
Advancing Android Activity Recognition Service
with Markov Smoother

Mingyang Zhong∗‡, Jiahui Wen∗‡, Peizhao Hu†, Jadwiga Indulska∗‡
∗The University of Queensland, Australia

School of Information Technology and Electrical Engineering
†Rochester Institute of Technology, USA
‡National ICT Australia (NICTA)

Email: mingyang.zhong@uq.net.au

Abstract—The rapid market shift to multi-functional mobile
devices has created an opportunity to support activity recog-
nition using the on-board sensors of these devices. Over the
last decade, many activity recognition approaches have been
proposed for various activities in different settings. Wearable
sensors and augmented environments potentially have better
accuracy, however performing activity recognition on user mobile
devices has also attracted significant attention. This is because
of less requirements on the environments and easier application
deployment. Many solutions have been proposed by academia,
but practical use is limited to testbed experiments. In 2013,
Google released an activity recognition service on Android,
putting this technology to the test. With its enormous market
share, the impact is significant. In this paper, we present a
systematic evaluation of this activity recognition service and share
the lesson learnt. Through our experiments, we found scenarios
in which the recognition accuracy was barely acceptable. To
improve its accuracy, we developed ARshell in which we apply
a Markov smoother to post-process the results generated by the
recognition service. Our evaluation experiments show significant
improvement in accuracy when compared to the original results.
As a contribution to the community, we open-sourced ARshell
on GitHub for application developers who are interested in this
activity recognition service.

I. INTRODUCTION

The number of mobile-connected devices grew to 7 billion
in 2013, with over half a billion in one year [1]. The miniature,
but powerful, multi-functional mobile devices have boosted the
market shift from desktop to ‘thin’ client devices. Along with
their slim design, many of these mobile devices are equipped
with on-board sensors with various sensing capabilities, in-
cluding location, acceleration, and orientation.

These added capabilities have enabled new uses of mobile
devices. One of them, mobile device based activity recog-
nition, have been an active area of research for almost a
decade [2]. Many existing approaches are based on customised
wearable sensors [3], environment augmentation [4] or their
combination [5]. However, there is also a considerable amount
of work on activity recognition based on sensor data from
mobile devices. The typical procedures of activity recognition
include data collection, feature extraction, classifier training,
and activity recognition on a test dataset. Majority of the
approaches to activity recognition make use of machine learn-
ing techniques to map patterns embedded in sensed data to
human activities. To name a few, they include Naive Bayesian,

Bayesian Network, Hidden Markov Model, Decision Tree, and
Support Vector Machine. There are also hybrid models that
combine multiple simple models to further improve recogni-
tion accuracy, such as [6], [7].

Developing accurate activity recognition algorithms requires
the background, which is not a must have tool for developers.
To simplify the use of these techniques, Google announced its
Android activity recognition (AR) services in 2013. Therefore,
rather than to go through the whole process of data collection,
feature extraction and classifier training, software developers
can utilise this AR service through an API. Initially four types
of activities were supported: Stationary, On Foot, Cycling,
In Vehicle and Unknown. In an update, three more activities
were added: Walking, Running and Tilting. According to
its documentations1, the Android AR service makes use of
low-power, on-board sensors to recognise the user’s current
physical activity with efficient energy consumption.

In this paper, we present a systematic qualitative and
quantitative evaluations of this AR service, with a goal to
investigate its accuracy, latency and complexity. Based on
other referenced sources, together with our experiments, we
demonstrate scenarios in which this AR service will perform
poorly. We then propose our solution – ARshell – a post-
processing step which uses a Markov smoother to improve the
overall accuracy up to 19% across all recognition categories.
We released ARshell as an open-source code on GitHub as
a contribution to researchers and developers who might be
interested in this Android AR service. In addition to improving
the overall accuracy of the Android AR service, the ARshell
API simplifies the task of using the AR service in Android
related research projects and application development.

There are two contributions presented in the paper:
• A systematic evaluation of the Android AR service;
• An effective and lightweight post-processing method to

significantly improve the AR accuracy.
The remainder of this paper is organised as follows. Section

II presents the related work on activity recognition. Section III
describes the evaluations of the Android AR service. This is
followed by our proposed solution – ARshell – in Section IV.
Section V concludes the paper.

1http://developer.android.com/training/location/activity-recognition.html

II. RELATED WORK

Earlier approaches in AR usually used multiple sensors
attached at various positions of a human body, and researchers
can characterise the specific movement of a region of human
body with sensor data from that region. Bao et al. [8] proposed
a method to recognise physical activities with multiple sensors
attached at various positions on a human subject. The partic-
ipants were asked to perform daily activities and the samples
were manually annotated. The authors extract features from the
annotated-data such as mean, energy and frequency-domain
entropy, and then train and test multiple classifiers and find a
Decision Tree to achieve the highest accuracy. Using wearable
sensors leads to good activity recognition accuracy, however
attaching multiple sensors on human subject is cumbersome
and not practical to be used on a large scale.

In recent years, with the proliferation of mobile devices,
especially smartphones, much effort has been made to leverage
their on-board sensors for activity recognition. Smartphones
usually incorporate multiple sensors including GPS, camera,
microphone, accelerometers, light sensor and proximity sensor
etc. Using these on-board sensors, mobile devices offer an
opportunity for data mining sensor readings in order to provide
activity recognition. There exist many proposals on perform-
ing activity recognition with mobile devices. Kwapisz et al.
[9] presented the activity recognition system that collected
labelled accelerometer data from 29 participants engaged in
physical activities such as walking, jogging, climbing stairs,
sitting and standing with the single device in their pockets. The
time series data was aggregated into 10 s interval samples and
features such as mean, standard deviation, average absolute
difference, average resultant acceleration, time between peaks
and binned distribution were extracted based on the collected
data. Finally, multiple predictive models (decision tree, logistic
regression, multi-layer neural networks) have been built for
activity recognition. The authors concluded that walking and
jogging achieve the highest accuracy while walking downstairs
and upstairs are the most difficult ones to distinguish due
to their similar patterns. Shoaib et al. [10] explored the role
of gyroscope and magnetometer on smartphones for activity
recognition. They experimented on four body positions using
seven classifiers while recognizing six physical activities. They
concluded that accelerometer and gyroscope complement each
other in general, however magnetometer is not so promising
due to its dependence on directions. Compared with the
solutions for activity recognition on non-mobile devices, the
recognition is relatively less accurate due to the limited number
and type of sensors on mobile devices.

The previous works also proposed a variety of techniques
to address the issues that come with the application of smart-
phones. For example, Hemminki et al.[11] proposed to extract
gravity eliminated horizontal acceleration in order to achieve
orientation-robustness considering the free-carrying of mobile
phones. To be energy-efficient, the authors of [12] proposed an
energy-efficient activity recognition based on prediction. The
current and historical contextual information has been used

to predict the possible future activities, and only a subset of
the sensors are activated to distinguish the activities that are
likely to happen. Maekawa et al. [13] addressed the issue of
scalability of activity recognition. They employed the end user
information to find other users with similar sensor data, and
modelled the activities of the end user in an unsupervised way
with the data from those similar users. In [14], the authors
proposed a method to deal with personalization by training
general and user-specific classifiers and using a meta-classifier
to determine which classifier is more likely to provide correct
predictions.

Although a substantial amount of research has been carried
out on activity recognition on mobile devices, there was no
activity recognition service available for Android application
developers before the Android AR service. This service has
the potential to revolutionise the development of mobile
applications that offer better user experience. However the
usefulness of this AR service depends on its accuracy, latency
and complexity.

III. EVALUATION OF ANDROID ACTIVITY RECOGNITION

Google’s support for the AR service on the Android oper-
ating system provides access to activity recognition for devel-
opers of Android applications. Through the AR API, mobile
apps can incorporate activity recognition without dealing with
complexity of pattern analysis on raw sensor data. According
to the documentation, the AR service is bundled together
with the location services and is part of the Google Play
services APK. To access the AR service, a mobile app must
be granted with a special permission2, and be connected to
the Play services APK. The recognition results are sent as
updates through a callback function. Similar to the location
update service in Android, mobile apps can specify a preferred
update interval. Whenever a location update is available, the
Android OS will trigger the callback function with the new
location value. In addition, mobile apps should define methods
for starting and stopping of the service and error handling. We
perform our evaluations using a demo code provided, with an
additional code for recording measurements.

A. Experimental setup

All of the experiments are carried out on actual Android
devices. The details of a setup are as follows:

• Android devices: HTC Desire C with 600 Mhz processor
and 512 MB memory, Samsung Galaxy Nexus with
1.2 GHZ dual-core processor and 1 GB memory, and
Samsung NOTE II with 1.6 Ghz quad-core processor and
2 GB memory,

• Experiment duration: the experiments were carried out
by the authors over two weeks using the aforementioned
devices in various scenarios (Stationary, Walking, Run-
ning, Cycling, and In Vehicle). As for Tilting, it measures
the relative change in gravity and is an instantaneous
motion appearing in our measurement results as outlier.

2com.google.android.gms.permission.ACTIVITY RECOGNITION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
D
F

Warm-up time (s)

(a) Delay before 1st data point

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

C
D
F

Delay between recognitions (s)

(b) Delay between consecutive data

Fig. 1. CDF of two aspects of delay

Therefore, we treat Tilting as noise in our experiments.
All the experimental data was recorded with a human
label (as the ground truth). We sampled the data outputted
from the Android AR service every second, and we
collected data for two hours for each activity.

B. Delay

The update interval parameter is designed to be a trade-off
to balance between freshness of the measurement values and
power consumption. Developers should choose an appropriate
value according to their application requirements. To better
understand the delay characteristic of the AR service, we
conducted experiments to investigate the warm-up time, which
is the delay before the first recognised event from the AR
service, and the delay between two consecutive recognised
events reported by the AR service.

Fig. 1 shows the Cumulative Distribution Function (CDF)
of the two aspects of delay. As for the warm-up time, we
conducted multiple experiments to measure the average warm-
up time and standard deviation. The results are 18.3 s and
13.9 s, respectively. Furthermore, Fig. 1(a) shows that the
warm-up time can be as long as 30 s or more in about 10%
of our experiments. The minimum wait time from starting the
service to receiving the first recognition is on average 3 s.

The sensor data is generated continuously and streamed
to the AR service for pattern matching. One might think
that we should receive activity update after receiving new
sensor data, but it is not the case. Most machine-learning
pattern recognition based approaches make use of a window
for sampling data. Pattern matching is applied on the sensor
data within the scope of this window. Because of the lack
of access to the source code of the AR service, we cannot
determine the exact window size. Rather, we try to measure
the time delay between two consecutive recognised events to
approximate the minimum interval software developers can
use for receiving activity updates. We conducted experiments
with the interval fixed to 0 s, and collected data samples
over an hour (roughly one thousand measurements). In our
experiments, the absolute minimum delay between receiving
two consecutive activity updates was around 0.5 s. As shown
in Fig. 1(b), slightly over 80% of the data samples show a
delay less than 3.5 s. Furthermore, the minimal delays below
3.4 s are rare cases that happen with the probability less than
4%. In some extreme cases, the delay can be expanded to as

TABLE I
ACCURACY OF AR SERVICE

Classified to: Aaggr

S W R F C V U

S 52% 5% 5% 10% 0 10% 18% 52%
W 0 75% 4% 6% 0 0 15% 81%
R 0 7% 45% 28% 10% 0 10% 73%
C 0 0 0 0 68% 0 32% 68%
VN 3% 0 0 1% 1% 88% 7% 88%
VS 7% 0 0 3% 7% 41% 42% 41%

Aavg 67%
Note: S - Stationary, W - Walking, R - Running, F - On Foot

C - Cycling, U - Unknown and Tilting
VN - In vehicle with normal speed
VS - In vehicle that is stopping or moves slowly

long as 35 s.
In another set of experiments, we investigated whether

a larger interval will increase the accuracy of recognition.
According to our results, different interval settings do not
affect the accuracy. Thus, we used 10 s as interval for the
rest of our experiments.

C. Accuracy

Accuracy is a direct measure of the usefulness of the
recognition algorithm. In this subsection, we evaluate the
performance of the Android AR service with various sce-
narios. Similar to the most of the proposed AR solutions,
after collecting enough data samples over the recognition
window, the AR service proposes the most probable ac-
tivity and a list of probable activities, each with an at-
tached confidence value ranging from 1 to 100. That is,
{(amost, cvmost), [(a1, cv1), (a2, cv2), ..., (an, cvn)]}. If an ac-
tivity amost has confidence value cvmost of 100, it implies
absolute certainty of the activity and the list of probable
activities [(a1, cv1), (a2, cv2), ..., (an, cvn)] is null except for
Walking and Running. As these two activities are the sub-
activities of On Foot, the cv of one of these two sub-activities
can be 100 if the cv of On Foot is 100. We gathered
results from each activity and collectively presented them in
a confusion matrix, as shown in Table I. In the confusion
matrix, the first column contains the names of our labelled
activities (or activity under test). The last column (indicated
as Aaggr) is the aggregated accuracy of the AR service on
correctly recognizing the activity under test. Columns between
the first and last columns are the distribution of a correct and
false classification for each activity. The label Aavg indicates
the overall accuracy across all activities over all experiments.

We computed the accuracy of the AR service by comparing
amost with the corresponding human label activity alabel in a
sequence of measurements. Thus, in a sequence of measure-
ments reported by the AR service the aggregated accuracy,
Aaggr, for an activity type c ∈ C is calculated as

Aaggr =
1

N

N∑
n=1

[amost = alabel]

where [amost = alabel] equals to 1 if it is evaluated to true, 0
otherwise. The average accuracy Aavg across all activity types
C is calculated as

Aavg =
1

C

C∑
c=1

Aaggr

1) Stationary: There are two basic forms of the stationary
scenarios: (i) when a user is sitting or standing still while
holding the device under test in his/her hand or having it in
a pocket, and (ii) when the device under test is rested on a
stationary structure, such as a desk. The latter case achieves
over 95% of accuracy. But it represents scenarios with no
movement at all and is slightly less interesting compared to the
former scenarios, which achieve 52% of accuracy. As the AR
service achieves reasonable accuracy regarding the latter case,
Table I only shows the detail of the former case. As we can see
from the table, 48% of mis-classified activities are distributed
across other activities. As mentioned in [10], the AR service
potentially leverages the accelerometer and the gyroscope for
recognizing this activity. We conjecture that these inaccuracies
are due to the inability to keep mobile devices absolutely
stationary. Software developers should be careful about the
meaning of being Stationary.

2) On Foot: In the 2014 update, Google further improved
the AR service to classify Walking and Running on top of
On Foot, potentially with additional sensor inputs. Due to
the different speed and motion when people walk or run,
we investigated the accuracy of recognizing these two sub-
activities. Data shown in the confusion table confirms our
doubt. Other activities are reported even when users are run-
ning at a constant speed. A standard fallback is to report users
being On Foot whenever sensor readings are not distinctive
and cannot distinguish between the two sub-activities. When
running at a lower speed, data reported from the acceleration is
not as significant as for fast-running and is not as modest as for
walking. Therefore, recognizing Running is less accurate when
compared to Walking. Logically, both Walking and Running are
sub-activities of On Foot. We consider On Foot as a correct
recognition for these two sub-activities.

3) Cycling: As for Cycling, we noticed that around 32%
of samples have been mis-classified as Tilting. Tilting reflects
that the device angle relative to gravity changed significantly.
This often occurs when a device is picked up from a desk
or a sitting user stands up. When cycling on uneven roads,
vertical acceleration is typically more significant compared
to cycling on flat roads. Our experiment results show lower
accuracy when travelling on uneven roads. In these cases, a
large percentage of data has been mis-classified as Tilting.

4) In Vehicle: With regard to In Vehicle, the AR service
performs better when the vehicle moves with a normal or
relatively high speed than when the vehicle is stopping or
moves slowly. Therefore, we labelled these two cases sepa-
rately (labelled the vehicle moving with normal speed as VN ,
and the vehicle stopping or moving slowly as VS) in order to
evaluate detailed accuracy. The accuracy of VN (88%) is better
than that of VS (41%), because the horizontal acceleration for

W

VS

VN

 0

 20

 40

 60

 80

 100

a b c d

C
o
n
f
i
d
e
n
c
e

Index

Label
In_Vehicle

Cycling

On_Foot
Stationary

Unknown

Tilting
Walking
Running

Fig. 2. Experiment on activity transition from In Vehicle to Walking.

VS is less noticeable when vehicles are in slow motion or
stationary.

After each interval, the AR service reports the list of
probable activities, with corresponding confidence values. We
conducted a detailed study on what happens when there is
a transition from one activity to another. Fig. 2 shows the
confidence values of each class of activities in the list of
the probable activities reported by the AR service, while the
bottom part of the figure presents the real activities labelled by
human. We highlighted the most probable activity (with the
highest confidence) with circles. We noticed that most mis-
classifications for In Vehicle occur during the time when a
bus is stopping or in stationary (e.g., in zone1 between a
and b). The AR service reports the user is Stationary. It is
logically correct. However, since the user is still inside the
vehicle, it might be more appropriate to report In Vehicle. In
zone2 (between b and c), we observed a significant increase
of Unknown reported by the AR service, due to the frequent
stopping of the vehicle. This is consistent with our results
reported in Table I. At the same time, the confidence values
of In Vehicle typically drop below 60, which means a high
entropy of the posterior distribution. This is one of the insights
that we used in our improvement of the AR service to smooth
the outliers when detecting uncertainties. In zone3 (between c
and d), we observed the transition from In Vehicle to Walking
after some delays. We also observed occasional reporting of
Tilting even when a user was walking on a flat surface road.
In the following section, we describe the Markov smoother,
which we incorporate to improve the accuracy of recognition.

D. Remarks

Based on our evaluation of the AR service, we share some
of our other interesting findings and insights: (i) Because
the AR service is bundled as part of the Location service
API, our impression was that it might require a GPS device
or network access. We conducted experiments with the SIM
card removed, WiFi turned off and GPS disabled. These
experiments confirmed that the AR service was still functional

and there was no impact on its accuracy. We conjecture that
the AR service applies machine learning techniques based on
multiple on-board sensors, such as accelerometer, gyroscope
and compass. This is consistent with the API documentation;
(ii) By adjusting the recognition interval, software developers
can balance the trade-off between data freshness and battery
consumption; (iii) In another set of experiments, we briefly
studied the impact of irregular behaviours. As expected, mis-
classifications occurred in all activities when a user shook the
device under test in irregular pattern.

IV. ARSHELL: DESIGN AND EVALUATION

To improve the recognition accuracy, we propose ARshell
(Activity Recognition Shell), which is a shell that post-
processes the results reported from the AR service. According
to the aforementioned evaluations, as discussed in Section III,
around 21% of errors are mis-classified as Unknown. When
mis-classifications occur the confidence values are usually low.
Our goal is to relate some of these Unknown to probable
activities when the certainty is low.

A. Algorithm

As the AR service generates recognition results, ARshell
compares these recognised activities (as the probable activities
list sorted by their confidence values) to the previous activity
generated from ARshell. We apply a Markov smoother to
emphasise the temporal relationship embedded in the human
activities. That is, current activity is more likely to continue
into the next time window than transiting to a new one, un-
less new observations strongly suggest (with high confidence
value) a different class of activity. This temporal characteristic
of human behaviour has been justified for smoothing time slice
sequences in previous work. For example, in [15] the authors
manually set the transition probabilities between activity class
to create Dynamic Bayesian Network for activity recognition.

To explain the algorithm of ARshell, we model the problems
concerning transition between activities in Fig. 3. As shown
in the Figure, we introduce the following notations:

• yt−1, yt, ... ∈ Y is a list of activities that are generated
by ARshell with different timestamps

• xt−1, xt, ... ∈ X is a list of activity datasets that are
reported by the AR service with different timestamps.
Each x is a list of probable activities with their confidence
values, which is modelled as a tuples list [(ai,j , cvi,j)],
where (ai,j , cvi,j) is a probable activity and its corre-
sponding confidence value. Tuples are sorted according
to the descending order of cv. i is the timestamp, where
j indicates the order in the probable activities list. For
example, the AR result xt contains the tuples list of
[(at,1, cvt,1), (at,2, cvt,2), (at,3, cvt,3), ..., (at,n, cvt,n)]. It
should be noted that cvt,1 ≥ cvt,2, and (at,1, cvt,1) is
always the most probable activity in the AR service
definition. Each xt−1, xt, ... ∈ X is an input to AR-
shell for post-processing to determine the corresponding
yt−1, yt, ... ∈ Y .

ARshell Outputs

AR Service Outputs

yt-1
…

… xt-1

…

…

yt

xt

<at-1,1, cvt-1,1>
<at-1,2, cvt-1,2>
<at-1,3, cvt-1,3>

…
<at-1,n, cvt-1,n>

<at,1, cvt,1>
<at,2, cvt,2>
<at,3, cvt,3>

…
<at,n, cvt,n>

Fig. 3. Modeling of activity transition

There are four activity transitions that need to be addressed
by ARshell: (i) from Unknown to a specific activity; that
is, xt−1 → xt where xt−1 is reported as Unknown and xt

is reported as one of the activities; in this case, the most
probable activity (at,1, cvt,1) is proposed for yt, where cvt,1
is the maximum confidence value; (ii) from a specific activity
to Unknown; that is, in the same transition xt−1 → xt

where yt−1 = xt−1 is reported as a specific activity and
xt is Unknown; in this case, we assume the last historical
activity as the current activity yt = yt−1, with a self-transition
probability (P = 1−ε, where ε is a sufficiently small number
[16]); (iii) self-transition: a specific activity continues into next
timestamp; that is, in transition xt−1 → xt, if xt−1 = xt, then
yt = xt; and (iv) activity switches from one to another;

Whenever there is a transition like case (iv), we apply
a Markov smoother to the AR service outputs. From our
previous experiments, we identify that most mis-classifications
(also considered as noises) have confidence values below
60, which we use for setting the activity transition threshold
thresholdtrans. As a result, when a transition occurs at times-
tamp t for xt, we check the confidence value cvt,1 of the most
probable activity (at,1, cvt,1) ∈ xt. If cvt,1 > thresholdtrans,
at,1 is used as the output of ARshell (yt = at,1). Otherwise,
the Markov smoother backtracks to previous AR service out-
puts, and finds ∃at−1,k ∈ xt−1 and at,1 = at−1,k. We compute
the cvsum =

∑
(cvt,1, cvt−1,k). If cvsum > thresholdtrans,

then we say activity transition occurs and the new activity
should be at,1. Therefore, we have yt = at,1. Otherwise, we
say the confidence value of two consecutive recognitions is
not significant enough to determine an activity transition. In
this case, ARshell will output yt = yt−1.

B. Accuracy

We tested the proposed ARshell on Android devices as
described in Section III, and the recognition accuracy is
presented in Table II. We observed a significant improvement
regarding the accuracy for all the activities, except Stationary.
In the scenario when evaluating Stationary, we sit down or

TABLE II
ACCURACY OF ARSHELL

Classified to: Aaggr

S W R F C V U

S 50% 0 7% 0 0 36% 7% 50%
W 0 95% 0 0 0 0 5% 95%
R 0 0 50% 44% 0 0 6% 94%
C 0 0 0 0 92% 0 8% 92%
VN 0 0 0 1% 0 97% 2% 97%
VS 1% 0 0 1% 0 89% 9% 89%

Aavg 86%
Note: S - Stationary, W - Walking, R - Running, F - On Foot

C - Cycling, U - Unknown and Tilting
VN - In vehicle with normal speed
VS - In vehicle that is stopping or moves slowly

stand still with the testing devices held in our hands or in
our pockets. The results of the AR service not only show
no temporal pattern, but also occasional readings from the ac-
celerometer become outliers that cause mis-classifications. It is
very difficult to correctly classify these random patterns. In the
future work, we plan to look into this issue further. In contrast,
if we put the devices on a desk, which implies absolute sta-
tionary, we see that the accuracy increases to close 100%. This
is consistent with our observation in the previous experiments.
With regard to all the other activities, our method is able to
leverage the temporal information to smooth the outliers and
achieve high accuracy. For example, we observe (from Table
I) a large percentage of mis-classifications when in stopping
or slow moving vehicle; around 42% mis-classifications are
Unknown (and a total of 59%). By applying the temporal
constraints that we discussed, the proposed ARshell is able
to reduce the total mis-classifications to 11%, as shown in
Table II. The average accuracy has been improved by 19%,
from 67% to 86%.

C. Prototype and API of ARshell

The proof of concept prototype has been developed on real
Android devices, and in our current implementation, ARshell
runs as a background daemon. As ARshell is based on the
AR service, it inherits the warm-up time. ARshell provides
two mechanisms for delivery of the activity recognition re-
sults: (i) a pull-based mechanism that replies with the latest
activity when requested (support for per-second level), and (ii)
a notification-based mechanism that updates the recognition
result per interval; notifications are sent when an activity
change is detected or per interval depending on how ARshell
is configured.

We also streamline the API, so that software developers
can easily integrate ARshell into their existing projects. With
this ARshell API, only few lines of code are required for
adding/linking the activity recognition functionalities. ARshell
also supports backward compatibility with the AR service
should developers need access to the original AR data. We
open-source ARshell to the public on GitHub 3.

3https://github.com/myzhong/ARshell

V. CONCLUSION

In this paper, we shared the lesson learnt from the sys-
tematic analysis of the Android Activity Recognition service,
and proposed ARshell that significantly enhances the activity
recognition accuracy with the overall average improvement of
19%. The proposed ARshell offers a streamline API for mobile
app developers to incorporate activity recognition into their
existing projects or applications, and supports both pulling
and notification based mechanisms for receiving recognition
results. We developed ARshell and released it as an open
source for use by the mobile app development community.

VI. ACKNOWLEDGEMENT

NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update, 2012-2017,” Cisco white paper, Feb 2013.

[2] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, “Sensor-
based activity recognition,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 42, no. 6, pp. 790–
808, 2012.

[3] T. Nguyen, D. Phung, S. Gupta, and S. Venkatesh, “Extraction of
latent patterns and contexts from social honest signals using hierarchical
dirichlet processes,” in Proc. of PerCom 2013. IEEE, 2013, pp. 47–55.

[4] S. Lee, D. Ahn, S. Lee, R. Ha, and H. Cha, “Personalized energy auditor:
Estimating personal electricity usage,” in Proc. of PerCom 2014. IEEE,
2014, pp. 44–49.

[5] N. Roy, A. Misra, and D. Cook, “Infrastructure-assisted smartphone-
based adl recognition in multi-inhabitant smart environments,” in Proc.
of PerCom 2013. IEEE, 2013, pp. 38–46.

[6] T. Maekawa, Y. Yanagisawa, Y. Kishino, K. Ishiguro, K. Kamei,
Y. Sakurai, and T. Okadome, “Object-based activity recognition with
heterogeneous sensors on wrist,” in Pervasive Computing. Springer,
2010, pp. 246–264.

[7] T. Maekawa, Y. Kishino, Y. Sakurai, and T. Suyama, “Activity recog-
nition with hand-worn magnetic sensors,” Personal and Ubiquitous
Computing, vol. 17, no. 6, pp. 1085–1094, 2013.

[8] L. Bao and S. S. Intille, “Activity recognition from user-annotated
acceleration data,” in Pervasive Computing. Springer, 2004, pp. 1–17.

[9] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition us-
ing cell phone accelerometers,” ACM SigKDD Explorations Newsletter,
vol. 12, no. 2, pp. 74–82, 2011.

[10] M. Shoaib, H. Scholten, and P. J. Havinga, “Towards physical activity
recognition using smartphone sensors,” in Proc. of UIC/ATC 2013.
IEEE, 2013, pp. 80–87.

[11] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based trans-
portation mode detection on smartphones,” in Proc. of the 11th Confer-
ence on Embedded Networked Sensor Systems. ACM, 2013, p. 13.

[12] D. Gordon, J. Czerny, T. Miyaki, and M. Beigl, “Energy-efficient activity
recognition using prediction,” in Proc. of ISWC. IEEE, 2012, pp. 29–36.

[13] T. Maekawa and S. Watanabe, “Unsupervised activity recognition with
user’s physical characteristics data,” in Proc. of ISWC. IEEE, 2011,
pp. 89–96.

[14] B. Cvetkovic, B. Kaluza, M. Luštrek, and M. Gams, “Semi-supervised
learning for adaptation of human activity recognition classifier to the
user,” in Proc. of Workshop on Space, Time and Ambient Intelligence,
IJCAI, 2011, pp. 24–29.

[15] D. Wyatt, M. Philipose, and T. Choudhury, “Unsupervised activity
recognition using automatically mined common sense,” in Proc. of AAAI,
vol. 5, 2005, pp. 21–27.

[16] S. Wang, W. Pentney, A.-M. Popescu, T. Choudhury, and M. Philipose,
“Common sense based joint training of human activity recognizers,” in
IJCAI, vol. 7, 2007, pp. 2237–2242.

