MR3337221 (Review) 05C35 05C55
Sun, Zhi-Hong (PRC-HYNU-SM); Wang, Lin-Lin (PRC-CUMT-SSC); Wu, Yi-Li (PRC-HYNU-SM)
Turán's problem and Ramsey numbers for trees. (English summary) Colloq. Math. 139 (2015), no. 2, 273-298.

Let T_{n}^{1} and T_{n}^{2} be the two n-vertex trees which have maximum degree $\Delta\left(T_{n}^{i}\right)=n-3$ for $i \in\{1,2\}$. First, the authors obtain explicit formulas for $\operatorname{ex}\left(p, T_{n}^{i}\right)$, where $\operatorname{ex}(p, G)$ is the maximum number of edges in any graph on p vertices not containing graph G. Second, these formulas are used to obtain some exact values of two-color Ramsey numbers $r\left(T_{m}, T_{n}^{i}\right)$ for several cases where T_{m} is an m-vertex tree, $m \leq n$, and $\Delta\left(T_{m}\right) \leq$ $m-3$.

These results on Ramsey numbers extend the existing evidence confirming a wellknown 1976 conjecture by S. A. Burr and P. Erdős [Utilitas Math. 9 (1976), 247-258; MR0429622 $(55 \# 2633)]$ that $r\left(T_{n}, T_{n}\right)$ is at most $2 n-2$ for even n and $2 n-3$ for odd n. They also confirm the off-diagonal version of this conjecture by R. J. Faudree, R. H. Schelp and M. Simonovits [Ars Combin. 29 (1990), A, 97-106; MR1412810 (97f:05132)] that $r\left(T_{m}, T_{n}\right) \leq m+n-2$ holds for all trees. The proofs in the current paper are long but elementary. The results extend those of a previous paper by the first two authors [J. Comb. Number Theory 3 (2011), no. 1, 51-69; MR2908182] and another one by the first author [Bull. Aust. Math. Soc. 86 (2012), no. 1, 164-176; MR2960237].

Stanistaw P. Radziszowski
(c) Copyright American Mathematical Society 2016

