ORIGINAL PAPER

Ramsey Numbers of C₄ versus Wheels and Stars

Yali Wu · Yongqi Sun · Rui Zhang · Stanisław P. Radziszowski

Received: 21 January 2014 /Revised: 27 October 2014 © Springer Japan 2015

Abstract Let $ex(n, C_4)$ denote the maximum size of a C_4 -free graph of order n. For an even integer or odd prime power q, we prove that $ex(q^2 + q + 2, C_4) < \frac{1}{2}(q+1)(q^2 + q + 2)$, which leads to an improvement of the upper bound on Ramsey numbers $R(C_4, W_{q^2+2})$, where W_n is a wheel of order n. By using a simple polarity graph G_q for a prime power q, we construct the graphs whose complements do not contain $K_{1,m}$ or W_m , and then determine some exact values of $R(C_4, K_{1,m})$ and $R(C_4, W_m)$. In particular, we prove that $R(C_4, K_{1,q^2-2}) = q^2 + q - 1$ for $q \ge 3$, $R(C_4, W_{q^2-1}) = q^2 + q - 1$ for $q \ge 5$, and $R(C_4, W_{q^2+2}) = q^2 + q + 2$ for $q \ge 7$.

Keywords Ramsey number · Wheel · Cycle · Extremal graph · Polarity graph

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph G with vertex-set V(G) and edge-set E(G), $S \subseteq V(G)$, G[S] denotes the subgraph induced by S in G, and $G \setminus S$ is the subgraph induced by the set V(G) - S. For $v \in S$, define $N_{G[S]}(v) = \{u : u \in S \land uv \in E(G)\}$ and $d_{G[S]}(v) = |N_{G[S]}(v)|$. If

Y. Wu \cdot Y. Sun (\boxtimes) \cdot R. Zhang

Supported by NSFC (60973011, 61272004), and Fundamental Research Funds for Central Universities. Supported by Polish National Science Centre Grant 2011/02/A/ST6/00201.

Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, People's Republic of China e-mail: yqsun@bjtu.edu.cn

S = V(G), we simply write N(v), d(v), and $N[v] = N(v) \cup \{v\}$. $\delta(G)$ and $\Delta(G)$ are the minimum and maximum degree of *G*, respectively. C_k is a cycle of length *k*, $K_{1,n}$ is a star graph of order n + 1, and W_{m+1} is a wheel with *m* spokes.

We use $ex(n, C_4)$ to denote the maximum size of a C_4 -free graph of order n. A C_4 -free graph of size $ex(n, C_4)$ is called an *extremal graph*, and let $EX(n, C_4)$ denote the set of all corresponding extremal graphs. Clapham, Flockhart and Sheehan [3] obtained the exact values of $ex(n, C_4)$ and the graphs in $EX(n, C_4)$ for $n \le 21$. Yang and Rowlinson [15] determined the exact values of $ex(n, C_4)$ for $22 \le n \le 31$ and the corresponding extremal graphs. Recently, Shao, Xu and Xu [13] established that $ex(32, C_4) = 92$. In [12], Reiman determined the upper bound $ex(n, C_4) \le \frac{1}{2}q(q + 1)^2$ for all q > 13, and that the equality holds for all prime powers q. Firke et al. [5] showed that $ex(q^2 + q, C_4) \le \frac{1}{2}q(q + 1)^2 - q$ for even q, and that the equality holds for $q = 2^k$. The main result of this paper related to $ex(n, C_4)$ is as follows.

Theorem 1 If q is even or an odd prime power, then

$$ex(q^2+q+2, C_4) < \frac{1}{2}(q+1)(q^2+q+2).$$

The Ramsey arrowing operator \rightarrow is a logical predicate, which holds for graphs $G \rightarrow (H_1, H_2)$ if and only if for all partitions of the edges of G into two colors G_1 and G_2 there exists $H_1 \subseteq G_1$ or $H_2 \subseteq G_2$. The Ramsey number $R(H_1, H_2)$ is the smallest n such that $K_n \rightarrow (H_1, H_2)$. An $(H_1, H_2; n)$ -graph denotes any graph not containing H_1 and not containing H_2 in the complement. In 1989, Burr et al. [2] showed that $m + \sqrt{m} - 6m^{11/40} \leq R(C_4, K_{1,m}) \leq m + \lceil \sqrt{m} \rceil + 1$. Parsons [10] proved that $R(C_4, K_{1,q^2}) = q^2 + q + 1$ and $R(C_4, K_{1,q^{2+1}}) = q^2 + q + 2$. For the Ramsey numbers of C_4 versus wheels, it is known that $R(C_4, W_4) = 10$, $R(C_4, W_5) = 9$ and $R(C_4, W_6) = 10$ [11]. Tse [14] determined the exact values of $R(C_4, W_m)$ for $7 \leq m \leq 13$. Dybizbański and Dzido [4] proved that $R(C_4, W_m) = m + 4$ for $14 \leq m \leq 17$ and $R(C_4, W_{q^2+1}) = q^2 + q + 1$ for prime power $q \geq 4$. They also gave an upper bounds on $R(C_4, W_m)$ for $m \geq 11$ [see Theorem 7(d)]. We extend these results by our Theorems 2 and 4.

Theorem 2 If q is even or an odd prime power, and $q \ge 7$, then

$$R(C_4, W_{q^2+2}) \le q^2 + q + 2.$$

For a prime power q, Abreu, Balbuena and Labbate [1] described a simple polarity graph G_q . We construct new graphs based on G_q whose complements do not contain $K_{1,m}$ or W_m , and then determine some exact values of $R(C_4, K_{1,m})$ or $R(C_4, W_m)$, as follows.

Theorem 3 If $q \ge 3$ is a prime power, then

(a) $R(C_4, K_{1,q^2-2}) = q^2 + q - 1$, and (b) $R(C_4, K_{1,q^2-k-1}) = q^2 + q - k$ for even q, where $0 \le k \le q$ except $k \in \{1, q-1\}$.

Theorem 4 If $q \ge 3$ is a prime power, then

(a) R(C₄, W_{q²+2}) = q² + q + 2 for q ≥ 7,
(b) R(C₄, W_{q²-1}) = q² + q - 1, and
(c) R(C₄, W_{q²-k}) = q² + q - k for even q, where 0 ≤ k ≤ q except k ∈ {1, q - 1}.

As mentioned previously, it was shown that Theorem 4(b) and (c) hold for q = 3 and 4 in [4, 14]. Some well known results which will be used in our proofs are summarized in the next three theorems.

Theorem 5 [9] Let G be a graph of order $n \ge 3$. If $d(u) + d(v) \ge n$ for every pair of non-adjacent vertices u and v, then G is Hamiltonian.

Theorem 6 [12] $ex(n, C_4) < \frac{1}{4}n(1 + \sqrt{4n-3})$ for $n \ge 4$.

Theorem 7 [4,8,10]

- (a) $R(C_4, C_n) = n + 1$ for $n \ge 6$,
- (b) $R(C_4, K_{1,q^2+1}) = q^2 + q + 2$ for any prime power q,
- (c) $R(C_4, K_{1,m}) \le m + \lceil \sqrt{m} \rceil + 1$ for $m \ge 2$, and
- (d) $R(C_4, W_m) \le m + \lfloor \sqrt{m-2} \rfloor + 1$ for $m \ge 11$.

2 Proof of Theorem 1

Lemma 8 Let q be an even integer or odd prime power. If G is a graph of order $q^2 + q + 2$ such that $\delta(G) \ge q + 1$, then $C_4 \subseteq G$.

Proof If *q* is an odd prime power, then since $\delta(G) \ge q + 1$, we have $\Delta(\overline{G}) \le q^2$, and thus $K_{1,q^2+1} \nsubseteq \overline{G}$. By Theorem 7(b), it follows that $C_4 \subseteq G$. If *q* is even, there are two cases depending on $\delta(G)$.

Case 1. Suppose that $\delta(G) \ge q + 2$, then

$$|E(G)| \ge \frac{1}{2}(q+2)(q^2+q+2).$$

Since

$$q + 2 = \frac{1}{2} \left(1 + \sqrt{4(q + 3/2)^2} \right)$$

> $\frac{1}{2} \left(1 + \sqrt{4(q^2 + q + 2) - 3} \right),$

we have

$$|E(G)| > \frac{1}{4} \left(q^2 + q + 2\right) \left(1 + \sqrt{4(q^2 + q + 2) - 3}\right).$$

By Theorem 6, we have $C_4 \subseteq G$, it completes Case 1.

Deringer

Fig. 1 Graph G in Case 2 of Lemma 8

Case 2. Suppose that $\delta(G) = q + 1$. Assume that $C_4 \not\subseteq G$ and consider $v \in V(G)$ such that d(v) = q + 1, and $N(v) = \{u_i : 1 \le i \le q + 1\}$. Each vertex u_i is adjacent to at most one vertex of N(v), since otherwise $C_4 \subseteq G$. Note that q+1 is odd, and thus, there exists at least one vertex of N(v) which is nonadjacent to any vertex of N(v), say u_{q+1} . Therefore, since $\delta(G) = q+1$ and $C_4 \nsubseteq G$, we have u_{q+1} is adjacent to at least q vertices in V(G) - N[v], and each vertex u_i , for $1 \le i \le q$, is adjacent to at least q - 1 vertices in V(G) - N[v]. Thus $|\bigcup_{i=1}^{q+1} N(u_i) - N[v]| \ge q(q-1) + q = q^2$. Since $C_4 \nsubseteq G$, there does not exist any vertex in V(G) - N[v] adjacent to two vertices of N(v). Considering that $|V(G) - N[v]| = q^2$, we have that u_{q+1} is adjacent to q vertices in V(G) - N[v], say $w_{q+1,j}$ for $1 \le j \le q$, and each vertex u_i , for $1 \le i \le q$, is adjacent to q - 1 vertices in V(G) - N[v], say $w_{i,j}$ for $1 \le j \le q - 1$. Therefore, each vertex u_i for $1 \le i \le q$ has to be adjacent to exactly one vertex of $N(v) - \{u_{q+1}\}$, say $u_i u_{i+1} \in E(G)$ for odd $j, 1 \le j \le q-1$. Now we consider the vertices $w_{1,i}$ for $1 \le j \le q-1$. Similarly, since q-1 is odd and $C_4 \not\subseteq G$, there exists at least one vertex $w_{1,i}$ for $1 \le j \le q-1$, which is nonadjacent to some other vertex of $w_{1,i}$, say $w_{1,1}$. Since $C_4 \not\subseteq G$, $w_{1,1}$ is nonadjacent to any vertex $w_{2,j}$ for $1 \leq j \leq q-1$, and there is at most one vertex $w_{i,i}$ adjacent to $w_{1,1}$ for each $i, 3 \le i \le q+1$. Without loss of generality, let $w_{1,1}w_{i,1} \in E(G)$ for $3 \le i \le q+1$ as shown in Fig. 1. Hence we have $d(w_{1,1}) = q$, a contradiction with $\delta(G) = q + 1$, thus Case 2 and the lemma hold. \Box

Proof of Theorem 1. For an even integer or odd prime power q, by Lemma 8, there doesn't exist a C_4 -free graph of order $q^2 + q + 2$ such that $\delta(G) \ge q + 1$. Hence we have $ex(q^2 + q + 2, C_4) < \frac{1}{2}(q+1)(q^2 + q + 2)$.

3 The Upper Bounds on $R(C_4, W_{q^2+2})$

Proof of Theorem 2 For an even integer or odd prime power $q \ge 7$, suppose that $R(C_4, W_{q^2+2}) > q^2 + q + 2$, and let G be a $(C_4, W_{q^2+2}; q^2 + q + 2)$ -graph. By Lemma 8 we have $\delta(G) \le q$. There are two cases depending on $\delta(G)$.

Case 1. Suppose that $\delta(G) \le q - 1$. Let $v \in V(G)$ be such that $d(v) \le q - 1$, then $d_{\overline{G}}(v) \ge q^2 + 2$. Since $C_4 \nsubseteq G$ and $R(C_4, C_{q^2+1}) = q^2 + 2$ by Theorem 7(a), we have $W_{q^2+2} \subseteq \overline{G}$, a contradiction.

Case 2. Suppose that $\delta(G) = q$. Let $v \in V(G)$ be a vertex with d(v) = q, $H = G[N_{\overline{G}}(v)]$, and let v_1 and v_2 be any two vertices such that $v_1v_2 \in E(H)$. Then we have $|V(H)| = q^2 + 1$, and

$$d_{\overline{H}}(v_1) + d_{\overline{H}}(v_2) = 2q^2 - (d_H(v_1) + d_H(v_2)).$$
(1)

Note that G has at most $ex(q^2 + q + 2, C_4)$ edges. Let e be defined by

$$ex\left(q^{2}+q+2,C_{4}\right) = \left\lceil \frac{(q^{2}+q+2)\delta(G)}{2} \right\rceil + e.$$
 (2)

For $v_1v_2 \in E(H)$, by the same argument as in [4], we have

Claim 1. $d_H(v_1) + d_H(v_2) \le 2\delta(G) + e + 1$.

On the other hand, the upper bound on e is obtained in the next claim.

Claim 2. $e \le q^2 - 2q - 2$ for $q \ge 7$. *Proof of Claim* 2. By Theorem 6, we have

$$\begin{split} e &= ex\left(q^2 + q + 2, C_4\right) - \left\lceil \frac{(q^2 + q + 2)\delta(G)}{2} \right\rceil \\ &< \frac{1}{4}\left(q^2 + q + 2\right)\left(1 + \sqrt{4(q^2 + q + 2) - 3}\right) - \frac{1}{2}\left(q^2 + q + 2\right)q \\ &< \frac{1}{4}\left(q^2 + q + 2\right)\left(1 + 2q + \frac{5}{4}\right) - \frac{1}{2}\left(q^2 + q + 2\right)q \\ &= \frac{9}{16}\left(q^2 + q + 2\right). \end{split}$$

Since $q \ge 7$, we have $e \le q^2 - 2q - 2$, thus Claim 2 holds.

By equality (1) and Claim 1, we have $d_{\overline{H}}(v_1) + d_{\overline{H}}(v_2) \ge 2q^2 - (2\delta(G) + e + 1) = 2q^2 - 2q - e - 1$. By Claim 2, we have $d_{\overline{H}}(v_1) + d_{\overline{H}}(v_2) \ge q^2 + 1$. By Theorem 5 we have $C_{q^2+1} \subseteq \overline{H}$, thus v together with the vertices of $V(\overline{H})$ would form a W_{q^2+2} in \overline{G} , a contradiction. Hence the assumption does not hold in Case 2.

This completes the proof of Theorem 2.

Theorem 2 implies the following.

Corollary 9 If q is a prime power and $q \ge 7$, then $R(C_4, W_{q^2+2}) \le q^2 + q + 2$.

4 The Ramsey Numbers of $R(C_4, K_{1,m})$ and $R(C_4, W_m)$

There are many old descriptions of polarity graphs. We choose to use the notation of [1] which is particularly suitable for our purpose. In this paper, Abreu, Balbuena and Labbate presented the adjacency matrix M° of the polarity graph \hat{G}_q from a projective plane PG(2, q) for a prime power q. The graph \hat{G}_q has $q^2 + q + 1$ vertices and q + 1 loops. The matrix M° is J_2 -free, where J_2 is a matrix of order 2 all of whose entries

are 1, so \widehat{G}_q is a C_4 -free graph. The simple polarity graph G_q with the matrix M^* is the graph obtained from \widehat{G}_q by deleting all q + 1 loops. The graph G_q has $q^2 + q + 1$ vertices, in which q + 1 vertices have degree q and all other vertices have degree q + 1. It has triangles, but no C_4 and it has diameter two. Taking q = 2, 3, and 4 as examples, the matrices of G_q are shown in Table 1. We label the vertices of G_q from v_1 to v_{q^2+q+1} according to the rows (or columns) of M^* , that is, $V(G_q) = \{v_1, v_2, \ldots, v_{q^2+q+1}\}$.

We notice that the symmetric matrices M^* of G_q have the following properties.

Fact 10 (1) $M^*[q^2 + i, q^2 + q + 1] = 1$ for $1 \le i \le q$. Thus

$$N(v_{q^2+q+1}) = \{v_{q^2+1}, v_{q^2+2}, \dots, v_{q^2+q}\}.$$

	(a)	Ga																			
v_1	0	1	1	0	1	0	0														
v2	1	0	0	1	1	0	0														
v3	1	0	0	0	0	1	0														
v _A	0	1	0	0	0	1	0														
v5	1	1	0	0	0	0	1														
v6	0	0	1	1	0	0	1														
v7	0	0	0	0	1	1	0														
,	(b) G_3																				
v_1	0	1	0	0	0	1	1	0	0	1	0	0	0								
v_2	1	0	0	0	1	0	0	0	1	1	0	0	0								
v_3	0	0	0	1	0	0	0	1	0	1	0	0	0								
v_4	0	0	1	0	1	0	1	0	0	0	1	0	0								
v_5	0	1	0	1	0	0	0	0	1	0	1	0	0								
v_6	1	0	0	0	0	0	0	1	0	0	1	0	0								
v_7	1	0	0	1	0	0	0	0	0	0	0	1	0								
v_8	0	0	1	0	0	1	0	0	1	0	0	1	0								
v_9	0	1	0	0	1	0	0	1	0	0	0	1	0								
v_{10}	1	1	1	0	0	0	0	0	0	0	0	0	1								
v_{11}	0	0	0	1	1	1	0	0	0	0	0	0	1								
v_{12}	0	0	0	0	0	0	1	1	1	0	0	0	1								
v_{13}	0	0	0	0	0	0	0	0	0	1	1	1	0								
	(c)	G_4																			
v_1	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	0
v_2	1	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0
v_3	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0
v_4	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0
v_5	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	0
v_6	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	1	0	0	0
v_7	1	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0

Table 1 The adjacency matrices M^* of graphs G_2 , G_3 , and G_4

v_8	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0
v_9	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0
v_{10}	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0
v_{11}	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1	0	0
v_{12}	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0
v_{13}	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0
v_{14}	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0
v_{15}	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0
v_{16}	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0
v_{17}	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
v_{18}	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1
v_{19}	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1
v_{20}	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	1
v_{21}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0

(2) For each $1 \le i \le q$, $M^*[(i-1)q + j, q^2 + i] = 1$ for $1 \le j \le q$. Thus $d(v_{q^2+i}) = q + 1$ and

$$N(v_{q^{2}+i}) = \{v_{(i-1)q+1}, v_{(i-1)q+2}, \dots, v_{iq}\} \cup \{v_{q^{2}+q+1}\}.$$

(3) $M^*[(i-1)q+1, q^2-q+1] = 1$ for $1 \le i \le q-1$, and $M^*[q^2+q, q^2-q+1] = 1$. Thus $d(v_{a^2-q+1}) = q$ and

$$N\left(v_{q^{2}-q+1}\right) = \left\{v_{1}, v_{q+1}, v_{2q+1}, \dots, v_{(q-2)q+1}\right\} \cup \left\{v_{q^{2}+q}\right\}.$$

(4) For odd q, the main diagonal of the matrix M° has an entry 1 in the last position, and all the other 1's on the main diagonal are distributed one in each block of the main diagonal of blocks. Hence we see that each vertex of $N(v_{q^2+q}) - \{v_{q^2-q+1}, v_{q^2+q+1}\}$ has degree q + 1, that is,

$$d(v_i) = q + 1, \quad v_i \in \{v_{(q-1)q+2}, v_{(q-1)q+3}, \dots, v_{q^2}\}.$$

(5) For even q, all 1's on the main diagonal of M° are in row q(q-1) + i, for $1 \le i \le q$, and in the last row. Hence we see that each vertex of $N(v_{q^2+q})$ has degree q, that is,

$$d(w) = \begin{cases} q, & for \ w \in N(v_{q^2+q}), \\ q+1, \ for \ w \notin N(v_{q^2+q}). \end{cases}$$

To illustrate Fact 10 (4), we take \widehat{G}_3 as an example, the matrix M° is shown in Table 2, where all 1's on the main diagonal are underlined. By Fact 10 (2), the vertices

v_1	0	1	0	0	0	1	1	0	0	1	0	0	0
v_2	1	0	0	0	1	0	0	0	1	1	0	0	0
v_3	0	0	<u>1</u>	1	0	0	0	1	0	1	0	0	0
v_4	0	0	1	0	1	0	1	0	0	0	1	0	0
v_5	0	1	0	1	0	0	0	0	1	0	1	0	0
v_6	1	0	0	0	0	<u>1</u>	0	1	0	0	1	0	0
v_7	1	0	0	1	0	0	<u>1</u>	0	0	0	0	1	0
v_8	0	0	1	0	0	1	0	0	1	0	0	1	0
v_9	0	1	0	0	1	0	0	1	0	0	0	1	0
v_{10}	1	1	1	0	0	0	0	0	0	0	0	0	1
v_{11}	0	0	0	1	1	1	0	0	0	0	0	0	1
v_{12}	0	0	0	0	0	0	1	1	1	0	0	0	1
v_{13}	0	0	0	0	0	0	0	0	0	1	1	1	<u>1</u>

Table 2 The adjacency matrix M° of \widehat{G}_3

of $N(v_{q^2+q}) - \{v_{q^2+q+1}\}$ belong to one block. Note that v_{q^2-q+1} has a loop, and by Fact 10 (1), $d(v_{q^2+q+1}) = q$.

To illustrate Fact 10 (5), we take \widehat{G}_4 as an example, the matrix M° is shown in Table 3, where all 1's on the main diagonal are underlined. Note that each vertex of $N(v_{a^2+a})$ has a loop.

Lemma 11 For $v \in V(G_q)$ with d(v) = q, each vertex of N(v) has degree q + 1.

Proof Assume there exists a vertex u such that d(u) = q and $uv \in E(G_q)$. Since the vertex of degree q in G_q has a loop in \widehat{G}_q [1], the vertices u, v have loops in \widehat{G}_q . Hence the matrix M° of \widehat{G}_q would contain a submatrix J_2 of vertices u and v, a contradiction with $C_4 \nsubseteq \widehat{G}_q$.

Lemma 12 Let G be a C_4 -free graph of order n.

(a) *If m > n − δ(G) − 1, then G is a (C₄, K_{1,m})-graph, and*(b) *If m > n − δ(G), then G is a (C₄, W_m)-graph.*

Proof If $m > n - \delta(G) - 1$, then $\Delta(\overline{G}) < m$. So we have $K_{1,m} \nsubseteq \overline{G}$, thus (a) holds. If $m > n - \delta(G)$, then $\Delta(\overline{G}) < m - 1$. Hence we have $W_m \nsubseteq \overline{G}$, and thus (b) holds.

In Construction 13–15 below we define graphs H_s of order *s* such that $\delta(H_s) = q$ and $C_4 \not\subseteq H_s$. The graphs H_s are constructed by removing some vertices from G_q . These graphs are used in the proofs of Theorems 3 and 4.

Construction 13 (H_{q^2+q-i} for even q, and $1 \le i \le q-1$)

By Fact 10 (1) and 10 (2), we have $N(v_{q^2+q+1}) = \{v_{q^2+1}, v_{q^2+2}, \dots, v_{q^2+q}\}$ and $d(v_i) = q + 1$ for $v_i \in N(v_{q^2+q+1})$. We set $H_{q^2+q} = G_q \setminus \{v_{q^2+q+1}\}$, thus the vertices $v_{q^2+1}, v_{q^2+2}, \dots, v_{q^2+q}$ have degree q in H_{q^2+q} . By Fact 10 (2),

v_1	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	0
v_2	1	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0
v_3	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0
v_4	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0
v_5	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	0
v_6	0	0	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	1	0	0	0
v_7	1	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0
v_8	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0
<i>v</i> 9	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0
v_{10}	0	0	1	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0
v_{11}	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1	0	0
v_{12}	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1	0	0
v_{13}	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0
v_{14}	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0
v_{15}	0	0	1	0	0	0	1	0	0	0	1	0	0	0	<u>1</u>	0	0	0	0	1	0
v_{16}	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	<u>1</u>	0	0	0	1	0
v_{17}	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
v_{18}	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1
v_{19}	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1
v_{20}	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	1
v_{21}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1

Table 3 The adjacency matrix M° of \widehat{G}_4

 $E(G[N(v_{q^2+q+1})]) = \emptyset$. By Fact 10 (5), each vertex in $\{v_{q^2+1}, v_{q^2+2}, \dots, v_{q^2+q-1}\}$ is adjacent to only vertices of degree q + 1 in H_{q^2+q} . We construct the graph H_{q^2+q-i} by removing one vertex v_{q^2+i} , namely

$$H_{q^2+q-i} = H_{q^2+q-i+1} \setminus \{v_{q^2+i}\}, \quad 1 \le i \le q-1.$$

Note that H_{q^2+1} is a *q*-regular graph.

Construction 14 $(H_{q^2-1} \text{ for even } q)$

By Fact 10 (2) and 10 (5), $N(v_{q^2+q}) = \{v_{(q-1)q+1}, v_{(q-1)q+2}, \dots, v_{q^2}\} \cup \{v_{q^2+q+1}\}, \text{ and } d(v_i) = q+1 \text{ for } v_i \notin N(v_{q^2+q}). \text{ Therefore, since } C_4 \nsubseteq G_q, \text{ we have } N(v_i) \cap N(v_j) = \{v_{q^2+q}\} \text{ for } v_i, v_j \in N(v_{q^2+q}). \text{ We set }$

$$H_{q^2-1} = G_q \setminus N[v_{q^2+q}].$$

Note that H_{q^2-1} is a *q*-regular graph.

Construction 15 (H_{q^2+q-2} for odd q)

By Fact 10 (1–3), there doesn't exist any vertex in G_q adjacent to two vertices of $\{v_{(q-1)q+1}, v_{q^2+q}, v_{q^2+q+1}\}$. By Fact 10 (4), each vertex of $N(v_{q^2+q})$ –

 $\{v_{(q-1)q+1}, v_{q^2+q+1}\}$ has degree q + 1. By Lemma 11 each vertex of $N(v_{(q-1)q+1})$ has degree q + 1, so does each vertex of $N(v_{q^2+q+1})$. We set

$$H_{q^2+q-2} = G_q \setminus \{v_{(q-1)q+1}, v_{q^2+q}, v_{q^2+q+1}\}.$$

Proof of Theorem 3. By Theorem 7(c), we have the upper bounds in (a) and (b). So it is sufficient to prove the lower bounds. By Construction 13 of H_{q^2+q-2} for even $q \ge 4$, by Construction 15 of H_{q^2+q-2} for odd $q \ge 3$, and Lemma 12(a), we have $R(C_4, K_{1,q^2-2}) \ge q^2 + q - 1$, thus (a) holds.

For even q, using H_{q^2+q-i} as in Construction 13 for $1 \le i \le q-1$ and $i \ne 2$, H_{q^2-1} in Construction 14, and Lemma 12(a), we have $R(C_4, K_{1,q^2-k-1}) \ge q^2+q-k$ for even $q \ge 4$, where $0 \le k \le q$ except $k \in \{1, q-1\}$. Hence (b) holds.

Proof of Theorem 4. Since G_q is a graph of order $q^2 + q + 1$ such that $C_4 \nsubseteq G_q$ and $\delta(G_q) = q$, by Lemma 12(b), we have $R(C_4, W_{q^2+2}) \ge q^2 + q + 2$. By Corollary 9, we have $R(C_4, W_{q^2+2}) \le q^2 + q + 2$ for $q \ge 7$, and thus (a) holds.

By Theorem 7(d), we have an upper bounds on $R(C_4, W_m)$ in (b) and (c). So it is sufficient to prove the lower bounds. Using H_{q^2+q-2} as in Construction 13 for even $q \ge 4$, H_{q^2+q-2} as in Construction 15 for odd $q \ge 3$, and Lemma 12(b), we have $R(C_4, W_{q^2-1}) \ge q^2 + q - 1$, and thus (b) holds.

For even q, by Construction 13 of H_{q^2+q-i} for $1 \le i \le q-1$ and $i \ne 2$, by Construction 14 of H_{q^2-1} , and Lemma 12(b), we have $R(C_4, W_{q^2-k}) \ge q^2 + q - k$ for even $q \ge 4$, where $0 \le k \le q$ except $k \in \{1, q-1\}$. Hence (c) holds.

References

- Abreu, M., Balbuena, C., Labbate, D.: Adjacency matrices of polarity graphs and of other C₄-free graphs of large size. Des. Codes Cryptogr. 55, 221–233 (2010)
- Burr, S.A., Erdős, P., Faudree, R.J., Rousseau, C.C., Schelp, R.H.: Some complete bipartite graph-tree Ramsey numbers. Ann. Discret. Math. 41, 79–89 (1989)
- Clapham, C.R.J., Flockhart, A., Sheehan, J.: Graphs without four-cycles. J. Gr. Theory 13, 29–47 (1989)
- Dybizbański, J., Dzido, T.: On some Ramsey numbers for quadrilaterals versus wheels. Gr. Combin. 30, 573–579 (2014)
- Firke, F.A., Kosek, P.M., Nash, E.D., Williford, J.: Extremal graphs without 4-cycles. J. Combin. Theory Ser. B 103, 327–336 (2013)
- 6. Füredi, Z.: Graphs without quadrilaterals. J. Combin. Theory Ser. B 34, 187–190 (1983)
- Füredi, Z.: On the number of edges of quadrilateral-free graphs. J. Combin. Theory Ser. B 68, 1–6 (1996)
- Károlyi, G., Rosta, V.: Generalized and geometric Ramsey numbers for cycles. Theor. Comput. Sci. 263, 87–98 (2001)
- 9. Ore, Ø.: Note on Hamilton circuits. Am. Math. Mon. 67, 55 (1960)
- 10. Parsons, T.D.: Ramsey graphs and block designs. I. Trans. Am. Math. Soc. 209, 33-44 (1975)
- Radziszowski, S.P.: Small Ramsey numbers, Electronic Journal of Combinatorics. pp 94 (#DS1). http:// www.combinatorics.org (2014)
- 12. Reiman, I.: Über Ein Problem von K. Zarankiewicz. Acta Math. Hung. 9, 269–273 (1958)
- 13. Shao, Z., Xu, J., Xu, X.: A new Turán number for quadrilateral. Util. Math. 79, 51–58 (2009)
- Tse, K.K.: On the Ramsey number of the quadrilateral versus the book and the wheel. Australas J. Combin. 27, 163–167 (2003)
- 15. Yang, Y., Rowlinson, P.: On extremal graphs without four-cycles. Util. Math. 41, 204–210 (1992)