q is a prime power, $e x\left(n, C_{4}\right)=\frac{1}{2} q(q+1)^{2}$. That is, the Erdős-Renyi graph $E R_{q}$ has the optimal number of edges and is a witness for $e x\left(n, C_{4}\right)$. In 1996, Füredi [10]

Table 1. The values of $e x\left(n, C_{4}\right)$ for $n \leqslant 32$

n	$e x\left(n, C_{4}\right)$	n	$e x\left(n, C_{4}\right)$	n	$e x\left(n, C_{4}\right)$
3	3	13	24	23	56
4	4	14	27	24	59
5	6	15	30	25	63
6	7	16	33	26	67
7	9	17	36	27	71
8	11	18	39	28	76
9	13	19	42	29	80
10	16	20	46	30	85
11	18	21	50	31	90
12	21	22	52	32	92

proved this conjecture for all $q>13$. All known nontrivial values of $e x\left(n, C_{4}\right)$ for $n \leqslant 32$ are shown in Table 1.

Theorem 10. [7] $R\left(C_{4}, W_{m}\right) \leqslant m+\sqrt{m-2}+1$ for $m \geqslant 11$.
Lemma 11. (a) If G is a graph of order n and $\delta(G)>n-m$, then $W_{m} \nsubseteq \bar{G}$.
(b) If there exists a $(k, 5)$-graph of order n, then $R\left(C_{4}, W_{m}\right) \geqslant n+1$ for $m>n-k$.
(c) If G is a $\left(C_{4}, C_{n} ; n\right)$-graph for $n \geqslant 6$, then $\left(K_{1} \cup K_{1, n-2}\right) \subseteq G$.

Proof. For any graph G as in $(a), \Delta(\bar{G})<m-1$, hence $W_{m} \nsubseteq \bar{G}$, and (a) holds. For any ($k, 5$)-graph G of order n, since $\delta(G)=k$ and $C_{4} \nsubseteq G, G$ is a ($C_{4}, W_{m} ; n$)-graph, and thus (b) holds by (a). Theorem 1 implies (c) which is equivalent to $\Delta(G) \geqslant n-2$.

Lemma 12. If G is a $\left(C_{4}, W_{m} ; n\right)$-graph for $7 \leqslant m \leqslant n-4$, then $\delta(G)>n-m$.
Proof. Suppose that $\delta(G) \leqslant n-m$. Let v be a vertex with $d(v)=\delta(G)$ and $H=G[V(G)-N[v]]$. There are two cases to consider depending on $d(v)$.
Case 1. If $d(v) \leqslant n-m-1$, then $d_{\bar{G}}(v)$ and $p(H) \geqslant m$. Since $C_{4} \nsubseteq H$ and $R\left(C_{4}, C_{m-1}\right)=m$, we have $C_{m-1} \subseteq \bar{H}$. Then v together with some $m-1$ vertices of $V(H)$ contains W_{m} in \bar{G}, a contradiction.
Case 2. If $d(v)=n-m$, then $p(H)=m-1$, and let $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{n-m}\right\}$. Note that $C_{m-1} \nsubseteq \bar{H}$, since otherwise $W_{m} \subseteq \bar{G}$. Therefore, since $C_{4} \nsubseteq H, H$ is a $\left(C_{4}, C_{m-1} ; m-1\right)$ graph, and by Lemma $11(c)$, we have $\left(K_{1} \cup K_{1, m-3}\right) \subseteq H$. Let x be the center of $K_{1, m-3}$, y the isolated vertex of $K_{1} \cup K_{1, m-3}$, and $Z=V(H) \backslash\{x, y\}=\left\{z_{1}, z_{2}, \ldots, z_{m-3}\right\}$. Since $d\left(z_{1}\right) \geqslant n-m \geqslant 4$ and $C_{4} \nsubseteq G, z_{1}$ has to be adjacent to y, one vertex of $N(v)$ and one vertex of Z, say $z_{1} v_{1}, z_{1} z_{2} \in E(G)$. However, since $C_{4} \nsubseteq G, z_{2}$ is adjacent to at most one vertex in $N(v) \backslash\left\{v_{1}\right\}$, which is a contradiction.

Cases 1 and 2 imply that $\delta(G)>n-m$.
Proof of Theorem 3. There are four sets of cases in the proof using Constructions 1, 4 and 5 in the Appendix.
(1) Cases $18 \leqslant m \leqslant 21$. The graphs $H_{n}, 21 \leqslant n \leqslant 24$, defined in Construction 1 , and Lemma $11(a)$, imply $R\left(C_{4}, W_{m}\right) \geqslant m+4$ for $18 \leqslant m \leqslant 21$. To prove the upper bounds, assume
that $R\left(C_{4}, W_{m}\right)>m+4$ for some $m, 18 \leqslant m \leqslant 21$, and let G be any $\left(C_{4}, W_{m} ; m+4\right)$-graph. By Lemma 12 we have $\delta(G)>4$. However, the values of $e x\left(n, C_{4}\right)$ for $22 \leqslant n \leqslant 24$ (see Table 1) imply that $\delta(G) \leqslant 4$, which is a contradiction. Yang and Rowlinson [23] showed that there are exactly nine graphs H in $E X\left(25, C_{4}\right)$ (we obtained them from the authors). We checked that $\delta(H)=4$ for all of them, a contradiction.
(2) Case $m=27$. It is known that there are four $(5,5)$-cages [9], and one of them is shown in Figure 2, denoted by H_{30}^{a}. Note that u_{i} is nonadjacent to u_{j}, and u_{i} is adjacent to $v_{i, j}$ for $0 \leqslant i, j \leqslant 4$ in H_{30}^{a}. We extend H_{30}^{a} to a $\left(C_{4}, W_{27} ; 31\right)$-graph H_{31} by setting

$$
\begin{aligned}
& V\left(H_{31}\right)=V\left(H_{30}^{a}\right) \cup\{w\} \text { and } \\
& E\left(H_{31}\right)=E\left(H_{30}^{a}\right) \cup\left\{w u_{i}: 0 \leqslant i \leqslant 4\right\}
\end{aligned}
$$

Note that $\delta\left(H_{31}\right)=5$. By Lemma $11(a)$ we have $R\left(C_{4}, W_{27}\right) \geqslant 32$. For the upper bound

Figure 2: $H_{30}^{a}[9]$.
assume that G is any $\left(C_{4}, W_{27} ; 32\right)$-graph. By Lemma 12 , we have $\delta(G)>5$, a contradiction with $\operatorname{ex}\left(32, C_{4}\right)=92$. Hence $R\left(C_{4}, W_{27}\right)=32$.
(3) Cases $35 \leqslant m \leqslant 37$. The $(6,5)$-cage H_{40} (cf. [9]) and Lemma $11(a)$ imply $R\left(C_{4}, W_{35}\right) \geqslant$ 41. The graphs H_{41} and H_{42} in Constructions 4 and 5 (in the Appendix), and Lemma 11 (a) give $R\left(C_{4}, W_{m}\right) \geqslant m+6$ for $m=36$ and 37 . We obtain $R\left(C_{4}, W_{m}\right) \leqslant m+6$ for $35 \leqslant m \leqslant 37$ by Theorem 10 , and thus $R\left(C_{4}, W_{m}\right)=m+6$.
(4) Case $m=44$. The $(7,5)$-cage H_{50} (cf. [9]) and Lemma $11(a)$ imply $R\left(C_{4}, W_{44}\right) \geqslant 51$. Theorem 10 implies $R\left(C_{4}, W_{44}\right) \leqslant 51$, which gives $R\left(C_{4}, W_{44}\right)=51$.

We note that Lemmas $11(a)$ and 12 can be stated together as:
Theorem 13. A C_{4}-free graph G is a $\left(C_{4}, W_{m} ; n\right)$-graph for $n-m \geqslant 4, m \geqslant 7$ iff $\delta(G)>n-m$.

5 Summary of results on $R\left(C_{4}, W_{m}\right)$

We briefly review some results on $(k, 5)$-graphs relevant for the estimates of $R\left(C_{4}, W_{m}\right)$. Wang [22] constructed a $(5,5)$-graph of order 32 using a complete set of Latin squares of order 4. An
$(8,5)$-graph of order 84 and a $(9,5)$-graph of order 98 were constructed by O'Keefe and Wong [16]. An $(8,5)$-graph of order 80 was constructed by Royle [19]. Exoo gave (10,5)-graphs of order 124 and 126 , an $(11,5)$-graph, a $(12,5)$-graph, and $(13,5)$-graphs of order 230 and 240 [8]. Jørgensen constructed an (11,5)-graph of order 156 , and $(k, 5)$-graphs for $k=9,12,14,15,16$ and 20 [13]. The ($k, 5$)-graphs for $17 \leqslant k \leqslant 19$ were constructed by Schwenk (cf. [9]). Using these $(k, 5)$-graphs and Constructions 2,3 and 5 in the Appendix, we obtain the lower bounds on $R\left(C_{4}, W_{m}\right)$ for various m by Lemma $11(a)$ or $11(b)$. These and other previously known results are summarized in Table 2.

Table 2. The values and bounds on $R\left(C_{4}, W_{m}\right)$

m	value/bounds	reference
4	10	cf. [18]
5	9	cf. [18]
6	10	cf. [18]
7	9	[21]
8-11	$m+3$	[21]
12-13	$m+4$	[21]
14-17	$m+4$	[7]
18-21	$m+4$	Cons. 1/Thm. 3
22-25	$m+4 / m+5$	Cons. 2/[7]
26	31	[7]
27	32	Thm. 3
28-34	$m+5 / m+6$	[22], Cons. 3/[7]
35-37	$m+6$	Cons. 4, 5/[7]
38-43	$m+6 / m+7$	Cons. 5/[7]
44	51	Thm. 3/[7]
73	81/82	[8]
77	85/86	[16]
88	97/98	[13]
90	99/100	[16]
115	125/126	[8]
117	127/128	[8]
144	155/156	[8]
146	157/159	[13]
192	204/206	[8]
205	217/220	[13] /[7]
218	231/233	[8]
228	241/244	[8]
275	289/292	[13]
298	313/316	[13]
321	337/339	[13]
432	449/453	cf. [9]
463	481/485	cf. [9]
494	513/517	cf. [9]
557	577/581	[13]

Note: Thm. refers to Theorem in this paper, Cons. refers to Construction in the Appendix. All upper bounds for $m \geqslant 73$ are implied by Theorem $10[7]$.

References

[1] D. Bauer, H. J. Broersma, H. J. Veldman and L. Rao, A Generalization of a Result of Häggkvist and Nicoghossian, Journal of Combinatorial Theory, Series B, 47 (1989) 237243.
[2] V. Chvátal, On Hamilton's Ideals, Journal of Combinatorial Theory, Series B, 12 (1972) 163-168.
[3] V. Chvátal and P. Erdős, A Note on Hamiltonian Circuits, Discrete Mathematics, 2 (1972) 111-113.
[4] C. R. J. Clapham, A. Flockhart and J. Sheehan, Graphs without Four-cycles, Journal of Graph Theory, 13 (1989), 29-47.
[5] A. M. Dean, C. J. Knickerbocker, P. F. Lock and M. Sheard, A Survey of Graphs Hamiltonian-Connected from a Vertex, Graph Theory, Combinatorics, and Applications, Wiley (1991), 297-313.
[6] G. A. Dirac, Some Theorems on Abstract Graphs, Proceedings of the London Mathematical Society, 2 (1952) 68-81.
[7] J. Dybizbański and T. Dzido, On Some Ramsey Numbers for Quadrilaterals versus Wheels, to appear in Graphs and Combinatorics.
[8] G. Exoo, Regular Graphs of Given Degree and Girth, http://ginger.indstate.edu/ge/ cages/.
[9] G. Exoo and R. Jajcay, Dynamic Cage Survey, Electronic Journal of Combinatorics, http://www.combinatorics.org, \#DS16, (2011), 54 pages.
[10] Z. Füredi, On the Number of Edges of Quadrilateral-free Graphs, Journal of Combinatorial Theory, Series B, 68 (1996) 1-6.
[11] P. R. Hafner, On the Graphs of Hoffman-Singleton and Higman-Sims, Electronic Journal of Combinatorics, http://www.combinatorics.org, \#R17, 11 (2004), 33 pages.
[12] J. Hook and G. Isaak, Star-critical Ramsey Numbers, Discrete Applied Mathematics, 159 (2011) 328-334.
[13] L. K. Jørgensen, Girth 5 Graphs from Relative Difference Sets, Discrete Mathematics, 293 (2005) 177-184.
[14] G. Károlyi and V. Rosta, Generalized and Geometric Ramsey Numbers for Cycles, Theoretical Computer Science, 263 (2001) 87-98.
[15] B. D. McKay, nauty 2.6b, 2013, http://cs.anu.edu.au/~bdm/nauty.
[16] M. O'Keefe and P. K. Wong, On Certain Regular Graphs of Girth 5, International Journal of Mathematics and Mathematical Sciences, 7 (1984) 785-791.
[17] Ø. Ore, Hamiltonian Connected Graphs, Journal de Mathématiques Pures et Appliquées, 42 (1963) 21-27.
[18] S. P. Radziszowski, Small Ramsey Numbers, Electronic Journal of Combinatorics, http://www.combinatorics.org, \#DS1, (2011), 84 pages.
[19] G. Royle, Cages of Higher Valency, http://www.cs.uwa.edu.au/~gordon/cages/ allcages.html.
[20] Z. Shao, J. Xu and X. Xu, A New Turán Number for Quadrilateral, Utilitas Mathematica, 79 (2009) 51-58.
[21] K. K. Tse, On the Ramsey Number of the Quadrilateral versus the Book and the Wheel, Australasian Journal of Combinatorics, 27 (2003) 163-167.
[22] P. Wang, An Upper Bound for the ($n, 5$)-cages, Ars Combinatoria, 47 (1997) 121-128.
[23] Y. Yang and P. Rowlinson, Extremal Graphs without Four-cycles, Utilitas Mathematica, 41 (1992) 204-210.

Appendix 1

The following graph constructions are sorted by the number of vertices n. Constructions 1, 4 and 5 are used in the proof of Theorem 3 in section 4, Constructions 2, 3 and 5 are used in the Summary in section 5 .

Construction $1(21 \leqslant n \leqslant 24)$. The graph H_{20} of order 20 is a (4,5)-graph shown in Figure 3, where $V\left(H_{20}\right)=\left\{v_{i, j}, w_{k}: 0 \leqslant i, j, k \leqslant 3\right\}$. Based on H_{20}, we construct the graphs H_{i} of order i, such that $\delta\left(H_{i}\right)=4$ and $C_{4} \nsubseteq H_{i}$, for $21 \leqslant i \leqslant 24$. Let

$$
\begin{aligned}
& E_{0}=\left\{v_{0,0} v_{1,0}, v_{2,0} v_{3,2}\right\}, E_{1}=\left\{v_{0,2} v_{2,1}, v_{1,1} v_{3,0}\right\}, \\
& E_{2}=\left\{v_{0,1} v_{3,1}, v_{1,2} v_{2,2}\right\}, E_{3}=\left\{v_{0,3} v_{3,3}, v_{1,3} v_{2,3}\right\},
\end{aligned}
$$

and let u_{j} be the vertex added to $V\left(H_{21+j}\right)$, for $0 \leqslant j \leqslant 3$. Then $V\left(H_{i}\right)=V\left(H_{i-1}\right) \cup\left\{u_{i-21}\right\}$, and $E\left(H_{i}\right)=\left(E\left(H_{i-1}\right) \backslash E_{i-21}\right) \cup\left\{u_{i-21} v_{s, t}: v_{s, t}\right.$ is an endvertex of an edge in $\left.E_{i-21}\right\}$, and their matrices are shown in Tables 3-7, respectively.

Figure 3: The graph H_{20}
Table 3. Matrix of graph H_{20}

$v_{0,0}$	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0
$v_{0,1}$	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0
$v_{0,2}$	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0
$v_{0,3}$	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0
$v_{1,0}$	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0
$v_{1,1}$	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0
$v_{1,2}$	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0
$v_{1,3}$	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0
$v_{2,0}$	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
$v_{2,1}$	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0
$v_{2,2}$	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0
$v_{2,3}$	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0
$v_{3,0}$	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1
$v_{3,1}$	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1
$v_{3,2}$	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1
$v_{3,3}$	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
w_{0}	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w_{1}	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
w_{2}	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
w_{3}	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0

Table 4. Matrix of graph H_{21}

$v_{0,0}$	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	1
$v_{0,1}$	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0
$v_{0,2}$	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0
$v_{0,3}$	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0
$v_{1,0}$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	1
$v_{1,1}$	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0
$v_{1,2}$	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0
$v_{1,3}$	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0
$v_{2,0}$	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
$v_{2,1}$	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
$v_{2,2}$	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0
$v_{2,3}$	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0
$v_{3,0}$	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
$v_{3,1}$	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0
$v_{3,2}$	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
$v_{3,3}$	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0
w_{0}	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w_{1}	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
w_{2}	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0
w_{3}	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0
u_{0}	1	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0

Table 5. Matrix of graph H_{22}

$v_{0,0}$	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0
$v_{0,1}$	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	0
$v_{0,2}$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1
$v_{0,3}$	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0
$v_{1,0}$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	1	0
$v_{1,1}$	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1
$v_{1,2}$	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0
$v_{1,3}$	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0
$v_{2,0}$	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
$v_{2,1}$	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1
$v_{2,2}$	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
$v_{2,3}$	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0
$v_{3,0}$	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1
$v_{3,1}$	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
$v_{3,2}$	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0
$v_{3,3}$	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
w_{0}	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w_{1}	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w_{2}	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0
w_{3}	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0
u_{0}	1	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
u_{1}	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0

Table 6. Matrix of graph H_{23}

$v_{0,0}$	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0
$v_{0,1}$	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1
$v_{0,2}$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0
$v_{0,3}$	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0
$v_{1,0}$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	1	0	0
$v_{1,1}$	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0
$v_{1,2}$	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1
$v_{1,3}$	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0
$v_{2,0}$	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
$v_{2,1}$	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0
$v_{2,2}$	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1
$v_{2,3}$	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0
$v_{3,0}$	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0
$v_{3,1}$	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1
$v_{3,2}$	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
$v_{3,3}$	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0
w_{0}	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w_{1}	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w_{2}	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
w_{3}	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
u_{0}	1	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
u_{1}	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
u_{2}	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0

Table 7. Matrix of graph H_{24}

$v_{0,0}$	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	1	0	0	0
$v_{0,1}$	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
$v_{0,2}$	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0
$v_{0,3}$	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1
$v_{1,0}$	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0
$v_{1,1}$	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0
$v_{1,2}$	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0
$v_{1,3}$	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1
$v_{2,0}$	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0
$v_{2,1}$	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0
$v_{2,2}$	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0
$v_{2,3}$	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
$v_{3,0}$	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0
$v_{3,1}$	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0
$v_{3,2}$	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
$v_{3,3}$	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1
w_{0}	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w_{1}	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
w_{2}	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
w_{3}	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
u_{0}	1	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
u_{1}	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
u_{2}	0	1	0	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
u_{3}	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0

Appendix 2

It is known that Hoffman-Singleton graph is the unique (7,5)-cage [9], and let us denote it by H_{50}. The construction of H_{50} based on Robertson's pentagon-pentagram was described in [11], where $V\left(H_{50}\right)=\left\{u_{i, j}, v_{i, j}: 0 \leqslant i, j \leqslant 4\right\}$, and the edge set $E\left(H_{50}\right)$ is defined by

$$
\begin{aligned}
u_{i, j} u_{i, j^{\prime}} & \in E\left(H_{50}\right) \Leftrightarrow j-j^{\prime}= \pm 1 ; \\
v_{i, j} v_{i, j^{\prime}} & \in E\left(H_{50}\right) \Leftrightarrow j-j^{\prime}= \pm 2 ; \\
u_{i, j} v_{i^{\prime}, j^{\prime}} & \in E\left(H_{50}\right) \Leftrightarrow j=i i^{\prime}+j^{\prime} .
\end{aligned}
$$

Construction $2(25 \leqslant n \leqslant 28)$. Let $H_{30}^{b}=H_{50} \backslash S$, where $|S|=20$ and $S=\left\{u_{i, j}, v_{i, j}: 3 \leqslant\right.$ $i \leqslant 4,0 \leqslant j \leqslant 4\}$. Then H_{30}^{b} shown in Figure 4 is one of the four (5,5)-cages, and its matrix is given in Table 8. We construct graphs H_{i} of order $i, 25 \leqslant i \leqslant 29$, such that $\delta\left(H_{i}\right)=4$ and $C_{4} \nsubseteq H_{i}$. The graphs H_{i} are obtained by removing one vertex from H_{i+1} (starting from H_{30}^{b}) as follows.

$$
\begin{aligned}
& H_{29}=H_{30}^{b} \backslash\left\{u_{0,0}\right\}, H_{28}=H_{29} \backslash\left\{u_{0,1}\right\}, H_{27}=H_{28} \backslash\left\{u_{0,2}\right\}, \\
& H_{26}=H_{27} \backslash\left\{v_{0,1}\right\}, H_{25}=H_{26} \backslash\left\{v_{1,1}\right\} .
\end{aligned}
$$

Figure 4: $H_{30}^{b}[9]$.

Table 8. Matrix of graph H_{30}^{b}

Construction $3(33 \leqslant n \leqslant 38)$. First we remove a copy of the Petersen graph from H_{50}, and obtain the unique $(6,5)$-cage, denoted by H_{40}. We have $H_{40}=H_{50} \backslash S$, where $|S|=10$ and $S=\left\{u_{4, j}, v_{4, j}: 0 \leqslant j \leqslant 4\right\}$. We construct graphs H_{i} of order $i, 33 \leqslant i \leqslant 39$, such that $\delta\left(H_{i}\right)=5$ and $C_{4} \nsubseteq H_{i}$. The graphs H_{i} are obtained by removing one vertex from H_{i+1} as follows.

$$
\begin{aligned}
& H_{39}=H_{40} \backslash\left\{u_{0,0}\right\}, H_{38}=H_{39} \backslash\left\{u_{0,1}\right\}, H_{37}=H_{38} \backslash\left\{u_{0,2}\right\} \\
& H_{36}=H_{37} \backslash\left\{v_{0,1}\right\}, H_{35}=H_{36} \backslash\left\{v_{1,1}\right\}, H_{34}=H_{35} \backslash\left\{v_{2,1}\right\} \\
& H_{33}=H_{34} \backslash\left\{v_{3,1}\right\}
\end{aligned}
$$

Construction $4(n=41)$. We construct a 6 -regular graph H_{41} of order 41 from the $(6,5)$ cage H_{40} by adding a new vertex w and removing certain edges. As in Construction $3, H_{40}=$ $H_{50} \backslash\left\{u_{4, j}, v_{4, j}: 0 \leqslant j \leqslant 4\right\}$. Let

$$
\begin{aligned}
V\left(H_{41}\right)= & V\left(H_{40}\right) \cup\{w\}, \\
E\left(H_{41}\right)= & \left(E\left(H_{40}\right) \backslash\left\{u_{0,0} v_{1,0}, u_{0,1} v_{2,1}, u_{3,2} u_{3,3}\right\}\right) \\
& \cup\left\{w u_{0,0}, w v_{1,0}, w u_{0,1}, w v_{2,1}, w u_{3,2}, w u_{3,3}\right\} .
\end{aligned}
$$

The matrix of H_{41} is shown in Table 9.

Table 9. Matrix of graph H_{41}

$u_{0,0}$																																											
$u_{0,1}$	0	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0

Construction 5 ($42 \leqslant n \leqslant 48$). As in Construction 3, we start with the unique (7,5)-cage H_{50}. We construct graphs H_{i} of order $i, 42 \leqslant i \leqslant 49$, such that $\delta\left(H_{i}\right)=6$ and $C_{4} \nsubseteq H_{i}$. The graphs H_{i} are obtained by removing one vertex from H_{i+1} as follows.

$$
\begin{aligned}
& H_{49}=H_{50} \backslash\left\{u_{0,0}\right\}, H_{48}=H_{49} \backslash\left\{u_{0,1}\right\}, H_{47}=H_{48} \backslash\left\{u_{0,2}\right\}, \\
& H_{46}=H_{47} \backslash\left\{v_{0,1}\right\}, H_{45}=H_{46} \backslash\left\{v_{1,1}\right\}, H_{44}=H_{45} \backslash\left\{v_{2,1}\right\}, \\
& H_{43}=H_{44} \backslash\left\{v_{3,1}\right\}, H_{42}=H_{43} \backslash\left\{v_{4,1}\right\} .
\end{aligned}
$$

[^0]: *Supported by NSFC(60973011, 61272004), Fundamental Research Funds for the Central Universities.
 ${ }^{\dagger}$ Supported by Polish National Science Centre grant 2011/02/A/ST6/00201.

