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Ramsey Numbers

I R(G,H) = n iff
minimal n such that in any 2-coloring of the edges of Kn
there is a monochromatic G in the first color or a
monochromatic H in the second color.

I 2− colorings ∼= graphs, R(m,n) = R(Km,Kn)

I Generalizes to k colors, R(G1, · · · ,Gk )

I Theorem (Ramsey 1930): Ramsey numbers exist
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Unavoidable classics

R(3,3) = 6 R(3,5) = 14 [GRS’90]
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Asymptotics
diagonal cases

I Bounds (Erdős 1947, Spencer 1975; Conlon 2010)
√

2
e

2n/2n < R(n,n) < R(n + 1,n + 1) ≤
(

2n
n

)
n−c log n

log log n

I Conjecture (Erdős 1947, $100)
limn→∞R(n,n)1/n exists.
If it exists, it is between

√
2 and 4 ($250 for value).

I Theorem (Chung-Grinstead 1983)
L = limk→∞Rk (3)1/k exists.

3.199 < L, (Fredricksen-Sweet 2000, X-Xie-Exoo-R 2004)
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Asymptotics
Ramsey numbers avoiding K3

I Kim 1995, lower bound
Ajtai-Komlós-Szemerédi 1980, upper bound

R(3,n) = Θ

(
n2

log n

)
I Bohman 2009, triangle-free process

Bohman-Keevash 2013
Fiz Pontiveros-Griffiths-Morris 2013

Shearer 1983 (upper bound)

(
1
4

+ o(1)

)
n2/log n ≤ R(3,n) ≤ (1 + o(1))n2/log n
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Off-Diagonal Cases
upper bounds

I Erdős-Szekeres 1935 (implicit)

R(m,n) ≤
(

m + n − 2
m − 1

)

I Ajtai-Komlós-Szemerédi 1980, Graham-Rödl 1981
for fixed n ≥ 3 and large m

R(m,n) ≤ cnmn−1/(log m)n−2
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Off-Diagonal Cases
fixed small avoided Km

I Bohman triangle-free process - 2009
probabilistic lower bound

R(4,n) = Ω(n5/2/ log2 n)

R(4,n) = O(n3/ log2 n)

I Kostochka, Pudlák, Rödl - 2010
constructive lower bounds

R(4,n) = Ω(n8/5), R(5,n) = Ω(n5/3), R(6,n) = Ω(n2)

(vs. probabilistic 5/2,6/2,7/2 with /logs for 4, 5, 6)
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Clebsch (3,6; 16)-graph on GF (24)
(x , y) ∈ E iff x − y = α3

[Wikipedia]

Alfred Clebsch (1833-1872)
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#vertices / #graphs
no exhaustive searches beyond 13 vertices

3 4
4 11
5 34
6 156
7 1044
8 12346
9 274668
10 12005168
11 1018997864
12 165091172592
13 50502031367952 ≈ 5 ∗ 1013

——————–too many to process——————–
14 29054155657235488 ≈ 3 ∗ 1016

15 31426485969804308768
16 64001015704527557894928
17 245935864153532932683719776
18 ≈ 2 ∗ 1030
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Compute or not
Arnold

Journal of Mathematical Fluid Mechanics, 2005

From the deductive mathematics point of view most of these
results are not theorems, being only descriptions of several
millions of particular observations. However, I hope that they
are even more important than the formal deductions from the
formal axioms, providing new points of view on difficult
problems where no other approaches are that efficient.
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Values and bounds on R(k , l)
two colors, avoiding Kk ,Kl

[ElJC survey Small Ramsey Numbers, revision #14, 2014, with numerous updates]
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Bounds on R(3, k)− R(3, k − 1)

Erdős and Sós, 1980, asked about

3 ≤ ∆k = R(3, k)− R(3, k − 1) ≤ k :

∆k
k→∞ ? ∆k/k k→ 0 ?

Look at R(K3,Kk − e) relative to R(K3,Kk ) = R(3, k)

∆k =
(
R(K3,Kk )− R(K3,Kk − e)

)
+(

R(K3,Kk − e)− R(K3,Kk−1)
)
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∆k = R(3, k)− R(3, k − 1)

It is known that(
1
4

+ o(1)

)
k2/log k ≤ R(3, k) ≤ (1 + o(1))k2/log k

All we have for Kk and Kk − e is

(1) 3 ≤ R(3,Kk )− R(3,Kk−1) ≤ k , easy old bounds,
(2) R(3,Kk−1) ≤ R(3,Kk − e) ≤ R(3,Kk ), trivial bounds,
(3) 4 ≤ R(3,Kk+1)− R(3,Kk − e) (Zhu-Xu-R 2015).

Problem. Improve over any of the inequalities in (1), (2) or (3),
or their combination as (3) combines parts of (1) and (2).
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∆s ≥ 3
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R(3, s + t − 1) ≥ R(3, s + 1) + R(3, t + 1)− cst
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R(3,Kk+1)− R(3,Kk − e) ≥ 4
k = s + 1
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Known bounds on R(3,Ks) and R(3,Ks − e)
Js = Ks − e

s R(3, Js) R(3,Ks) ∆s s R(3, Js) R(3,Ks) ∆s
3 5 6 3 10 37 40–42 4–6
4 7 9 3 11 42–45 47–50 5–10
5 11 14 5 12 47–53 52–59 3–12
6 17 18 4 13 55–62 59–68 3–13
7 21 23 5 14 59–71 66–77 3–14
8 25 28 5 15 69–80 73–87 3–15
9 31 36 8 16 73–91 82–98 3–16

Table : R(3, Js) and R(3,Ks), for s ≤ 16 (Goedgebeur-R 2014).
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Corollaries
from constructions

General, but perhaps not that strong

I R(3, s + t) ≥ R(3, s + 1) + R(3, t + 1)− 3,
I R(3, s + t − 1) ≥ R(3,Ks+1 − e) + R(3,Kt+1 − e)− 5.

Applications, but quite interesting

I For s ≥ 3 and m = R(3, s + 1)− 1, if there exists a
(3, s + 1; m)-graph which is not bicritical, then ∆s+2 ≥ 4,

I R(3, s + 1) ≥ R(3,Ks − e) + 4.
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Conjecture 1
and 1/2 of Erdős-Sós problem

Observe that
R(3, s + k)− R(3, s − 1) =

∑k
i=0 ∆s+i .

We know that
∆s ≥ 3, ∆s + ∆s+1 ≥ 7, ∆s + ∆s+1 + ∆s+2 ≥ 11.

Conjecture 1
There exists d ≥ 2 such that ∆s −∆s+1 ≤ d for all s ≥ 2.

Theorem
If Conjecture 1 is true, then lims→∞∆s/s = 0.
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Conjecture 2
possibly easier to prove

Conjecture 2
There exists integer k such that

lim
s→∞

k∑
i=0

∆s+i =∞.

Growth of ∆s gives also insights on

I connectivity of Ramsey-critical graphs,
Beveridge-Pikhurko 2008, Xu-Shao-R 2011

I hamiltonicity of Ramsey-critical graphs, Xu-Shao-R 2011
I chromatic gap, Gyárfás-Sebő-Trotignon 2012
I Shannon capacity of graphs, Xu-R 2013
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Construction
Chung-Cleve-Dagum 1993

G

G

G

G

G

G

H

Construction of H ∈ R(3,9; 30) using G = C5 ∈ R(3,3; 5)
R(3, k) = Ω(k log 6/ log 4) ≈ Ω(k1.29)

Explicit Ω(k3/2) construction:
Alon 1994, Codenotti-Pudlák-Resta 2000
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R(5,5)

year reference lower upper
1965 Abbott 38 quadratic residues in Z37
1965 Kalbfleisch 59 pointer to a future paper
1967 Giraud 58 LP
1968 Walker 57 LP
1971 Walker 55 LP
1973 Irving 42 sum-free sets
1989 Exoo 43 simulated annealing
1992 McKay-R 53 (4,4)-graph enumeration, LP
1994 McKay-R 52 more details, LP
1995 McKay-R 50 implication of R(4,5) = 25
1997 McKay-R 49 long computations
2014 McKay-Lieby study of (5,5; 42)-graphs

History of bounds on R(5,5)

22/37 Some Classical Two-Color Cases



43 ≤ R(5,5) ≤ 49

Conjecture. McKay-R 1997

R(5,5) = 43, and the number of
(5,5; 42)-graphs is precisely 656.

The known (5,5; 42)-graphs have properties:

I # edges ranges from 423 to 438 (midpoint 430-431)
I mindeg 19, maxdeg 22
I no more than 2 symmetries

232 graphs have only an involution
424 graphs have trivial group

I none is almost regular
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R(5,5)

McKay and Lieby, 2014

Define the distance between two graphs on n vertices to be k
if their largest common induced subgraph has n − k vertices.

I Very large computational effort to find distances between
known (5,5; 42)-graphs.

I Known (5,5; 42)-graphs form one large cluster.
I McKay and Lieby report that any new (5,5; 42)-graph H

would have to be in distance at least 6 from every graph in
the set of 656 known (5,5; 42)-graphs.
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What to do next?
Challenges

Theoretical
I better explicit constructive lower bounds for R(3, k)

I improve bounds for ∆k , or a similar local difference
I generalize above beyond triangle-free graphs

Computational - improve any of the following
I 29 ≤ R(C5,K8) ≤ 33
I 42 ≤ R(3,K11 − e) ≤ 45
I Lower bounds for other larger parameters
I Other small puzzling R(G,H), survey SRN 2014
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What not to compute
infeasible without a breakthrough

Each of the following needs a new insight
I R(3,10) ≤ 41?

I R(4,6) ≤ 40?

I R(5,5) ≤ 48?

Seems hard to improve any of the corresponding lower bounds.
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Growth of R(m,n)
Slow on citing this result...

In 1980, Paul Erdős wrote

Faudree, Schelp, Rousseau and I needed recently a lemma stating

lim
n→∞

r(n + 1,n)− r(n,n)

n
=∞.

We could prove it without much difficulty, but could not prove that
r(n + 1,n)− r(n,n) increases faster than any polynomial of n. We of
course expect

lim
n→∞

r(n + 1,n)

r(n,n)
= C

1
2 ,

where C = limn→∞ r(n,n)1/n.

The best known bound for r(n + 1,n)− r(n,n) is Ω(n).
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Connectivity of Ramsey graphs
Xu-Shao-R 2011

Theorem.

If k ≥ 5 and s ≥ 3, then the connectivity of any
Ramsey-critical (k , s)-graph is no less than k .
(improves by 1 Beveridge-Pikhurko 2008)

Theorem.

If k ≥ s − 1 ≥ 1 and k ≥ 3, except (k , s) = (3,2),
then any Ramsey-critical (k , s)-graph is Hamiltonian.

In particular, for k ≥ 3, all diagonal Ramsey-critical
(k , k)-graphs are Hamiltonian.
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Rr (3) = R(3,3, · · · ,3)

I Much work on Schur numbers s(r)
via sum-free partitions and cyclic colorings
s(r) > 89r/4−c log r > 3.07r

[except small r ]

Abbott+ 1965+

I s(r) + 2 ≤ Rr (3)
s(r) = 1,4,13,44,≥ 160,≥ 536

I Rr (3) ≥ 3Rr−1(3) + Rr−3(3)− 3
Chung 1973

I The limit L = limr→∞Rr (3)
1
r exists

Chung-Grinstead 1983

(2s(r) + 1)
1
r = cr ≈(r=6) 3.199 < L
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R(3,3,3) = 17
two Kalbfleisch (3, 3, 3; 16)-colorings, each color is a Clebsch graph

[Wikipedia]
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Four colors - R4(3)

51 ≤ R(3,3,3,3) ≤ 62

year reference lower upper
1955 Greenwood, Gleason 42 66
1967 false rumors [66]
1971 Golomb, Baumert 46
1973 Whitehead 50 65
1973 Chung, Porter 51
1974 Folkman 65
1995 Sánchez-Flores 64
1995 Kramer (no computer) 62
2004 Fettes-Kramer-R (computer) 62

History of bounds on R4(3) [from FKR 2004]
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30 ≤ R(3,3,4) ≤ 31

Theorem. Kalbfleisch 1965

30 ≤ R(3,3,4)

Theorem. Piwakowski-R 2001
R(3,3,4) = 31 if and only if there exists a (3,3,4; 30)-coloring
C such that every edge in the third color has at least one
endpoint x with degC[3](x) = 13. Furthermore, C has at least
25 vertices v such that degC[1](v) = degC[2](v) = 8 and
degC[3](v) = 13.
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R(3,3,4)

Note, March 2015.
Codish, Frank, Itzhakov, Miller, arXiv posting

BEE (Metodi-Codish 2013), Ben-Gurion University
Equi-propagation Encoder, a compiler to encode finite domain
constraint problems to CNF.

Very significant progress of work towards the Ramsey number
R(3,3,4). Namely, they apply a SAT-solver to prove that if any
(3,3,4; 30)-coloring exists, then it must be 8-regular in the first
two colors and 13-regular in the third.

Furthermore, they anticipate that full analysis of all such
colorings will be completed, and thus the exact value of
R(3,3,4) will be known soon.
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R(3,3, k)

Theorem. Alon and Rödl 2005

R(3,3, k) = Θ(k3poly-log k).

More general:
Avoid triangles in the first r − 1 colors and Kk in color r ,
then we have

R(3, . . . ,3, k) = Θ(k r poly-log k).

A nice, open, intriguing, feasible to solve case
(Exoo 1991, Piwakowski 1997)

28 ≤ R3(K4 − e) ≤ 30
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What to do next?
theoretically and what to compute

Find new smart lower bound constructions

Explore relations between limits and Shannon capacity

Three colors
I improve 28 ≤ R3(K4 − e) ≤ 30
I improve 45 ≤ R(3,3,5) ≤ 57
I finish off 30 ≤ R(3,3,4) ≤ 31

Four colors
I understand why heuristics don’t find 51 ≤ R4(3)

I improve on R4(3) ≤ 62
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Papers to look at

I SPR, revision #14 of the survey paper
Small Ramsey Numbers at the ElJC, January 2014.

I Xiaodong Xu and SPR,
Some Open Questions for Ramsey and Folkman Numbers,
Mittag-Leffler technical report, July 2014.

I Rujie Zhu, Xiaodong Xu, SPR,
A step forwards on the Erdős-Sós problem concerning the
Ramsey numbers R(3, k), July 2015.
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Thanks for listening!
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