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Abstract

The star-critical Ramsey number r∗(H1,H2) is the smallest integer k such that
every red/blue coloring of the edges of Kn −K1,n−k−1 contains either a red copy of
H1 or a blue copy of H2, where n is the graph Ramsey number R(H1,H2). We study
the cases of r∗(C4, Cn) and R(C4,Wn). In particular, we prove that r∗(C4, Cn) = 5
for all n > 4, obtain a general characterization of Ramsey-critical (C4,Wn)-graphs,
and establish the exact values of R(C4,Wn) for 9 cases of n between 18 and 44.
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1 Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph G =
(V (G), E(G)), we denote the order of G by p(G) = |V (G)|. The Ramsey arrowing operator
→ is a logical predicate, which holds for graphs G,H1 and H2, written G → (H1,H2), if and
only if for all partitions E(G) = E1 ∪ E2 into two sets (colors) E1 contains H1 or E2 contains
H2. The Ramsey number R(H1,H2) is the smallest n such that Kn → (H1,H2). Any edge
2-coloring witnessing Kn 6→(H1,H2) will be called an (H1,H2;n)-coloring, which can be seen as
a graph not containing H1 and without H2 in the complement. The star-critical Ramsey number

r∗(H1,H2) is the smallest k such that Kn −K1,n−k−1 → (H1,H2), where n = R(H1,H2) [12].

If V (G) ∩ V (H) = ∅, then the graph G+H on vertices V (G) ∪ V (H) has the edges E(G) ∪
E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}. For S ⊆ V (G), G[S] denotes the subgraph induced in
G by S, and G \ S = G[V (G) \ S]. For v ∈ S, let NG[S](v) = {u : u ∈ S ∧ uv ∈ E(G)} and
dG[S](v) = |NG[S](v)|. If S = V (G), we simply write N(v), d(v), and N [v] = N(v) ∪ {v}. δ(G)
and ∆(G) are the minimum and maximum degrees in G, respectively. α(G) denotes the order
of the maximum independent set in G, κ(G) is the vertex connectivity of G. Pk is the path on
k vertices, Ck is the cycle of length k, Tk is a k-vertex tree, and Wk+1 is the wheel graph, where
a hub is connected by k spokes to Ck. Km,n is the complete m×n bipartite graph, in particular
K1,n is the star graph. Km

n is the complete m-partite graph with each part of order n.

It is known that R(C4,W4) = 10, R(C4,W5) = 9 and R(C4,W6) = 10 (cf. [18]). Tse
[21] determined the values of R(C4,Wm) for 7 6 m 6 13. Dybizbański and Dzido [7] proved
that R(C4,Wm) = m + 4 for 14 6 m 6 16, and R(C4,Wq2+1) = q2 + q + 1 for prime powers
q > 4. They also gave an upper bound on R(C4,Wm) for m > 11. The concept of star-critical
Ramsey numbers was introduced by Hook and Isaak [12]. They proved that r∗(C4, C3) = 5,
r∗(Tn,Km) = (n− 1)(m− 2) + 1, r∗(nK2,mK2) = m for n > m, and r∗(C4, Pn) = 3 for n > 3.

Recall that R(C4, Cn) = n+ 1 for n > 6 [14]. The main results of this paper are as follows:

Theorem 1. For all n > 6, any (C4, Cn;n)-graph is in one of the graph sets Fi, 1 6 i 6 4, as
in Definition 4.

Theorem 2. r∗(C4, Cn) = 5 for all n > 4.

Theorem 3. R(C4,Wm) =















m+ 4, for 18 6 m 6 21,
m+ 5, for m = 27,
m+ 6, for 35 6 m 6 37, and
m+ 7, for m = 44.

Definition 4. Graph sets Fj , 1 6 j 6 4, are defined on vertices {v, x1, . . . , xn−2, y}. We
present them in Figure 1. In each case the distinguished vertex v ∈ V (F i

j ) is of maximum

degree, X = N(v), and X induces i disjoint edges iK2 in F i
j . We describe these graphs in detail

as follows.
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(1) F i
1 ∈ F1, d(v) = n− 2, and N(y) = ∅;

F i
1[X] = (n − 2i− 2)K1 ∪ iK2 for 0 6 i 6 (n− 2)/2.

(2) F i
2 ∈ F2, d(v) = n− 2, N(y) = {xn−2}, and dF i

2
[X](xn−2) = 0;

F i
2[X] = (n − 2i− 2)K1 ∪ iK2 for 0 6 i 6 (n− 3)/2.

(3) F i
3 ∈ F3, d(v) = n− 2, N(y) = {xn−2}, and dF i

3
[X](xn−2) = 1;

F i
3[X] = (n − 2i− 2)K1 ∪ iK2 for 1 6 i 6 (n− 2)/2.

(4) F i
4 ∈ F4, y = xn−1, and d(v) = n− 1;

F i
4[X] = (n − 2i− 1)K1 ∪ iK2 for 0 6 i 6 (n− 1)/2.

In all cases (i, j), one can easily see that the graphs F i
j have no C4, their complements have

no Cn, and thus all of them are (C4, Cn;n)-graphs.

v

x1 x2 x3 xn−3 xn−2 y

X

v

x1 x2 xn−4 xn−3 xn−2 y

X

(j = 1) Family of graphs F1 (j = 2) Family of graphs F2

v

x1 x2 x3 xn−3 xn−2 y

X

v

x1 x2 xn−4 xn−3 xn−2 xn−1

X

(j = 3) Family of graphs F3 (j = 4) Family of graphs F4, y = xn−1

Figure 1: Structure of graphs in Fj for 1 6 j 6 4.

Some of the known results which will be used in our proofs are summarized in the next two
theorems.

Theorem 5. [14] R(C4, Cn) =







7, for n = 3, 5,
6, for n = 4, and
n+ 1, for n > 6.

Theorem 6. [6, 2, 3, 1] Let G be any graph of order n > 3. If G satisfies any of the following

conditions, then it is Hamiltonian:

(a) δ(G) > ⌈n/2⌉,
(b) For all i < n/2, either di > i + 1 or dn−i > n − i, where d1 6 d2 6 . . . 6 dn is the degree

sequence,

(c) α(G) 6 κ(G), or
(d) G is 2-connected and σ3(G) > n+ κ(G), where

σ3(G) = min
{

3
∑

i=1

d(vi) : {v1, v2, v3} is an independent set in G
}

.
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2 Proof of Theorem 1

Lemma 7. For a graph G of order n+m+ 1 for n > m > 2, n > 4, such that C4 * G, let v be

a vertex of degree δ(G) = m, Y = N(v) and X = V (G) −N [v], so |X| = n. If Kt
2 ⊆ G[X] for

even n or (K1 +Kt
2) ⊆ G[X] for odd n (t = ⌊n2 ⌋), and each vertex of Y is adjacent to at least

n− 1 vertices of X, then G is Hamiltonian.

Proof. Note that since δ(G) = m and G \ Y is disconnected, we have κ(G) = m, and C4 * G
implies α(G) 6 3. If m > 3, then G is Hamiltonian by Theorem 6(c). So assume that m = 2,
Y = {y1, y2} and X = {x1, x2, . . . , xn}. We can see that d(v) = 2, d(y1), d(y2) > n, and
d(xi) > n− 2 for 1 6 i 6 n. We will consider two cases: n = 4 and n > 5.

Suppose that n = 4, so |V (G)| = 7. If there is a vertex in X, say x1, which is nonadjacent
to y1 or y2, then y1 (or y2) is adjacent to each vertex in {x2, x3, x4}, and we can easily find a
Hamiltonian cycle in G. If each vertex of X is adjacent to y1 or y2, then the degree sequence of
G is 2334444, and G is Hamiltonian by Theorem 6(b).

Finally, we can assume that n > 5. If T is an independent set of order 3 in G , then
there are two subcases, say T = {x1, y1, y2} and T = {v, x1, x2}. If T = {x1, y1, y2}, then
d(x1) + d(y1) + d(y2) > 3n− 2. If T = {v, x1, x2}, then we have d(v) + d(x1) + d(x2) > 2n, and
hence σ3(G) = 2n. Now, we conclude that G is Hamiltonian by Theorem 6(d).

Proof of Theorem 1. First we prove that any (C4, Cn;n)-graph G for n > 8 is isomorphic
to one of the graphs in Fj , 1 6 j 6 4. Since Cn * G, we have that G is not Hamiltonian.
By Theorem 6(a), we have δ(G) < ⌈n2 ⌉ which implies ∆(G) > ⌊n2 ⌋. Let v be a vertex of
maximum degree and X = NG(v) = {x1, x2, . . . , xk}, k > 4. Since C4 * G, we have that G[X]
is isomorphic to (k − 2i)K1 ∪ iK2 for some i 6 t = ⌊k2⌋. Hence we have Kt

2 ⊆ G[X] for even k
or (K1 +Kt

2) ⊆ G[X] for odd k. Let Y = NG(v), and observe that |X| > |Y |. Since C4 * G,
each vertex y ∈ Y is adjacent to at most one vertex in X in G, that is, it is adjacent to at least
k − 1 vertices in X in G. If dG(v) > 2, then G is Hamiltonian by Lemma 7. Hence we need to
consider dG(v) 6 1, that is, dG(v) = n− 2 or dG(v) = n− 1.

For dG(v) = n− 2, Y = {y}, since C4 * G, y is adjacent to at most one vertex in X. In this
situation G[X] is isomorphic to (n − 2i − 2)K1 ∪ iK2 for some i 6 t = ⌊n−2

2 ⌋, which is F i
1 for

0 6 i 6 (n− 2)/2, F i
2 for 0 6 i 6 (n − 3)/2, or F i

3 for 1 6 i 6 (n− 2)/2.
If dG(v) = n− 1, then Y = ∅. Now G[X] is isomorphic to (n− 2i− 1)K1 ∪ iK2, which is one

of the graphs F i
4 for 0 6 i 6 (n− 1)/2.

It remains to complete the proof for n = 6, 7. Using geng of nauty [15], we found that there
are exactly 44 C4-free graphs of order 6 and 117 C4-free graphs of order 7. Among them, we
found 10 (C4, C6; 6)-graphs and 12 (C4, C7; 7)-graphs, respectively, and we checked that all of
them are isomorphic to one of the graphs in Fj , 1 6 j 6 4. �

3 Proof of Theorem 2

In 1963, Ore [17] defined a graph to be Hamiltonian-connected if there is a Hamiltonian path
between every pair of distinct vertices (see also an early survey by Dean et al. [5]). Theorem 8
will be used in the proof of the following Lemma 9.

Theorem 8. [17] Let G be a 2-connected graph with n vertices. If for every pair of nonadjacent

vertices u and v we have d(u) + d(v) > n+ 1, then G is Hamiltonian-connected.
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Hook and Isaak [12] proved that r∗(C4, C3) = 5. We will extend their result to r∗(C4, Cn)
for all n > 4. Let (K1 +Km

2 )− be the graph obtained by dropping one of the 2m edges between
K1 and Km

2 .

Lemma 9. The graphs Km
2 , (K1 +Km

2 )− and K1 + (K1 +Km−1
2 )− are Hamiltonian-connected

for all m > 3.

Proof. Let u and v be any two nonadjacent vertices of G as in Lemma 9. If G = Km
2 , then

d(u) + d(v) = 4m− 4 > 2m+ 1. If G = (K1 +Km
2 )−, then d(u) + d(v) > 4m− 4 > 2m+ 2. For

G = K1+(K1+Km−1
2 )−, we notice that there is only one vertex of degree δ(G) = 2m−3. Hence,

we have d(u) + d(v) > 4m − 5 > 2m+ 1. In all cases, these graphs are Hamiltonian-connected
by Theorem 8.

Proof of Theorem 2. We first prove that r∗(C4, Cn) = 5 for all n > 7. Let G denote the graph
Kn+1 −K1,n−k in this proof, V (G) = {vi : 1 6 i 6 n + 1}, and E(G) = E(Kn) ∪ {vivn+1 : 1 6

i 6 k}. Since R(C4, Cn) = n+ 1, hence it is sufficient to show that max{k : G 6→ (C4, Cn)} = 4.
For a red/blue coloring of the edges of G witnessing G 6→ (C4, Cn), we use Gr and Gb to denote
its red and blue subgraphs. Hence C4 * Gr and Cn * Gb. Let H = Gr[{v1, v2, . . . , vn}], and vn
be a vertex of maximum degree in H. By Theorem 1, we know that H is isomorphic to one of
the graphs in Fj , 1 6 j 6 4.

We first consider the case H = F 0
1 , and suppose E(H) = {vivn : 1 6 i 6 n− 2}. Since C4 *

Gr, vn+1 is adjacent to at most one vertex vi for 1 6 i 6 n−2. Together with vn−1vn+1, vnvn+1 ∈
E(Gr), there are at most three red edges between vn+1 and V (H). Since F 0

1 ⊆ H for any H ∈ Fj ,
then in all cases there are also at most three red edges between vn+1 and V (H).

Next we consider the graph H, and set W = H \ {vn} and m = ⌊(n − 1)/2⌋. If n is even,
then (K1 + Km

2 )− ⊆ W . Lemma 9 and Cn * Gb imply that vn+1 is adjacent to at most one
vertex of V (W ) in Gb. If n is odd, then Km

2 ⊆ W or (K1 + (K1 +Km−1
2 )−) ⊆ W . By Lemma 9

and Cn * Gb, we also see that vn+1 is adjacent to at most one vertex of V (W ) in Gb. So,
max{k : G 6→ (C4, Cn)} = 4, and the theorem holds for all n > 7.

For the special cases of n = 4, 5, 6, we have R(C4, Cn) equal to 6, 7 and 7, respectively.
Hence we need to show that K6 − e 6→ (C4, C4), K7 −P3 6→ (C4, Cn) and K7 − e → (C4, Cn) for
n = 5, 6. The number of potential counterexamples (similarly as in the proof of Theorem 1) is
very small, and we checked that none exist. Hence, r∗(C4, Cn) = 5 for all n > 4. �

4 Proof of Theorem 3

The girth of a graph G is the length of its shortest cycle. A k-regular graph with girth g is
called a (k, g)-graph. When the number of vertices in the (k, g)-graph is minimized then we call
it a (k, g)-cage. We use ex(n,C4) to denote the maximum size of a C4-free graph of order n.
The graph of size ex(n,C4) is called an extremal graph, and let EX(n,C4) denote the set of
all corresponding extremal graphs. Clapham, Flockhart and Sheehan [4] gave the exact values
of ex(n,C4) for n 6 21 and the graphs in EX(n,C4). Yang and Rowlinson [23] determined the
exact values of ex(n,C4) for 22 6 n 6 31 and the corresponding extremal graphs. Recently,
Shao, Xu and Xu [20] established that ex(32, C4) = 92. It was conjectured by Erdős that for
n = q2 + q + 1, where q is a prime power, ex(n,C4) = 1

2q(q + 1)2. That is, the Erdős-Renyi
graph ERq has the optimal number of edges and is a witness for ex(n,C4). In 1996, Füredi [10]
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Table 1. The values of ex(n, C4) for n 6 32

n ex(n, C4) n ex(n, C4) n ex(n, C4)
3 3 13 24 23 56
4 4 14 27 24 59
5 6 15 30 25 63
6 7 16 33 26 67
7 9 17 36 27 71
8 11 18 39 28 76
9 13 19 42 29 80
10 16 20 46 30 85
11 18 21 50 31 90
12 21 22 52 32 92

proved this conjecture for all q > 13. All known nontrivial values of ex(n,C4) for n 6 32 are
shown in Table 1.

Theorem 10. [7] R(C4,Wm) 6 m+
√
m− 2 + 1 for m > 11.

Lemma 11. (a) If G is a graph of order n and δ(G) > n−m, then Wm * G.

(b) If there exists a (k, 5)-graph of order n, then R(C4,Wm) > n+ 1 for m > n− k.
(c) If G is a (C4, Cn;n)-graph for n > 6, then (K1 ∪K1,n−2) ⊆ G.

Proof. For any graph G as in (a), ∆(G) < m − 1, hence Wm * G, and (a) holds. For any
(k, 5)-graph G of order n, since δ(G) = k and C4 * G, G is a (C4,Wm;n)-graph, and thus (b)
holds by (a). Theorem 1 implies (c) which is equivalent to ∆(G) > n− 2.

Lemma 12. If G is a (C4,Wm;n)-graph for 7 6 m 6 n− 4, then δ(G) > n−m.

Proof. Suppose that δ(G) 6 n−m. Let v be a vertex with d(v) = δ(G) andH = G[V (G)−N [v]].
There are two cases to consider depending on d(v).
Case 1. If d(v) 6 n−m− 1, then dG(v) and p(H) > m. Since C4 * H and R(C4, Cm−1) = m,
we have Cm−1 ⊆ H. Then v together with some m − 1 vertices of V (H) contains Wm in G, a
contradiction.
Case 2. If d(v) = n − m, then p(H) = m − 1, and let N(v) = {v1, v2, . . . , vn−m}. Note that
Cm−1 * H, since otherwise Wm ⊆ G. Therefore, since C4 * H, H is a (C4, Cm−1;m − 1)-
graph, and by Lemma 11(c), we have (K1 ∪ K1,m−3) ⊆ H. Let x be the center of K1,m−3,
y the isolated vertex of K1 ∪ K1,m−3, and Z = V (H) \ {x, y} = {z1, z2, . . . , zm−3}. Since
d(z1) > n −m > 4 and C4 * G, z1 has to be adjacent to y, one vertex of N(v) and one vertex
of Z, say z1v1, z1z2 ∈ E(G). However, since C4 * G, z2 is adjacent to at most one vertex in
N(v) \ {v1}, which is a contradiction.

Cases 1 and 2 imply that δ(G) > n−m.

Proof of Theorem 3. There are four sets of cases in the proof using Constructions 1, 4 and 5
in the Appendix.

(1) Cases 18 6 m 6 21. The graphs Hn, 21 6 n 6 24, defined in Construction 1, and
Lemma 11(a), imply R(C4,Wm) > m+4 for 18 6 m 6 21. To prove the upper bounds, assume
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that R(C4,Wm) > m + 4 for some m, 18 6 m 6 21, and let G be any (C4,Wm;m + 4)-graph.
By Lemma 12 we have δ(G) > 4. However, the values of ex(n,C4) for 22 6 n 6 24 (see Table 1)
imply that δ(G) 6 4, which is a contradiction. Yang and Rowlinson [23] showed that there are
exactly nine graphs H in EX(25, C4) (we obtained them from the authors). We checked that
δ(H) = 4 for all of them, a contradiction.

(2) Case m = 27. It is known that there are four (5, 5)-cages [9], and one of them is shown
in Figure 2, denoted by Ha

30. Note that ui is nonadjacent to uj , and ui is adjacent to vi,j for
0 6 i, j 6 4 in Ha

30. We extend Ha
30 to a (C4,W27; 31)-graph H31 by setting

V (H31) = V (Ha
30) ∪ {w} and

E(H31) = E(Ha
30) ∪ {wui : 0 6 i 6 4}.

Note that δ(H31) = 5. By Lemma 11(a) we have R(C4,W27) > 32. For the upper bound

u0v0,0v4,1
v3,2

v2,3
v1,4

u1

v1,0

v0,1

v4,2
v3,3

v2,4
u2

v2,0 v1,1 v0,2 v4,3
v3,4

u3

v3,0

v2,1

v1,2

v0,3

v4,4

u4

v4,0

v3,1

v2,2
v1,3

v0,4

Figure 2: Ha
30 [9].

assume that G is any (C4,W27; 32)-graph. By Lemma 12, we have δ(G) > 5, a contradiction
with ex(32, C4) = 92. Hence R(C4,W27) = 32.

(3) Cases 35 6 m 6 37. The (6, 5)-cage H40 (cf. [9]) and Lemma 11(a) imply R(C4,W35) >
41. The graphs H41 and H42 in Constructions 4 and 5 (in the Appendix), and Lemma 11(a)
give R(C4,Wm) > m+ 6 for m = 36 and 37. We obtain R(C4,Wm) 6 m + 6 for 35 6 m 6 37
by Theorem 10, and thus R(C4,Wm) = m+ 6.

(4) Case m = 44. The (7, 5)-cage H50 (cf. [9]) and Lemma 11(a) imply R(C4,W44) > 51.
Theorem 10 implies R(C4,W44) 6 51, which gives R(C4,W44) = 51. �

We note that Lemmas 11(a) and 12 can be stated together as:

Theorem 13. A C4-free graph G is a (C4,Wm;n)-graph for n−m > 4, m > 7 iff δ(G) > n−m.

5 Summary of results on R(C4,Wm)

We briefly review some results on (k, 5)-graphs relevant for the estimates of R(C4,Wm). Wang
[22] constructed a (5, 5)-graph of order 32 using a complete set of Latin squares of order 4. An

7



(8, 5)-graph of order 84 and a (9, 5)-graph of order 98 were constructed by O’Keefe and Wong
[16]. An (8, 5)-graph of order 80 was constructed by Royle [19]. Exoo gave (10, 5)-graphs of
order 124 and 126, an (11, 5)-graph, a (12, 5)-graph, and (13, 5)-graphs of order 230 and 240 [8].
Jørgensen constructed an (11, 5)-graph of order 156, and (k, 5)-graphs for k = 9, 12, 14, 15, 16
and 20 [13]. The (k, 5)-graphs for 17 6 k 6 19 were constructed by Schwenk (cf. [9]). Using
these (k, 5)-graphs and Constructions 2, 3 and 5 in the Appendix, we obtain the lower bounds on
R(C4,Wm) for various m by Lemma 11(a) or 11(b). These and other previously known results
are summarized in Table 2.

Table 2. The values and bounds on R(C4,Wm)

m value/bounds reference

4 10 cf. [18]
5 9 cf. [18]
6 10 cf. [18]
7 9 [21]

8− 11 m+ 3 [21]
12 − 13 m+ 4 [21]
14 − 17 m+ 4 [7]
18 − 21 m+ 4 Cons. 1/Thm. 3

22 − 25 m+ 4/m+ 5 Cons. 2/[7]
26 31 [7]
27 32 Thm. 3

28 − 34 m+ 5/m+ 6 [22], Cons. 3/[7]
35 − 37 m+ 6 Cons. 4, 5/[7]
38 − 43 m+ 6/m+ 7 Cons. 5/[7]

44 51 Thm. 3/[7]

73 81/82 [8]
77 85/86 [16]
88 97/98 [13]
90 99/100 [16]
115 125/126 [8]
117 127/128 [8]
144 155/156 [8]
146 157/159 [13]
192 204/206 [8] . . .
205 217/220 [13] /[7]
218 231/233 [8] . . .
228 241/244 [8]
275 289/292 [13]
298 313/316 [13]
321 337/339 [13]
432 449/453 cf. [9]
463 481/485 cf. [9]
494 513/517 cf. [9]
557 577/581 [13]
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Note: Thm. refers to Theorem in this paper, Cons. refers to Construction in the Appendix.
All upper bounds for m > 73 are implied by Theorem 10 [7].
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Appendix 1

The following graph constructions are sorted by the number of vertices n. Constructions 1,
4 and 5 are used in the proof of Theorem 3 in section 4, Constructions 2, 3 and 5 are used in
the Summary in section 5.

Construction 1 (21 6 n 6 24). The graph H20 of order 20 is a (4, 5)-graph shown in Figure 3,
where V (H20) = {vi,j , wk : 0 6 i, j, k 6 3}. Based on H20, we construct the graphs Hi of order
i, such that δ(Hi) = 4 and C4 * Hi, for 21 6 i 6 24. Let

E0 = {v0,0v1,0, v2,0v3,2}, E1 = {v0,2v2,1, v1,1v3,0},
E2 = {v0,1v3,1, v1,2v2,2}, E3 = {v0,3v3,3, v1,3v2,3},

and let uj be the vertex added to V (H21+j), for 0 6 j 6 3. Then V (Hi) = V (Hi−1) ∪ {ui−21},
and E(Hi) = (E(Hi−1)\Ei−21)∪{ui−21vs,t : vs,t is an endvertex of an edge in Ei−21}, and their
matrices are shown in Tables 3-7, respectively.

v3,2
v1,3

v2,3

v0,0

v1,0

v3,3

v0,3
v2,2 v3,0

v1,1

v2,1

v0,2

v1,2

v3,1

v0,1
v2,0

w0 w1

w2 w3

Figure 3: The graph H20

Table 3. Matrix of graph H20

v0,0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
v0,1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
v0,2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0
v0,3 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0
v1,0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
v1,1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
v1,2 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0
v1,3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
v2,0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
v2,1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0
v2,2 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
v2,3 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
v3,0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
v3,1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
v3,2 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1
v3,3 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
w0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
w2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
w3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
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Table 4. Matrix of graph H21

v0,0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1
v0,1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
v0,2 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0
v0,3 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0
v1,0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1
v1,1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
v1,2 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
v1,3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
v2,0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
v2,1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
v2,2 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v2,3 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
v3,0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
v3,1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
v3,2 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1
v3,3 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
w0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
w2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
w3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
u0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

Table 5. Matrix of graph H22

v0,0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0
v0,1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0
v0,2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1
v0,3 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0
v1,0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0
v1,1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
v1,2 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
v1,3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
v2,0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
v2,1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
v2,2 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
v2,3 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
v3,0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
v3,1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
v3,2 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0
v3,3 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
w0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
w3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
u0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
u1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
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Table 6. Matrix of graph H23

v0,0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0
v0,1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
v0,2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
v0,3 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
v1,0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
v1,1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
v1,2 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
v1,3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
v2,0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
v2,1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
v2,2 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1
v2,3 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
v3,0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0
v3,1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
v3,2 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
v3,3 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
w0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
w3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
u0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
u1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
u2 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Table 7. Matrix of graph H24

v0,0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0
v0,1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
v0,2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
v0,3 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
v1,0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0
v1,1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
v1,2 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0
v1,3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
v2,0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
v2,1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
v2,2 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
v2,3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
v3,0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0
v3,1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
v3,2 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
v3,3 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
w0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
w3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
u0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
u1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
u2 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
u3 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
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Appendix 2

It is known that Hoffman-Singleton graph is the unique (7,5)-cage [9], and let us denote it
by H50. The construction of H50 based on Robertson’s pentagon-pentagram was described in
[11], where V (H50) = {ui,j , vi,j : 0 6 i, j 6 4}, and the edge set E(H50) is defined by

ui,jui,j′ ∈ E(H50) ⇔ j − j′ = ±1;

vi,jvi,j′ ∈ E(H50) ⇔ j − j′ = ±2;

ui,jvi′,j′ ∈ E(H50) ⇔ j = ii′ + j′.

Construction 2 (25 6 n 6 28). Let Hb
30 = H50 \ S, where |S| = 20 and S = {ui,j , vi,j : 3 6

i 6 4, 0 6 j 6 4}. Then Hb
30 shown in Figure 4 is one of the four (5,5)-cages, and its matrix

is given in Table 8. We construct graphs Hi of order i, 25 6 i 6 29, such that δ(Hi) = 4 and
C4 * Hi. The graphs Hi are obtained by removing one vertex from Hi+1 (starting from Hb

30)
as follows.

H29 = Hb
30 \ {u0,0}, H28 = H29 \ {u0,1}, H27 = H28 \ {u0,2},

H26 = H27 \ {v0,1}, H25 = H26 \ {v1,1}.

v0,0u0,0v2,0
u2,4

v1,2
u1,3

v0,3

u0,3

v2,3

u2,2

v1,0

u1,1

v0,1
u0,1 v2,1 u2,0

v1,3
u1,4

v0,4
u0,4

v2,4

u2,3

v1,1

u1,2

v0,2

u0,2

v2,2

u2,1

v1,4
u1,0

Figure 4: Hb
30 [9].
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Table 8. Matrix of graph Hb
30

u0,0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
u0,1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
u0,2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
u0,3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
u0,4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
u1,0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
u1,1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
u1,2 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
u1,3 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
u1,4 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
u2,0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0
u2,1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
u2,2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
u2,3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
u2,4 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
v0,0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
v0,1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
v0,2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
v0,3 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v0,4 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
v1,0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
v1,1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
v1,2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
v1,3 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
v1,4 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
v2,0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
v2,1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
v2,2 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
v2,3 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
v2,4 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Construction 3 (33 6 n 6 38). First we remove a copy of the Petersen graph from H50, and
obtain the unique (6, 5)-cage, denoted by H40. We have H40 = H50 \ S, where |S| = 10 and
S = {u4,j , v4,j : 0 6 j 6 4}. We construct graphs Hi of order i, 33 6 i 6 39, such that δ(Hi) = 5
and C4 * Hi. The graphs Hi are obtained by removing one vertex from Hi+1 as follows.

H39 = H40 \ {u0,0}, H38 = H39 \ {u0,1}, H37 = H38 \ {u0,2},
H36 = H37 \ {v0,1}, H35 = H36 \ {v1,1}, H34 = H35 \ {v2,1},
H33 = H34 \ {v3,1}.

Construction 4 (n = 41). We construct a 6-regular graph H41 of order 41 from the (6, 5)-
cage H40 by adding a new vertex w and removing certain edges. As in Construction 3, H40 =
H50 \ {u4,j , v4,j : 0 6 j 6 4}. Let

V (H41) =V (H40) ∪ {w},
E(H41) =(E(H40) \ {u0,0v1,0, u0,1v2,1, u3,2u3,3})

∪ {wu0,0, wv1,0, wu0,1, wv2,1, wu3,2, wu3,3}.

The matrix of H41 is shown in Table 9.
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Table 9. Matrix of graph H41

u0,0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
u0,1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
u0,2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
u0,3 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
u0,4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
u1,0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
u1,1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
u1,2 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0
u1,3 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
u1,4 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
u2,0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
u2,1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
u2,2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
u2,3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0
u2,4 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
u3,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
u3,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0
u3,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1
u3,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1
u3,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
v0,0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v0,1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v0,2 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v0,3 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v0,4 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v1,0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
v1,1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
v1,2 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v1,3 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v1,4 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
v2,0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
v2,1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
v2,2 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
v2,3 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
v2,4 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
v3,0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
v3,1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
v3,2 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
v3,3 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
v3,4 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
w 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Construction 5 (42 6 n 6 48). As in Construction 3, we start with the unique (7, 5)-cage
H50. We construct graphs Hi of order i, 42 6 i 6 49, such that δ(Hi) = 6 and C4 * Hi. The
graphs Hi are obtained by removing one vertex from Hi+1 as follows.

H49 = H50 \ {u0,0}, H48 = H49 \ {u0,1}, H47 = H48 \ {u0,2},
H46 = H47 \ {v0,1}, H45 = H46 \ {v1,1}, H44 = H45 \ {v2,1},
H43 = H44 \ {v3,1}, H42 = H43 \ {v4,1}.

16


	Introduction
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Summary of results on R(C4,Wm)

