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Abstract Let ex(n, C4) denote the maximum size of a C4-free graph of order n.
For an even integer or odd prime power q, we prove that ex(q2 + q + 2, C4) <
1
2 (q + 1)(q2 + q + 2), which leads to an improvement of the upper bound on Ramsey
numbers R(C4, Wq2+2), where Wn is a wheel of order n. By using a simple polarity
graph Gq for a prime power q, we construct the graphs whose complements do not
contain K1,m or Wm , and then determine some exact values of R(C4, K1,m) and
R(C4, Wm). In particular, we prove that R(C4, K1,q2−2) = q2 + q − 1 for q ≥ 3,
R(C4, Wq2−1) = q2 + q − 1 for q ≥ 5, and R(C4, Wq2+2) = q2 + q + 2 for q ≥ 7.

Keywords Ramsey number · Wheel · Cycle · Extremal graph · Polarity graph

1 Introduction

We consider only finite undirected graphs without loops or multiple edges. For a graph
G with vertex-set V (G) and edge-set E(G), S ⊆ V (G), G[S] denotes the subgraph
induced by S in G, and G\S is the subgraph induced by the set V (G) − S. For
v ∈ S, define NG[S](v) = {u : u ∈ S ∧ uv ∈ E(G)} and dG[S](v) = |NG[S](v)|. If
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S = V (G), we simply write N (v), d(v), and N [v] = N (v)∪ {v}. δ(G) and �(G) are
the minimum and maximum degree of G, respectively. Ck is a cycle of length k, K1,n

is a star graph of order n + 1, and Wm+1 is a wheel with m spokes.
We use ex(n, C4) to denote the maximum size of a C4-free graph of order n. A C4-

free graph of size ex(n, C4) is called an extremal graph, and let E X (n, C4) denote
the set of all corresponding extremal graphs. Clapham, Flockhart and Sheehan [3]
obtained the exact values of ex(n, C4) and the graphs in E X (n, C4) for n ≤ 21. Yang
and Rowlinson [15] determined the exact values of ex(n, C4) for 22 ≤ n ≤ 31 and
the corresponding extremal graphs. Recently, Shao, Xu and Xu [13] established that
ex(32, C4) = 92. In [12], Reiman determined the upper bound ex(n, C4) < 1

4 n(1 +√
4n − 3) for n ≥ 4. Füredi [6,7] determined that ex(q2 + q + 1, C4) ≤ 1

2 q(q + 1)2

for all q > 13, and that the equality holds for all prime powers q. Firke et al. [5]
showed that ex(q2 + q, C4) ≤ 1

2 q(q + 1)2 − q for even q, and that the equality holds
for q = 2k . The main result of this paper related to ex(n, C4) is as follows.

Theorem 1 If q is even or an odd prime power, then

ex
(

q2 + q + 2, C4

)
<

1

2
(q + 1)

(
q2 + q + 2

)
.

The Ramsey arrowing operator → is a logical predicate, which holds for graphs
G → (H1, H2) if and only if for all partitions of the edges of G into two colors
G1 and G2 there exists H1 ⊆ G1 or H2 ⊆ G2. The Ramsey number R(H1, H2) is
the smallest n such that Kn → (H1, H2). An (H1, H2; n)-graph denotes any graph
not containing H1 and not containing H2 in the complement. In 1989, Burr et al. [2]
showed that m+√

m−6m11/40 ≤ R(C4, K1,m) ≤ m+
√m �+1. Parsons [10] proved
that R(C4, K1,q2) = q2 + q + 1 and R(C4, K1,q2+1) = q2 + q + 2. For the Ramsey
numbers of C4 versus wheels, it is known that R(C4, W4) = 10, R(C4, W5) = 9
and R(C4, W6) = 10 [11]. Tse [14] determined the exact values of R(C4, Wm) for
7 ≤ m ≤ 13. Dybizbański and Dzido [4] proved that R(C4, Wm) = m + 4 for
14 ≤ m ≤ 17 and R(C4, Wq2+1) = q2 + q + 1 for prime power q ≥ 4. They also
gave an upper bounds on R(C4, Wm) for m ≥ 11 [see Theorem 7(d)]. We extend these
results by our Theorems 2 and 4.

Theorem 2 If q is even or an odd prime power, and q ≥ 7, then

R
(
C4, Wq2+2

) ≤ q2 + q + 2.

For a prime power q, Abreu, Balbuena and Labbate [1] described a simple polari t y
graph Gq . We construct new graphs based on Gq whose complements do not contain
K1,m or Wm , and then determine some exact values of R(C4, K1,m) or R(C4, Wm), as
follows.

Theorem 3 If q ≥ 3 is a prime power, then

(a) R(C4, K1,q2−2) = q2 + q − 1, and
(b) R(C4, K1,q2−k−1) = q2+q−k for even q, where 0 ≤ k ≤ q except k ∈ {1, q−1}.
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Theorem 4 If q ≥ 3 is a prime power, then

(a) R(C4, Wq2+2) = q2 + q + 2 for q ≥ 7,
(b) R(C4, Wq2−1) = q2 + q − 1, and
(c) R(C4, Wq2−k) = q2 + q − k for even q, where 0 ≤ k ≤ q except k ∈ {1, q − 1}.

As mentioned previously, it was shown that Theorem 4(b) and (c)hold for q = 3 and
4 in [4,14]. Some well known results which will be used in our proofs are summarized
in the next three theorems.

Theorem 5 [9] Let G be a graph of order n ≥ 3. If d(u) + d(v) ≥ n for every pair
of non-adjacent vertices u and v, then G is Hamiltonian.

Theorem 6 [12] ex(n, C4) < 1
4 n(1 + √

4n − 3) for n ≥ 4.

Theorem 7 [4,8,10]

(a) R(C4, Cn) = n + 1 for n ≥ 6,
(b) R(C4, K1,q2+1) = q2 + q + 2 for any prime power q,
(c) R(C4, K1,m) ≤ m + 
√m � + 1 for m ≥ 2, and
(d) R(C4, Wm) ≤ m + �√m − 2 + 1 for m ≥ 11.

2 Proof of Theorem 1

Lemma 8 Let q be an even integer or odd prime power. If G is a graph of order
q2 + q + 2 such that δ(G) ≥ q + 1, then C4 ⊆ G.

Proof If q is an odd prime power, then since δ(G) ≥ q + 1, we have �(G) ≤ q2, and
thus K1,q2+1 � G. By Theorem 7(b), it follows that C4 ⊆ G. If q is even, there are
two cases depending on δ(G).

Case 1. Suppose that δ(G) ≥ q + 2, then

|E(G)| ≥ 1

2
(q + 2)

(
q2 + q + 2

)
.

Since

q + 2 = 1

2

(
1 +

√
4(q + 3/2)2

)

>
1

2

(
1 +

√
4(q2 + q + 2) − 3

)
,

we have

|E(G)| >
1

4

(
q2 + q + 2

) (
1 +

√
4(q2 + q + 2) − 3

)
.

By Theorem 6, we have C4 ⊆ G, it completes Case 1.
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Fig. 1 Graph G in Case 2 of Lemma 8

Case 2. Suppose that δ(G) = q + 1. Assume that C4 � G and consider v ∈ V (G)

such that d(v) = q +1, and N (v) = {ui : 1 ≤ i ≤ q +1}. Each vertex ui is adjacent to
at most one vertex of N (v), since otherwise C4 ⊆ G. Note that q + 1 is odd, and thus,
there exists at least one vertex of N (v) which is nonadjacent to any vertex of N (v), say
uq+1. Therefore, since δ(G) = q +1 and C4 � G, we have uq+1 is adjacent to at least
q vertices in V (G) − N [v], and each vertex ui , for 1 ≤ i ≤ q, is adjacent to at least
q − 1 vertices in V (G) − N [v]. Thus |⋃q+1

i=1 N (ui ) − N [v]| ≥ q(q − 1) + q = q2.
Since C4 � G, there does not exist any vertex in V (G)− N [v] adjacent to two vertices
of N (v). Considering that |V (G) − N [v]| = q2, we have that uq+1 is adjacent to q
vertices in V (G)− N [v], say wq+1, j for 1 ≤ j ≤ q, and each vertex ui , for 1 ≤ i ≤ q,
is adjacent to q − 1 vertices in V (G) − N [v], say wi, j for 1 ≤ j ≤ q − 1. Therefore,
each vertex ui for 1 ≤ i ≤ q has to be adjacent to exactly one vertex of N (v)−{uq+1},
say u j u j+1 ∈ E(G) for odd j , 1 ≤ j ≤ q − 1. Now we consider the vertices w1, j for
1 ≤ j ≤ q−1. Similarly, since q−1 is odd and C4 � G, there exists at least one vertex
w1, j for 1 ≤ j ≤ q − 1, which is nonadjacent to some other vertex of w1, j , say w1,1.
Since C4 � G, w1,1 is nonadjacent to any vertex w2, j for 1 ≤ j ≤ q − 1, and there
is at most one vertex wi, j adjacent to w1,1 for each i , 3 ≤ i ≤ q + 1. Without loss of
generality, let w1,1wi,1 ∈ E(G) for 3 ≤ i ≤ q + 1 as shown in Fig. 1. Hence we have
d(w1,1) = q, a contradiction with δ(G) = q + 1, thus Case 2 and the lemma hold. ��

Proof of Theorem 1. For an even integer or odd prime power q, by Lemma 8, there
doesn’t exist a C4-free graph of order q2 + q + 2 such that δ(G) ≥ q + 1. Hence we
have ex(q2 + q + 2, C4) < 1

2 (q + 1)(q2 + q + 2). ��

3 The Upper Bounds on R(C4, Wq2+2)

Proof of Theorem 2 For an even integer or odd prime power q ≥ 7, suppose that
R(C4, Wq2+2) > q2 + q + 2, and let G be a (C4, Wq2+2; q2 + q + 2)-graph. By
Lemma 8 we have δ(G) ≤ q. There are two cases depending on δ(G).

Case 1. Suppose that δ(G) ≤ q − 1. Let v ∈ V (G) be such that d(v) ≤ q − 1, then
dG(v) ≥ q2 + 2. Since C4 � G and R(C4, Cq2+1) = q2 + 2 by Theorem 7(a), we

have Wq2+2 ⊆ G, a contradiction.
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Case 2. Suppose that δ(G) = q. Let v ∈ V (G) be a vertex with d(v) = q,
H = G[NG(v)], and let v1 and v2 be any two vertices such that v1v2 ∈ E(H). Then
we have |V (H)| = q2 + 1, and

dH (v1) + dH (v2) = 2q2 − (dH (v1) + dH (v2)) . (1)

Note that G has at most ex(q2 + q + 2, C4) edges. Let e be defined by

ex
(

q2 + q + 2, C4

)
=

⌈
(q2 + q + 2)δ(G)

2

⌉
+ e. (2)

For v1v2 ∈ E(H), by the same argument as in [4], we have

Claim 1. dH (v1) + dH (v2) ≤ 2δ(G) + e + 1.
On the other hand, the upper bound on e is obtained in the next claim.

Claim 2. e ≤ q2 − 2q − 2 for q ≥ 7.
Proof o f Claim 2. By Theorem 6, we have

e = ex
(

q2 + q + 2, C4

)
−

⌈
(q2 + q + 2)δ(G)

2

⌉

<
1

4

(
q2 + q + 2

)(
1 +

√
4(q2 + q + 2) − 3

)
− 1

2

(
q2 + q + 2

)
q

<
1

4

(
q2 + q + 2

)(
1 + 2q + 5

4

)
− 1

2

(
q2 + q + 2

)
q

= 9

16

(
q2 + q + 2

)
.

Since q ≥ 7, we have e ≤ q2 − 2q − 2, thus Claim 2 holds.
By equality (1) and Claim 1, we have dH (v1)+dH (v2) ≥ 2q2 −(2δ(G)+e+1) =

2q2 − 2q − e − 1. By Claim 2, we have dH (v1) + dH (v2) ≥ q2 + 1. By Theorem 5
we have Cq2+1 ⊆ H , thus v together with the vertices of V (H) would form a Wq2+2

in G, a contradiction. Hence the assumption does not hold in Case 2.
This completes the proof of Theorem 2. ��
Theorem 2 implies the following.

Corollary 9 If q is a prime power and q ≥ 7, then R(C4, Wq2+2) ≤ q2 + q + 2.

4 The Ramsey Numbers of R(C4, K1,m) and R(C4, Wm)

There are many old descriptions of polarity graphs. We choose to use the notation of
[1] which is particularly suitable for our purpose. In this paper, Abreu, Balbuena and
Labbate presented the adjacency matrix M◦ of the polarity graph Ĝq from a projective
plane PG(2, q) for a prime power q. The graph Ĝq has q2 + q + 1 vertices and q + 1
loops. The matrix M◦ is J2-free, where J2 is a matrix of order 2 all of whose entries
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are 1, so Ĝq is a C4-free graph. The simple polarity graph Gq with the matrix M∗ is
the graph obtained from Ĝq by deleting all q + 1 loops. The graph Gq has q2 + q + 1
vertices, in which q +1 vertices have degree q and all other vertices have degree q +1.
It has triangles, but no C4 and it has diameter two. Taking q = 2, 3, and 4 as examples,
the matrices of Gq are shown in Table 1. We label the vertices of Gq from v1 to vq2+q+1
according to the rows (or columns) of M∗, that is, V (Gq) = {v1, v2, . . . , vq2+q+1}.

We notice that the symmetric matrices M∗ of Gq have the following properties.

Fact 10 (1) M∗ [
q2 + i, q2 + q + 1

] = 1 for 1 ≤ i ≤ q. Thus

N
(
vq2+q+1

) = {
vq2+1, vq2+2, . . . , vq2+q

}
.

Table 1 The adjacency matrices M∗ of graphs G2, G3, and G4

(a) G2

v1 0 1 1 0 1 0 0

v2 1 0 0 1 1 0 0

v3 1 0 0 0 0 1 0

v4 0 1 0 0 0 1 0

v5 1 1 0 0 0 0 1

v6 0 0 1 1 0 0 1

v7 0 0 0 0 1 1 0

(b) G3

v1 0 1 0 0 0 1 1 0 0 1 0 0 0

v2 1 0 0 0 1 0 0 0 1 1 0 0 0

v3 0 0 0 1 0 0 0 1 0 1 0 0 0

v4 0 0 1 0 1 0 1 0 0 0 1 0 0

v5 0 1 0 1 0 0 0 0 1 0 1 0 0

v6 1 0 0 0 0 0 0 1 0 0 1 0 0

v7 1 0 0 1 0 0 0 0 0 0 0 1 0

v8 0 0 1 0 0 1 0 0 1 0 0 1 0

v9 0 1 0 0 1 0 0 1 0 0 0 1 0

v10 1 1 1 0 0 0 0 0 0 0 0 0 1

v11 0 0 0 1 1 1 0 0 0 0 0 0 1

v12 0 0 0 0 0 0 1 1 1 0 0 0 1

v13 0 0 0 0 0 0 0 0 0 1 1 1 0

(c) G4

v1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0

v2 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0

v3 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0

v4 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

v5 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0

v6 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0

v7 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
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Table 1 continued

v8 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0

v9 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

v10 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0

v11 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0

v12 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

v13 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0

v14 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

v15 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0

v16 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

v17 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

v18 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

v19 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1

v20 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1

v21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

(2) For each 1 ≤ i ≤ q, M∗[(i − 1)q + j, q2 + i] = 1 for 1 ≤ j ≤ q. Thus
d(vq2+i ) = q + 1 and

N
(
vq2+i

) = {
v(i−1)q+1, v(i−1)q+2, . . . , viq

} ∪ {
vq2+q+1

}
.

(3) M∗[(i−1)q+1, q2−q+1] = 1 for 1 ≤ i ≤ q−1, and M∗[q2+q, q2−q+1] = 1.
Thus d(vq2−q+1) = q and

N
(
vq2−q+1

) = {
v1, vq+1, v2q+1, . . . , v(q−2)q+1

} ∪ {
vq2+q

}
.

(4) For odd q, the main diagonal of the matrix M◦ has an entry 1 in the last position,
and all the other 1′s on the main diagonal are distributed one in each block
of the main diagonal of blocks. Hence we see that each vertex of N (vq2+q) −
{vq2−q+1, vq2+q+1} has degree q + 1, that is,

d(vi ) = q + 1, vi ∈ {
v(q−1)q+2, v(q−1)q+3, . . . , vq2

}
.

(5) For even q, all 1’s on the main diagonal of M◦ are in row q(q − 1) + i , for
1 ≤ i ≤ q, and in the last row. Hence we see that each vertex of N (vq2+q) has
degree q, that is,

d(w) =
{

q, f or w ∈ N (vq2+q),

q + 1, f or w /∈ N (vq2+q).

To illustrate Fact 10 (4), we take Ĝ3 as an example, the matrix M◦ is shown in
Table 2, where all 1’s on the main diagonal are underlined. By Fact 10 (2), the vertices
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Table 2 The adjacency matrix M◦ of Ĝ3

v1 0 1 0 0 0 1 1 0 0 1 0 0 0

v2 1 0 0 0 1 0 0 0 1 1 0 0 0

v3 0 0 1 1 0 0 0 1 0 1 0 0 0

v4 0 0 1 0 1 0 1 0 0 0 1 0 0

v5 0 1 0 1 0 0 0 0 1 0 1 0 0

v6 1 0 0 0 0 1 0 1 0 0 1 0 0

v7 1 0 0 1 0 0 1 0 0 0 0 1 0

v8 0 0 1 0 0 1 0 0 1 0 0 1 0

v9 0 1 0 0 1 0 0 1 0 0 0 1 0

v10 1 1 1 0 0 0 0 0 0 0 0 0 1

v11 0 0 0 1 1 1 0 0 0 0 0 0 1

v12 0 0 0 0 0 0 1 1 1 0 0 0 1

v13 0 0 0 0 0 0 0 0 0 1 1 1 1

of N (vq2+q) − {vq2+q+1} belong to one block. Note that vq2−q+1 has a loop, and by
Fact 10 (1), d(vq2+q+1) = q.

To illustrate Fact 10 (5), we take Ĝ4 as an example, the matrix M◦ is shown in
Table 3, where all 1’s on the main diagonal are underlined. Note that each vertex of
N (vq2+q) has a loop.

Lemma 11 For v ∈ V (Gq) with d(v) = q, each vertex of N (v) has degree q + 1.

Proof Assume there exists a vertex u such that d(u) = q and uv ∈ E(Gq). Since the
vertex of degree q in Gq has a loop in Ĝq [1], the vertices u, v have loops in Ĝq . Hence
the matrix M◦ of Ĝq would contain a submatrix J2 of vertices u and v, a contradiction
with C4 � Ĝq . ��
Lemma 12 Let G be a C4-free graph of order n.

(a) If m > n − δ(G) − 1, then G is a (C4, K1,m)-graph, and
(b) If m > n − δ(G), then G is a (C4, Wm)-graph.

Proof If m > n − δ(G) − 1, then �(G) < m. So we have K1,m � G, thus (a) holds.
If m > n − δ(G), then �(G) < m − 1. Hence we have Wm � G, and thus (b) holds.

��
In Construction 13–15 below we define graphs Hs of order s such that δ(Hs) = q

and C4 � Hs . The graphs Hs are constructed by removing some vertices from Gq .
These graphs are used in the proofs of Theorems 3 and 4.

Construction 13 (Hq2+q−i for even q, and 1 ≤ i ≤ q − 1)
By Fact 10 (1) and 10 (2), we have N (vq2+q+1) = {vq2+1, vq2+2, . . . , vq2+q}

and d(vi ) = q + 1 for vi ∈ N (vq2+q+1). We set Hq2+q = Gq\{vq2+q+1},
thus the vertices vq2+1, vq2+2, . . . , vq2+q have degree q in Hq2+q . By Fact 10 (2),
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Table 3 The adjacency matrix M◦ of Ĝ4

v1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0

v2 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0

v3 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0

v4 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

v5 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0

v6 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0

v7 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

v8 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0

v9 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0

v10 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0

v11 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0

v12 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0

v13 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0

v14 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0

v15 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0

v16 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

v17 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

v18 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

v19 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1

v20 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1

v21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

E(G[N (vq2+q+1)]) = ∅. By Fact 10 (5), each vertex in {vq2+1, vq2+2, . . . , vq2+q−1}
is adjacent to only vertices of degree q +1 in Hq2+q . We construct the graph Hq2+q−i
by removing one vertex vq2+i , namely

Hq2+q−i = Hq2+q−i+1\{vq2+i }, 1 ≤ i ≤ q − 1.

Note that Hq2+1 is a q-regular graph.

Construction 14 (Hq2−1 for even q)
By Fact 10 (2) and 10 (5), N (vq2+q) = {v(q−1)q+1, v(q−1)q+2, . . . , vq2} ∪

{vq2+q+1}, and d(vi ) = q +1 for vi /∈ N (vq2+q). Therefore, since C4 � Gq , we have
N (vi ) ∩ N (v j ) = {vq2+q} for vi , v j ∈ N (vq2+q). We set

Hq2−1 = Gq\N [vq2+q ].

Note that Hq2−1 is a q-regular graph.

Construction 15 (Hq2+q−2 for odd q)
By Fact 10 (1–3), there doesn’t exist any vertex in Gq adjacent to two ver-

tices of {v(q−1)q+1, vq2+q , vq2+q+1}. By Fact 10 (4), each vertex of N (vq2+q) −
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{v(q−1)q+1, vq2+q+1} has degree q + 1. By Lemma 11 each vertex of N (v(q−1)q+1)

has degree q + 1, so does each vertex of N (vq2+q+1). We set

Hq2+q−2 = Gq\{v(q−1)q+1, vq2+q , vq2+q+1}.
Proof of Theorem 3. By Theorem 7(c), we have the upper bounds in (a) and (b). So
it is sufficient to prove the lower bounds. By Construction 13 of Hq2+q−2 for even
q ≥ 4, by Construction 15 of Hq2+q−2 for odd q ≥ 3, and Lemma 12(a), we have
R(C4, K1,q2−2) ≥ q2 + q − 1, thus (a) holds.

For even q, using Hq2+q−i as in Construction 13 for 1 ≤ i ≤ q − 1 and i �= 2,
Hq2−1 in Construction 14, and Lemma 12(a), we have R(C4, K1,q2−k−1) ≥ q2+q−k
for even q ≥ 4, where 0 ≤ k ≤ q except k ∈ {1, q − 1}. Hence (b) holds. ��
Proof of Theorem 4. Since Gq is a graph of order q2 + q + 1 such that C4 � Gq and
δ(Gq) = q, by Lemma 12(b), we have R(C4, Wq2+2) ≥ q2 + q + 2. By Corollary 9,
we have R(C4, Wq2+2) ≤ q2 + q + 2 for q ≥ 7, and thus (a) holds.

By Theorem 7(d), we have an upper bounds on R(C4, Wm) in (b) and (c). So it is
sufficient to prove the lower bounds. Using Hq2+q−2 as in Construction 13 for even
q ≥ 4, Hq2+q−2 as in Construction 15 for odd q ≥ 3, and Lemma 12(b), we have
R(C4, Wq2−1) ≥ q2 + q − 1, and thus (b) holds.

For even q, by Construction 13 of Hq2+q−i for 1 ≤ i ≤ q − 1 and i �= 2, by
Construction 14 of Hq2−1, and Lemma 12(b), we have R(C4, Wq2−k) ≥ q2 + q − k
for even q ≥ 4, where 0 ≤ k ≤ q except k ∈ {1, q − 1}. Hence (c) holds. ��
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