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Abstract

The Web is evolving into a Web of Data in which RDF data are becoming pervasive, and it is organised into datasets that share
a common purpose but have been developed in isolation. This motivates the need to devise complex integration tasks, which
are usually performed using schema mappings; generating them automatically is appealing to relieve users from the burden of
handcrafting them. Many tools are based on the data models to be integrated: classes, properties, and constraints. Unfortunately,
many data models in the Web of Data comprise very few or no constraints at all, so relying on constraints to generate schema
mappings is not appealing. Other tools rely on handcrafting the schema mappings, which is not appealing at all. A few other
tools rely on exchange samples but require user intervention, or are hybrid and require constraints to be available. In this article,
we present MostoDEx, a tool to generate schema mappings between two RDF datasets. It uses a single exchange sample and a
set of correspondences, but does not require any constraints to be available or any user intervention. We validated and evaluated
MostoDEx using many experiments that prove its effectiveness and efficiency in practice.
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1. Introduction

The current Web is progressively evolving into a Web of Data
in which RDF (Resource Description Framework) data are be-
coming pervasive (Heath and Bizer, 2011). There are thousands
of datasets available, many of which share a common purpose
but have been developed by independent organisations in iso-
lation (Bizer et al., 2009a). There are many initiatives whose
goal is to link these datasets, which is the first step to perform
complex integration processes (Heath and Bizer, 2011).

Integration usually refers to several crucial tasks, such as data
integration (Lenzerini, 2002), data warehousing (Marileo et al.,
2012), model evolution (Flouris et al., 2008), model match-
ing (Shvaiko and Euzenat, 2013), record linkage (Wang et al.,
2013), or data exchange (Fagin et al., 2005). In this article, we
focus on the latter, whose goal is to populate a target dataset
using data that come from one or more source datasets. Data
exchange has been paid much attention in the database context,
i.e., relational, nested-relational, or XML (Arenas and Libkin,
2008; Fagin et al., 2005; Popa et al., 2002). Furthermore, the
emergence of RDF is motivating some authors to work on data
exchange in the context of the Web of Data (Barceló et al.,
2013; Parreiras et al., 2008; Rivero et al., 2013b).

Data exchange is performed by means of schema map-
pings, which are declarative specifications of the relation-
ships amongst a source and a target datasets (Alexe et al.,
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2011a). Generating schema mappings automatically is appeal-
ing because this relieves users from the burden of handcrafting
them, so researchers have focused on helping users generate
them (Qian et al., 2012). Many current tools are based on the
data models to be integrated (Bonifati et al., 2005; Haas et al.,
2005; Marnette et al., 2011; Mecca et al., 2009; Raffio et al.,
2008; Rivero et al., 2013c). By data model, we refer to a sets of
entities (that is, classes and properties) and a set of constraints
that describe additional features of entities (for instance, class
A is a specialisation of class B, property P has class C as its
domain, and so on). In the Web of Data, there are many data
models that comprise very few or no constraints at all, which
typically results in data models that merely specify set of enti-
ties (Heath and Bizer, 2011; Lausen et al., 2008). Therefore, re-
lying on data models with constraints to generate schema map-
pings is not appealing in the general context of the Web of Data.

There exist other tools that do not rely on data models.
Unfortunately, they rely on handcrafting the schema map-
pings (Bizer and Schultz, 2010; Dou et al., 2005; Maedche
et al., 2002; Mocan and Cimpian, 2007; Parreiras et al., 2008;
Ressler et al., 2007), which is not appealing at all; and a few
others rely on exchange samples (Alexe et al., 2011b, 2008,
2006; Qian et al., 2012), which make them more appealing, but
require user intervention, or are hybrid and require constraints
to be available. Note that an exchange sample is an example of
source data and how it is exchanged into target data.

In this article, we present MostoDEx1, a tool to automat-
ically generate schema mappings between two RDF datasets

1A technical report and a research prototype are available at (Rivero et al.,
2013e) and (Rivero et al., 2013d), respectively.
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using a single exchange sample and a set of n:m correspon-
dences. An exchange sample comprises a subset of source
data and a subset of target data that is the expected result of
exchanging the source data. Correspondences are hints that
specify which entities in the source and target datasets cor-
respond to each other, i.e., are somewhat related (Bellahsene
et al., 2011). These schema mappings can be easily transformed
into SPARQL queries.

Our tool does not rely on constraints of the source and target
data models and does not require any user intervention, not even
to repair the input exchange sample. We have validated our tool
using ten data exchange problems amongst various real-world
datasets. In our validation, the execution time never exceeded
one second, and the data exchanged were as expected by experts
in every case, which suggests that it is very efficient in practice
and that the generated schema mappings are appropriate. Ad-
ditionally, we have evaluated the performance of our tool when
data exchange problems scale. We used four synthetic data ex-
change patterns proposed by MostoBM (Rivero et al., 2013a),
a benchmark for testing data exchange proposals in the context
of the Web of Data. We instantiated the synthetic data exchange
patterns into 2 000 non-trivial data exchange problems that we
used to evaluate our tool. Our evaluation results suggest that
our tool works well as the data exchange problems scale.

The rest of the article is organised as follows: Section 2
presents the tools related to MostoDEx and its main contribu-
tions to the state of the art; Section 3 presents some preliminar-
ies that are necessary to understand the internal details of our
tool; Section 4 describes how our tool works; Section 5 reports
on the validity and scalability evaluation of MostoDEx; and,
finally, Section 6 recaps on our main conclusions.

2. Related work

In this section, we present other existing tools that are re-
lated to MostoDEx. We present some tools that require the
user to handcraft the schema mappings in Section 2.1, others
are based on the constraints that comprise the source and target
data models to be integrated in Section 2.2, and a last group of
tools are based on samples of data to perform data exchange in
Section 2.3. Finally, we analyse and discuss the drawbacks of
these tools in Section 2.4, which motivated us to work on a new
proposal.

2.1. Handcraft-based tools

There are a number of tools that focus on handcrafting
schema mappings, which are expressed as queries but can be
viewed as implicitly generating schema mappings: WSEE (Mo-
can and Cimpian, 2007), which stands for the Web Services Ex-
ecution Environment, builds on a formal framework to describe
correspondences in terms of first-order logic formulae that are
used to generate schema mappings using the Web Service Mod-
eling Language (WSML). This tool focuses on the problem of
data exchange in the context of semantic-web services, i.e., web
services that are enriched with semantic annotations to improve
their discovery and composition (Forte et al., 2008). This tool is

similar in spirit to MAFRA (Maedche et al., 2002) (MApping
FRAmework), whose focus is on modelling correspondences
in a general-purpose setting. The main difference with the pre-
vious tool is that WSEE goes a step beyond formalising cor-
respondences and executes them using a WSML reasoner to
exchange data.

MBOTL (Parreiras et al., 2008) (Model-Based Ontology
Translation Language) builds on the framework of Model-
Driven Engineering in which the ATL (ATLAS Transformation
Language) metamodel is extended to support RDF data models,
which allows to express constraints on them using OCL (Ob-
ject Constraint Language). MBOTL comprises a mapping lan-
guage by means of which users can express schema mappings
that are later transformed into the SPARQL query language by
means of a library of ATL transformations. This is similar in
spirit to R2R (Bizer and Schultz, 2010) (RDF to RDF), On-
toMerge (Dou et al., 2005), and Snoogle (Ressler et al., 2007),
the difference is the language used to represent the schema map-
pings: R2R and Snoogle use SPARQL 1.0; whereas OntoMerge
uses Web-PDDL schema mappings that are run by means of a
first-order logic reasoner.

2.2. Constraint-based tools
They focus on generating schema mappings building on cor-

respondences and constraints on the source and target data mod-
els. These tools are able to compute subsets of data in the
source dataset that need to be exchanged as a whole, and sub-
sets of data in the target dataset that need to be created as a
whole (Rivero et al., 2013b). To compute them, they rely on
user-defined constraints and the inherent constraints of certain
data models, such as paths from the root to a leaf in a nested-
relational data model, or hierarchy relations amongst classes
in an RDF data model. Then, several combinations of these
subsets of data are used to generate the final schema map-
pings (Popa et al., 2002).

Clio (Haas et al., 2005) is the state-of-the-art tool in this
field. It takes a source and a target nested-relational data mod-
els, a number of constraints of each data model, and a number
of 1:1 correspondences between them as input, and it gener-
ates schema mappings that can be easily transformed into dif-
ferent query languages, such as XQuery, XSLT, or SQL. HeP-
ToX (Bonifati et al., 2005) is similar to Clio but it focuses on
XML data models, which are a superset of nested-relational
data models. Clip (Raffio et al., 2008) allows to generate
schema mappings based on n:1 correspondences, and it uses
a mapping visual language that was specifically designed for
nested-relational data models, which includes grouping func-
tions, aggregation functions, or dependent correspondences.
+Spicy (Mecca et al., 2009) allows to compute core schema
mappings that generate non-redundant target data when per-
forming data exchange. ++Spicy (Marnette et al., 2011) im-
proves +Spicy by allowing more expressive target constraints.
MostoDE (Rivero et al., 2013c) is able to work with RDF data
models whose constraints are interpreted as graphs that are tra-
versed to compute source and target kernels. A kernel com-
prises a subset of the source data model that needs to be ex-
changed as a whole, and a subset of the target data model that
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needs to be created as a whole. Kernels are translated into
schema mappings that are represented in SPARQL 1.1.

2.3. Sample-based tools
These tools aim to generate schema mappings from a set

of exchange samples. In the relational or nested-relational
contexts, SPIDER (Alexe et al., 2006) helps users understand
and maintain the schema mappings generated by Clio by ex-
tracting exchange samples from the source and target datasets,
and it illustrates the following: 1) relationships in a specific
schema mapping, 2) sample source data that this schema map-
ping would extract when performing data exchange, and 3) the
target data generated by those source data. Muse (Alexe et al.,
2008) aids users in generating and understanding schema map-
pings building on exchange samples. It assumes that source and
target data models, together with their constraints, exist, and
it infers grouping functions by analysing the answers to some
questions it poses to the users.

EIRENE (Alexe et al., 2011b) generates a number of schema
mappings by means of a finite set of exchange samples. This
tool computes whether or not two input exchange samples have
incoherences from a structural point of view, i.e., whether or
not these two exchange samples generate schema mappings that
will result in erroneous target data. If the input set of exchange
samples does not have any incoherences, then it generates the
schema mappings. MWeaver (Qian et al., 2012) is based on ex-
change samples and it focuses on target data only. Users are
responsible for providing the target data that they wish to be
created; then, every piece of data that appears in both source
and target data represents a correspondence between two en-
tities. Correspondences and source and target constraints are
used to generate schema mappings.

2.4. Discussion
Table 1 summarises the comparison of current tools to gen-

erate schema mappings. The 3 symbol denotes that the tool
supports a feature, and symbol 5 implies that the tool does not
support a feature. The features we have analysed are the fol-
lowing: 1) F1 determines if a tool requires the intervention of
the user during the generation of the schema mappings; 2) F2
determines if a tool requires the existence of source and tar-
get constraints to generate the schema mappings; 3) F3 deter-
mines if a tool allows n:m correspondences; 4) F4 determines
if a tool performs automatic completions when the same source
data lead to different target data; 5) F5 determines if a tool has
been tested with real-world scenarios; 6) F6 determines if the
scalability of a tool has been tested.

Regarding handcraft-based tools (Bizer and Schultz, 2010;
Dou et al., 2005; Maedche et al., 2002; Mocan and Cimpian,
2007; Parreiras et al., 2008; Ressler et al., 2007), they fo-
cus on handcrafting schema mappings, which is not appeal-
ing since users have to write them, check whether they work
as expected or not, make changes if necessary, and restart this
cycle (Petropoulos et al., 2007). Contrarily, our tool automat-
ically generates schema mappings without the intervention of
the user, and it uses a single exchange sample and a number of
correspondences as input.

F1 F2 F3 F4 F5 F6

Handcraft-based tools

(Bizer and Schultz, 2010) 5 3 5 5 3 5

(Dou et al., 2005) 5 5 5 5 3 5

(Maedche et al., 2002) 5 5 3 5 5 5

(Mocan and Cimpian, 2007) 5 5 5 5 3 5

(Parreiras et al., 2008) 5 3 5 5 3 5

(Ressler et al., 2007) 5 3 5 5 3 5

Constraint-based tools

(Bonifati et al., 2005) 3 5 5 5 3 5

(Haas et al., 2005) 3 5 5 5 3 3

(Marnette et al., 2011) 3 5 5 5 3 3

(Mecca et al., 2009) 3 5 5 5 3 5

(Raffio et al., 2008) 5 5 5 5 3 5

(Rivero et al., 2013c) 3 5 5 5 3 3

Sample-based tools

(Alexe et al., 2011b) 5 3 5 5 5 5

(Alexe et al., 2008) 3 5 5 5 5 5

(Alexe et al., 2006) 3 5 5 5 5 5

(Qian et al., 2012) 3 5 5 5 5 5

MostoDEx 3 3 3 3 3 3

Table 1: Comparison of tools to generate schema mappings.

Regarding constraint-based tools (Bonifati et al., 2005; Haas
et al., 2005; Marnette et al., 2011; Mecca et al., 2009; Raffio
et al., 2008; Rivero et al., 2013c), they are not so appealing
in the general context of the Web of Data because (Heath and
Bizer, 2011): 1) the main difference between RDF and other
data modelling languages is that it allows to represent data with-
out an explicit data model; 2) it is not possible to model the
whole Web of Data with a single data model, and several data
models may exist for the same RDF dataset; 3) data models in
this context usually comprise very few constraints or no con-
straints at all, which entails that they are only simple vocabu-
laries to create web data. Contrarily, our tool does not rely on
constraints but on a single exchange sample and a set of corre-
spondences.

Some sample-based tools assume that source and target data
models exist, together with their constraints (Alexe et al., 2008,
2006; Qian et al., 2012). Therefore, their main drawback, as in
the previous case, is that it is not appealing to rely on source and
target data models, together with their constraints, in the gen-
eral context of the Web of Data. Finally, EIRENE (Alexe et al.,
2011b) does not have the previous drawback, but it requires the
user to provide an exchange sample for each schema mapping
to be automatically generated. Furthermore, if this tool finds the
input exchange samples inappropriate to generate schema map-
pings, the user is responsible for repairing them. Contrarily, our
tool requires the user to provide a single exchange sample and
a set of correspondences and finds repairs automatically.

3



«abstract»

Entity

+ URI uri

Class

DataProperty

ObjectProperty

Correspondence

1..*

1..*

«abstract»

Homomorphism

RDFDataset
1..*

Pattern
1 «abstract»

Node

11

URI

Literal

source

target

contains

subject

predicate

object

Variable

SchemaMapping

target
1..*

source
1..*

mappings

MapsTo

left

right

1

1

Substitution

Replacement

DataExchang-

Problem

source target

1 1

correspondences

1..*

1..*

Figure 1: Conceptual model.

Figure 2: Running example: exchange sample.

Finally, when dealing with large RDF datasets, a key fea-
ture of these tools is their scalability (Fernández et al., 2013).
Testing the scalability of these tools is challenging since it re-
quires to collect sufficiently large datasets, and to provide the
input data of the tools and the expected output to validate them.
Currently, this can be a daunting task since, to the best of our
knowledge, there are not any tools to help users perform this
validation. Furthermore, most of these tools are research proto-
types, therefore, it is not likely that they take scalability issues
into account. We have analysed the scalability of our tool using
synthetic data exchange problems that are generated with the
help of MostoBM (Rivero et al., 2013a), and we report on our
results in Section 5.2.

3. Preliminaries

In this section, we present some preliminaries that are neces-
sary to understand our tool. We initially introduce our research
methodology in Section 3.1. Afterwards, our tool relies on a

(a) Correspondence v1.

(b) Correspondence v2.

(c) Correspondence v3.

Figure 3: Running example: correspondences.

Prefix URI

: http://dbpedia.org/resource/

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

foaf http://xmlns.com/foaf/0.1/

dpo http://dbpedia.org/ontology/

gw http://govwild.org/0.6/GWOntology.rdf#

gwd http://govwild.org/id/date/

Table 2: Summary of prefixes.

conceptual model that is presented in Section 3.2. Furthermore,
Section 3.3 describes the running example that we use to illus-
trate it throughout this article.

3.1. Research methodology

Our research methodology is based on the Unified Process
framework (UP) (Kruchten, 2003). This choice is supported by
the experience of our research group in applying it to research
or technology transfer. The proposed life cycle in UP is iterative
and incremental, which is suitable for the development of high
dynamic software projects or scientific publications in this area.

It comprises the following steps:

1. Identifying research context: previous to this piece of re-
search work, we identified that exchanging data amongst
RDF datasets was an interesting topic and decided to fo-
cus on the automatic generation of schema mappings. In
MostoDE (Rivero et al., 2013c), we studied this automatic
generation based on source and target constraints. In this
article, our focus consists on generating them automati-
cally using exchange samples.
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Figure 4: Overview of our schema mapping generation process.

2. Systematic review of the bibliography: we updated the ref-
erences that we identified when analysing the bibliography
for our MostoDE article.

3. Identifying comparison features: we identified those fea-
tures that are common to existing tools in our research con-
text. These features are described in Section 2.4.

4. Identifying drawbacks: using the previous features, we
analysed existing tools in the bibliography regarding
whether they have these features or not. The conclusion
was that, to the best of our knowledge, no tool has all of
the features.

5. Design and implementation of our tool: we devised
MostoDEx to take all of the identified features into ac-
count.

6. Design of the experiments: every tool should be tested us-
ing real-world scenarios to evaluate its effectiveness and
efficiency. Furthermore, it is mandatory to evaluate its
scalability. We devised 10 real-world data exchange prob-
lems to test our tool (see Section 5.1), and 2 000 synthetic
data exchange problems to evaluate its scalability (see Sec-
tion 5.2).

3.2. Conceptual model

An RDF dataset comprises a set of triples, each of which is a
three-tuple whose components, which are called subject, pred-
icate, and object, can be URIs (Uniform Resource Identifier)
and literals of simple types. A schema mapping is a two-tuple
whose components are sets of triple patterns that are implicitly
connected using logical ANDs. A triple pattern generalises the
concept of triple by allowing the subject and/or the object to
be variables or blank nodes. In this article, we refer to triple
patterns as patterns for the sake of brevity. Schema mappings
may be easily transformed into SPARQL queries in which the
two sets of patterns form the WHERE and the CONSTRUCT
clauses, respectively. Note that the set of triple patterns includes
the set of triples; that is why we usually use the term pattern to
refer to both triple patterns and triples.

A homomorphism maps the constants, variables, or blank
nodes of a set of patterns onto the constants, variables, or blank
nodes of another set of patterns. Homomorphisms can be ei-
ther replacements or substitutions: a replacement is a finite map
from constants to constants and a substitution is a finite map
from constants to variables or blank nodes.

Regarding our tool, we restrict our attention to the triples
that describe data, that is, triples of the form (c, rdf :type,C),
in which c is a constant and C is a class, or (c1, p, c2), in which
c1 and c2 are constants and p is a property. An exchange sample

comprises a source dataset and a target dataset. An n:m corre-
spondence relates a set of entities with a different set of entities.
A data exchange problem comprises a single exchange sample
and a set of correspondences that relate some of the source en-
tities with some of the target entities.

Our algorithms use the following projection functions:
source to get the source dataset of an exchange sample, the
source entities of a given correspondence, or the source triples
of a given dataset; target to get the target dataset of an exchange
sample, the target entities of a given correspondence, or the tar-
get triples of a given dataset; sample and correspondences to
get the single exchange sample or the correspondences of a data
exchange problem, respectively; and constants to get the con-
stants in a set of patterns.

Figure 1 presents an UML-like conceptual model, in which
a DataExchangeProblem comprises a source RDFDataset (the
source exchange sample), a target RDFDataset (the target ex-
change sample), and a number of Correspondences. Each
Correspondence has a number of source and target Entities,
each of which is represented by a URI and can be either a Class,
DataProperty or ObjectProperty. An RDFDataset comprises a
set of Patterns, each of which is a triple that contains a sub-
ject, a predicate and an object Nodes. A Node can be either a
URI, a Literal or a Variable. A SchemaMapping comprises a
set of source and target Patterns. Finally, a Homomorphism can
be either a Replacement or a Substitution that maps to a set of
Nodes.

3.3. Running example

Figures 2 and 3 present a real-world data exchange problem
that we use to illustrate our tool. Our goal is to generate a num-
ber of schema mappings to perform data exchange from a part
of DBpedia 3.8 to a part of GovWILD. On the one hand, DB-
pedia (Bizer et al., 2009b) is a community effort to annotate
and make the data stored at Wikipedia accessible by means of
RDF technologies. On the other hand, GovWILD (Böhm et al.,
2012) is a public RDF dataset that comprises data from US and
EU governments that are connected with financial data of gov-
ernments or public funds.

The exchange sample in Figure 2 comprises a set of source
triples regarding Angela Merkel and David Cameron, their
names, and her date of birth; and a set of target triples that spec-
ify how these data are structured according to the target entities.
This exchange sample is represented using a tree-based graph-
ical notation in which each root node is the subject of a triple,
and triples are grouped by subject. A URI or a blank node is
represented using a diamond, a literal using a trapezium, a data
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property using a square, and an object property using a pen-
tagon. We use the prefixes in Table 2, in which the first row
specifies the default URI.

Figure 3 shows three correspondences, namely: v1 relates a
person in the DBpedia and the GovWILD datasets; v2 states
that the name of a person in DBpedia is related to the label
in GovWILD; and v3 indicates that a person and her/his date
of birth in DBpedia is related to a new URI of class gw:Date in
GovWILD. Correspondences are represented using a tree-based
graphical notation in which each root node is an entity, which
is represented using a circle, a square, or a pentagon if it is a
class, a data property, or an object property, respectively.

4. Generating schema mappings

Our tool takes a data exchange problem as input, which com-
prises a single exchange sample and a set of correspondences.
The single exchange sample is expected to be an equivalent
sample of the source and target data that the user wishes to
exchange. Furthermore, our tool takes a number of n:m cor-
respondences over the source and target entities as input. This
set indicates the relationships that exist amongst the source and
target entities in the data exchange problem that we wish to
solve. It is expected that the user has to relate the source enti-
ties that should be exchanged as a whole, and the target entities
that need to be created as a whole.

Our tool generates a number of schema mappings to ex-
change data between the source and target datasets. Figure 4
presents an overview of our technique to generate schema map-
pings that comprises five steps, namely: 1) “Generate exchange
samples” takes a single exchange sample and a number of cor-
respondences as input, and automatically generates a set of
candidate exchange samples. 2) “Discard exchange samples”
discards previously generated candidate exchange samples that
are not useful to generate the final set of schema mappings.
3) “Complete exchange samples” adds target data to the differ-
ent exchange samples if the same source data can lead to differ-
ent target data. 4) “Prune exchange samples” removes exchange
samples that generate the same schema mappings. 5) “Cre-
ate schema mappings” transforms each exchange sample into
a schema mapping. Figure 5 presents the main algorithm that
implements such workflow. In our algorithms, we use the fol-
lowing control structures: for each, if , and while; the following
logical connectives: negation (¬), and (∧), or (∨); the following
set operators: constructor ({. . .}), union (∪), intersection (∩), a
finite power set (F). Furthermore, we also use the count opera-
tor (| . . . |) and a mapping function ( 7→).

These steps are explained in the rest of this section.

4.1. First step
This step automatically computes a number of candidate ex-

change samples, each of which comprises a subset of source
data that need to be exchanged as a whole, and a subset of
target data that need to be created as a whole. To compute
them, for each correspondence in isolation, we combine all of
the pieces of connected data that contain the entities in the cor-
respondence.

1: algorithm generateSchemaMappings
2: input p : DataExchangeProblem
3: output M : F SchemaMapping
4: variables D,D′ : FExchangeSample
5:
6: D := ∅
7: for each v : Correspondence | v ∈ correspondences(p) do
8: — First step
9: D′ := createCandidateExchangeSamples(v, sample(p))

10: — Second step
11: D := D ∪ discardCandidateExchangeSamples(D′)
12: end for
13: — Third step
14: D := completeExchangeSamples(D)
15: — Fourth step
16: D := pruneExchangeSamples(D)
17: — Fifth step
18: M := createSchemaMappings(D)

Figure 5: Generating schema mappings.

1: algorithm createCandidateExchangeSamples
2: input v : Correspondence; d : ExchangeSample
3: output D : FExchangeSample
4: variables GS,GT : FDataset; TS, TT : Dataset
5:
6: D := ∅
7: — Compute the triples that are related
8: — to correspondence v
9: GS := computeRelatedTriples(source(v), source(d))

10: GT := computeRelatedTriples(target(v), target(d))
11: — Compute the subdatasets that contain
12: — the triples that are related to v
13: for each TS : Dataset | TS ∈

∏
GS ∧

14: |computeConnectedComponents(TS)| = 1 do
15: for each TT : Dataset | TT ∈

∏
GT ∧

16: |computeConnectedComponents(TT )| = 1 do
17: D := D ∪ {(TS,TT )}
18: end for
19: end for

Figure 6: Generating candidate exchange samples.

Figure 6 shows our algorithm to generate candidate exchange
samples from a given correspondence and a single exchange
sample. First, we compute the triples related to correspondence
v for the single exchange sample d, i.e., the triples that comprise
the entities related by v. They are stored in a set of datasets.
Then, we compute the distributive cartesian product of both the
triples related to source(v) and the triples related to target(v),
which is denoted as

∏
. We iterate over each set of source and

target datasets, and we transform them into exchange samples
only if each dataset comprises a unique connected component.

Example 1. To illustrate this step, we focus on correspondence
v2 in our running example. Its source entities are dpo:Person
and foaf :name. The triples that comprise dpo:Person are the
following:

(t1) :Angela_Merkel rdf :type dpo:Person
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(t2) :David_Cameron rdf :type dpo:Person

and the triples that comprise foaf :name are the following:

(t3) :Angela_Merkel foaf :name “Angela Merkel”
(t4) :David_Cameron foaf :name “David Cameron”

The computeRelatedTriples algorithm outputs the following
set in this case: GS = {{t1, t2}, {t3, t4}}; the distributive cartesian
product of GS is

∏
GS = {{t1, t3}, {t1, t4}, {t2, t3}, {t2, t4}}.

The target entity of v2 is rdfs:label, and the triples that com-
prise it are the following:

(t5) :Angela_Merkel rdfs:label “Angela Merkel”
(t6) :David_Cameron rdfs:label “David Cameron”
(t7) gwd:1954−7−17 rdfs:label “1954−07−17”

Note that GT = {{t5, t6, t7}} =
∏

GT . Additionally, each of
the subsets in {{t2, t3}, {t1, t4}} ⊆

∏
GS has two connected com-

ponents, since there is no triple that does not have any triple
in common with at least another triple. Therefore, we discard
these sets of triples. Candidate exchange samples are generated
by combining the source triples in

∏
GS and the target triples

in
∏

GT , namely: d21 = ({t1, t3}, {t5}), d22 = ({t1, t3}, {t6}),
d23 = ({t1, t3}, {t7}), d24 = ({t2, t4}, {t5}), d25 = ({t2, t4}, {t6}),
d26 = ({t2, t4}, {t7}), which are depicted in Figure 7.

4.2. Second step

This step consists of discarding candidate exchange samples
that are not useful to generate the final set of schema mappings.
We keep candidate exchange samples in which there is, at least,
a subset of target data that can be generated using the source
data, and we minimise the target data that do not exist in the
source. The intuition behind this step is that we keep only
the exchange samples that provide the maximum information
to generate the target data, i.e., when these exchange samples
are transformed into schema mappings, they comprise as less
blank nodes as possible.

Figure 8 shows our algorithm to discard candidate exchange
samples. An exchange example is kept or discarded according
to its number of covered and uncovered constants. A constant
in the target is said to be covered if there is, at least, a triple in
the source that involves that constant; otherwise, it is said to be
uncovered. The algorithm first computes the minimum number
of uncovered constants in the input set of exchange samples;
it then iterates over this set and discards every exchange sam-
ple that does not have at least a covered constant or has more
uncovered constants than the minimum.

Example 2. Our tool generates six exchange samples for cor-
respondence v2 (see Figure 7), and the minimum number of
uncovered constants in these exchange samples is equal to
zero, since every constant in d21 is covered; therefore, our tool
discards exchange samples d22, d23, d24, and d26 in the sec-
ond step because each of them has two uncovered constants:
:David_Cameron and “David Cameron”, gwd:1954−7−17

(a) Exchange sample d21.

(b) Exchange sample d22.

(c) Exchange sample d23.

(d) Exchange sample d24.

(e) Exchange sample d25.

(f) Exchange sample d26.

Figure 7: Exchange samples generated in the first step for correspondence v2.

and “1954−07−17”, :Angela_Merkel and “Angela Merkel”,
and gwd:1954−7−17 and “1954−07−17”, respectively.

Furthermore, in Figure 9, we present the schema map-
pings that our tool outputs for correspondence v3 of our run-
ning example. Note that the minimum number of uncovered
constants in these exchange samples is equal to one, since
gwd:1954−7−17 is not present in the source in any exchange
sample. Therefore, our tool discards d32 since it has two uncov-
ered constants: gwd:1954−7−17 and “Angela Merkel”.
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1: algorithm discardCandidateExchangeSamples
2: input D : FExchangeSample
3: output D′ : FExchangeSample
4: variables m : Z
5:
6: D′ := ∅
7: — Compute the minimum number of
8: — uncovered constants
9: m := min{n : Z; d : ExchangeExample | d ∈ D ∧

10: n = |(constants(target(d)) \ constants(source(d)))| • n}
11: — Discard some exchange samples
12: for each d : ExchangeSample | d ∈ D do
13: if |(constants(target(d)) ∩ constants(source(d)))| > 0 ∧
14: |(constants(target(d)) \ constants(source(d)))| = m
15: then
16: D′ := D′ ∪ {d}
17: end if
18: end for

Figure 8: Discarding candidate exchange samples.

(a) Exchange sample d31.

(b) Exchange sample d32.

Figure 9: Exchange samples generated in the first step for correspondence v3.

4.3. Third step
The third step consists of completing exchange samples, i.e.,

if the same source data can lead to different data in different ex-
change samples, it is then necessary to complete those exchange
samples by adding target data to them. Therefore, we identify
the exchange samples that have the same source data but dif-
fer in the target data, and we complete them without the user
intervention. The completion of exchange samples depends on
the specification of the input exchange sample. Our comple-
tion process is similar to the process described in (Alexe et al.,
2011a), which proves that it is a sound and complete process.

The algorithm in Figure 10 takes a set of exchange samples
as input and outputs a number of complete exchange samples.
It computes if the input set needs to be completed because the
same source data generates different target data. To perform

1: algorithm completeExchangeSamples
2: input D : FExchangeSample
3: output O : FExchangeSample
4: variables HS : FReplacement; TT : Dataset; restart : Boolean
5:
6: O := D
7: restart := true
8: — Iterate until no new triple is added
9: while restart do

10: restart := false
11: — Iterate over the whole set of exchange samples
12: for each d1 : ExchangeSample | d1 ∈ O ∧ ¬restart do
13: — Iterate again over the whole set of exchange samples
14: for each d2 : ExchangeSample | d2 ∈ O ∧ d1 , d2 ∧
15: ¬restart do
16: — Compute the replacements
17: HS := computeReplacements(source(d1), source(d2))
18: — Iterate over the replacements
19: for each h : Replacement | h ∈ HS ∧ ¬restart do
20: — Apply the replacement
21: TT := applyHomomorphism(h, target(d1))
22: — If the new triples are not included
23: if target(d2) * TT then
24: — Complete the exchange sample
25: O := O \ {d2}
26: O := O ∪ {(source(d2), target(d2) ∪ TT )}
27: restart := true
28: end if
29: end for
30: end for
31: end for
32: end while

Figure 10: Completing exchange samples.

this, we compute the replacements between the exchange sam-
ples that have the same source data and, if they have some miss-
ing triples, we automatically add them to complete the target
data. In this case, restart indicates if new triples have been
added to the exchange samples, and we iterate until no new
triple is added. We extract two different exchange samples from
the input set d1 and d2, respectively. We compute the replace-
ments between their source triples, and we apply each replace-
ment to the target triples of d1; if the resulting triples are not
present in the target triples of d2, we have to add them.

Example 3. To illustrate this step, we present the two exchange
samples that resulted from correspondence v1 after the sec-
ond step (see Figure 11). There exists a single replacement
between source(d12) and source(d31) (see Figure 9), which is
the following: {:David_Cameron 7→ :Angela_Merkel}. When
we apply it to target(d12), it results in the following triple:
:Angela_Merkel rdf :type gw:Person. This triple is not included
in target(d31), so it is necessary to add this triple to target(d31),
and the exchange sample is completed as d′31, which is de-
picted in Figure 12. The intuition behind this is that we have
mapped an instance of dpo:Person as gw:Person in exchange
sample d12; however, in exchange sample d31, an instance of

8



(a) Exchange sample d11.

(b) Exchange sample d12.

Figure 11: Exchange samples of correspondence v1 after the second step.

(a) Exchange sample d′21.

(b) Exchange sample d′25.

(c) Exchange sample d′31.

Figure 12: Completed exchange samples.

dpo:Person is not mapped onto an instance of gw:Person.
Note also that Figure 12 presents d′21 and d′25, which result

from completing exchange samples d21 and d25, respectively
(see Figure 7). Our tool automatically completes the input ex-
change samples, which is a clear advantage with respect to
some of the existing tools in the bibliography that require the
intervention of the user to complete them (Alexe et al., 2011b).

4.4. Fourth step
In this step, our tool prunes redundant exchange samples,

i.e., samples that generate the same schema mappings. Fig-
ure 13 shows our algorithm to prune these exchange samples.
Replacements are used to detect them, i.e., two exchange sam-
ples d1 and d2 are redundant if there exist, at least, four replace-

1: algorithm pruneExchangeSamples
2: input D : FExchangeSample
3: output D′ : FExchangeSample
4:
5: D′ := ∅
6: — Iterate over exchange samples
7: for each d1 : ExchangeSample | d1 ∈ D do
8: — Compute the replacements between samples
9: if #D′ = 0 ∨

10: (∀d2 : ExchangeSample | d2 ∈ D′ •
11: computeReplacements(source(d1), source(d2)) = ∅ ∨
12: computeReplacements(target(d1), target(d2)) = ∅ ∨
13: computeReplacements(source(d2), source(d1)) = ∅ ∨
14: computeReplacements(target(d2), target(d1)) = ∅)
15: then
16: — Add the exchange sample since it is
17: — not redundant
18: D′ := D′ ∪ {d1}
19: end if
20: end for

Figure 13: Pruning exchange samples.

ments from the source and target triples of d1 to the source and
target triples of d2, and from the source and target triples of d2
to the source and target triples of d1.

Example 4. In our running example, d11 and d12 (see Fig-
ure 11) are redundant since there exist two replacements from
source(d11) to source(d12) and vice versa, and two other re-
placements from target(d11) to target(d12) and vice versa.
Therefore, our tool prunes one of them randomly, e.g., d11.
The same happens with exchange samples d′21 and d′25 (see Fig-
ure 12), our tool prunes one of them randomly, e.g., d′25.

4.5. Fifth step
This final step transforms each exchange sample into a

schema mapping, which is built by substituting the source and
target constants by variables, or blank nodes to generate la-
belled nulls (Fagin et al., 2005; Mallea et al., 2011). These
schema mappings may be easily transformed into SPARQL
queries to exchange data between the integrated datasets.

Figure 14 shows our algorithm to transform each exchange
sample into a schema mapping, which is built by substituting
source and target data by variables or blank nodes, depending
on whether the target data is known or not. To perform this, for
each exchange sample, we retrieve its source and target con-
stants. Then, we compute a source and a target substitution as
follows: for those constants in the source, we add a fresh vari-
able to both substitutions. For those constants that are present
in the target but not in the source, we add a fresh blank node
to the target substitution. Finally, we apply both substitutions
to the source and target triples to generate the source and target
patterns of the schema mapping.

Example 5. In our running example, our tool generates three
schema mappings that result from transforming exchange sam-
ples d12, d′21, and d′31 (see Figures 11 and 12, respectively).
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1: algorithm createSchemaMappings
2: input D : FExchangeSample
3: output M : F SchemaMapping
4: variables CS,CT : FConstant; hS, hT : Substitution;
5: TS, TT : FPattern; x : Variable
6:
7: M := ∅
8: for each d : ExchangeSample | d ∈ D do
9: — Retrieve source and target constants

10: CS := constants(source(d))
11: CT := constants(target(d))
12: — Compute source and target substitutions
13: hS := ∅
14: hT := ∅
15: for each c : Constant | c ∈ CS do
16: x := freshVariable()
17: hS := hS ∪ {c 7→ x}
18: hT := hT ∪ {c 7→ x}
19: end for
20: for each c : Constant | c ∈ CT \ CS do
21: hT := hT ∪ {c 7→ freshBlankNode()}
22: end for
23: — Apply substitutions
24: TS := applyHomomorphism(hS, source(d))
25: TT := applyHomomorphism(hT , target(d))
26: — Update output set
27: M := M ∪ {(TS, TT )}
28: end for

Figure 14: Creating schema mappings.

Our tool transforms exchange sample d12 into schema map-
ping m12 by using the following source and target substitution:
{:David_Cameron 7→ ?u2}. Both substitutions are the same
because all of the target constants are already present in the
source substitution; so no blank nodes are generated.

Furthermore, our tool transforms exchange sample d′21
into schema mapping m21 by computing the following
source and target substitutions: {:Angela_Merkel 7→
?u3,“Angela Merkel” 7→ ?l4}. Note that both substitutions
are also the same. Our tool also transforms exchange sample
d′31 into schema mapping m31. It computes the following source
substitution: {:Angela_Merkel 7→ ?u1,“1954−07−17” 7→ ?l0},
and the following target substitution: {:Angela_Merkel 7→
?u1,“1954−07−17” 7→ ?l0, gwd:1954−7−17 7→ _:bn0}. The
latter comprises a blank node since constant gwd:1954−7−17
is not present in the source.

Figure 15 depicts schema mappings m12, m21, and m31.

5. Evaluation

Our tool is supported by a graphical interface that has been
implemented using Java 1.6 and Jena TDB 0.9.3 (Carroll et al.,
2004). Furthermore, we have used Guava 13.0.1 to implement
ancillary set operations (Google, 2014), and JGraphT 0.8.3 to
compute the connected components of a set of patterns (Naveh,
2014). Our tool has a Setup module and five additional mod-

(a) Exchange sample m12.

(b) Exchange sample m21.

(c) Exchange sample m31.

Figure 15: Final schema mappings.

ules, each of which implements a step of our proposal, namely:
Generate, Discard, Complete, Prune, and Transform.

In the Setup module, the user may select the files in which
the source and target data for the single exchange sample are
stored. When both files are selected, the user is responsible
for providing a number of n:m correspondences between source
and target entities. The Generate module is responsible for tak-
ing the single exchange sample and the correspondences of the
previous module as input, and generating the whole set of can-
didate exchange samples. The Discard module takes the set
of candidate exchange samples as input and discards exchange
samples from this set. The Complete module is responsible for
taking the previous samples as input and completing them, i.e.,
if the same source data generate different target data in different
exchange samples, it is necessary to complete those samples by
adding new triples to the target data. The Prune module is re-
sponsible for pruning exchange samples that are redundant, i.e.,
they are transformed into the same schema mappings. Finally,
the Transform module takes the previous exchange samples and
transforms them into a number of schema mappings.

Our experiments were run on a virtual computer that was
equipped with a four-threaded Intel Xeon 3.00 GHz CPU and
16 GiB RAM, running on Windows Server 2008 (64-bits). In
the rest of this section, we present the validity evaluation in
Section 5.1, the scalability evaluation in Section 5.2 of our tool,
and some of its limitations in Section 5.3.

5.1. Validity evaluation
Repository. We have setup a repository of ten representative
real-world data exchange problems. For each data exchange
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Acronym Data exchange problem

DF-P DBpedia to Freebase (People)

FD-P Freebase to DBpedia (People)

DF-TS DBpedia to Freebase (Television Shows)

FD-TS Freebase to DBpedia (Television Shows)

DF-F DBpedia to Freebase (Films)

FD-F Freebase to DBpedia (Films)

DF-U DBpedia to Freebase (Universities)

FD-U Freebase to DBpedia (Universities)

DG DBpedia to GovWILD

GD GovWILD to DBpedia

Table 3: Acronyms of the data exchange problems of our repository.

problem, our repository provides a set of handcrafted schema
mappings that are expected to perform data exchange appropri-
ately and source data to perform data exchange. The datasets
that we use in our repository are the following: Freebase (Bol-
lacker et al., 2008), DBpedia (Bizer et al., 2009b), and Gov-
WILD (Böhm et al., 2012). Table 3 presents these data ex-
change problems.

Evaluation process. Our evaluation process comprises four
steps, namely: 1) We used our tool to automatically gener-
ate a set of schema mappings based on the single exchange
sample and the set of correspondences of a specific data ex-
change problem. 2) We transformed each schema mapping into
a query mapping in SPARQL. This step is mandatory since our
goal was to use a query engine to perform data exchange. We
used the target patterns of the schema mapping as the CON-
STRUCT clause, and the source patterns as the WHERE clause.
3) We exchanged the source data using both the automatically-
generated and the handcrafted queries by executing them over
the source dataset to produce a target dataset. 4) We validated if
both the target data output by the automatically-generated and
handcrafted schema mappings were equivalent to each other.

We implemented this process in a script that uses Java 1.6,
Jena TDB 0.9.3, Sesame 2.6.10, and OWLIM Lite 4.2.

Validity results. Table 4 summarises our experimental results.
The columns represent the data exchange problems of our
repository, and the rows a number of measures; the first group
of measures provides an overall idea of the size of each data
exchange problem, i.e., the number of source and target triples
of the single exchange samples, the correspondences between
the entities, and the number of entities involved in the corre-
spondences. The second group of measures provides infor-
mation about our schema mapping generation, i.e., the time
that our tool took to generate them in seconds, the number of
handcrafted schema mappings, the number of automatically-
generated schema mappings, and the number of completions
that our tool performed. The third group provides an overall
idea about the exchange of data using these schema mappings,
i.e., the number of source triples in millions, the number of

target triples generated in millions, and the time the generated
schema mappings took to exchange data in minutes.

Note that the output schema mappings do not necessarily cor-
respond to the number of input correspondences. This is due to
the fact that some of the generated schema mappings are re-
dundant and we are able to prune them in our fourth step. In the
worst case, our tool generates the same number of schema map-
pings as the input correspondences. This occurs in the DF-U,
FD-U, and DG data exchange problems.

The target data generated by our automatically-generated
schema mappings were equivalent to the target data generated
by handcrafted schema mappings in every data exchange prob-
lem. This reveals that the schema mappings that our tool gen-
erates agree with the schema mappings that domain experts ex-
pect to be generated. The time our tool took to generate them
was less than one second in every case; since timings are im-
precise in nature, we repeated each experiment 25 times and
selected the maximum value. We also measured the time that
the schema mappings that we generated automatically took to
exchange data. Although these timings depend largely on the
technology being used, we think that presenting them is ap-
pealing insofar they suggest that the queries can be executed
on reasonably-large datasets in a sensible time. Note that these
timings depend on the size of the source data to be extracted,
and the target data to be generated.

5.2. Scalability evaluation
Repository. To the best of our knowledge, little effort has been
paid to evaluating the scalability of schema mapping proposals
in the context of RDF. MostoBM (Rivero et al., 2013a) provides
seven data exchange patterns that are instantiated into a num-
ber of data exchange problems using some parameters, and we
decided to use them to evaluate our proposal. In this article, we
focus on the following data exchange patterns: 1) Lift Proper-
ties: the data properties of a set of subclasses are moved to a
common superclass. 2) Sink Properties: the data properties of
a superclass are moved to a number of subclasses. 3) Extract
Subclasses: a source class is split into several subclasses and
the domain of the target data properties is selected amongst the
subclasses. 4) Extract Superclasses: a class is split into several
superclasses, and data properties are distributed amongst them.
The other data exchange patterns in MostoBM rely on trans-
formation functions or require reasoning on the datasets, which
does not apply to our tool.

Data exchange patterns are instantiated into problems using
seven parameters that allow to scale both the entities and the
data of a dataset. Since our intention was to evaluate the be-
haviour of our tool when entities and correspondences scale,
we focused on the following subset: 1) Levels of classes (L):
number of relationships (specialisations or object properties)
amongst one class and the rest of the classes in the source or
target datasets; 2) Number of related classes (C): number of
classes related to each class by specialisation or object proper-
ties; 3) Number of data properties (D): of the source and target
datasets.

We instantiated 500 data exchange problems for each data
exchange pattern. Each of these data exchange problems com-
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DF-P FD-P DF-TS FD-TS DF-F FD-F DF-U FD-U DG GD

Input data (single exchange sample and correspondences)

Source triples 33 36 28 38 19 48 23 46 27 13

Target triples 36 33 38 28 48 19 46 23 13 27

Correspondences 20 20 26 27 17 19 14 13 15 18

Source classes 14 8 27 17 17 7 14 6 18 13

Source data properties 9 9 9 9 5 4 8 5 13 14

Source object properties 9 9 15 25 11 21 6 13 9 3

Target classes 14 13 17 28 17 10 11 8 11 21

Target data properties 9 9 9 9 5 4 8 5 13 14

Target object properties 11 9 24 15 28 13 17 8 1 11

Output data (schema mappings)

Generation time 0.67s 0.59s 0.53s 0.59s 0.64s 0.58s 0.58s 0.56s 0.52s 0.47s

Number (handcrafted) 18 20 26 28 17 20 14 13 15 11

Number (automatic) 18 16 23 26 15 18 14 13 15 11

Completions 26 22 21 3 19 3 12 2 1 24

Application of our schema mappings (data exchange)

Source triples 14.28M 56.89M 12.75M 53.23M 12.57M 50.51M 51.91M 60.96M 14.37M 7.48M

Target triples 3.94M 16.00M 0.55M 5.06M 2.49M 2.90M 0.33M 0.84M 3.15M 1.27M

Time (automatic) 2.16m 12.06m 0.70m 23.86m 1.13m 16.32m 0.38m 0.71m 2.12m 0.64m

Table 4: Experimental results of our tool.

prises a number of schema mappings to perform data exchange,
a number of correspondences, and a populated source dataset
with synthetic data. We added a new functionality to MostoBM
to generate a source and a target exchange sample to evalu-
ate our proposal. To do this, we generate the source data by
creating a single instance of each source entity and, using the
schema mappings output by MostoBM, we get the target data
by exchanging the source data.

Note that, to provide an idea of the size of these problems,
the number of classes ranges from 3 to 7 812, the number of
data properties ranges from 250 to 5 000, and the number of
object properties ranges from 2 to 7 811.

Evaluation process. This process comprises three steps,
namely: 1) We used MostoBM to generate the repository of
data exchange problems that result from instantiating a set of
data exchange patterns with several values of the input parame-
ters. 2) After generating the repository, it is necessary to run the
data exchange problems that it comprises. However, running a
single data exchange problem may take hours or even days to
complete, since it is executed 25 times (see below). This makes
it necessary to select a subset of data exchange problems to ex-
ecute. Therefore, we used a Monte Carlo method to select 250
data exchange problems for each data exchange pattern, mak-
ing sure that they combine different values for L, C, and D. 3)
We performed the evaluation process of our validation to run
the data exchange problems (see Section 5.1).

We implemented this evaluation process in a script that uses

Java 1.6 and Jena TDB 0.9.3.

Scalability results. Figure 16 presents our evaluation results;
we compared the time our proposal took to generate the schema
mappings in the data exchange problems (the Y axis) to the
number of correspondences in each data exchange problem (the
X axis). Note that, in these problems, the number of sources
and target triples of the single exchange sample are equal to the
number of source and target entities, and they are also equal
to the number of correspondences. Therefore, we only focus on
correspondences in this evaluation. Note also that the scaling of
correspondences is not linear since the correspondences in the
data exchange problems that MostoBM generates are not linear
regarding the parameters.

Since timings are imprecise in nature, we repeated each ex-
periment 25 times and averaged the results after discarding
roughly 0.01% outliers using the Chebyshev’s inequality. For
each problem, we checked that the target data that resulted from
exchanging data using the schema mappings of MostoBM were
equivalent to the results of exchanging data with our automat-
ically generated schema mappings. From our experimental re-
sults we can draw the following conclusions: 1) The behaviour
of Lift Properties and Sink Properties is similar, as it was also
the case for Extract Subclasses and Extract Superclasses. 2) We
also computed the minimum squared error tendency line, that
is, the one that maximises the R2 coefficient, and found out that
the behaviour is nearly quadratic in every case.
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(a) Lift Properties.
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(b) Sink Properties.
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(c) Extract Subclasses.
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(d) Extract Superclasses.

Figure 16: Scalability results of our tool.

5.3. Limitations

Despite the fact that we deal with n:m correspondences, our
tool cannot deal with more than one instance of the same class.
According to our evaluation results, this limitation does not hin-
der the applicability of our tool in real-world data exchange
problems. A similar problem occurs when the same property
has to be used more than once in the same schema mapping.
These limitations are due to the fact that correspondences do
not state if an entity should appear one or more times in each
schema mapping. Neither hinders this limitation its applicabil-
ity according to our experiments.

Another limitation of our tool is that it does not generate
schema mappings that include patterns with regular expres-
sions (Alkhateeb et al., 2009). This implies that we are not able
to deal with RDF collections, such as bags, lists, or sequences.
However, this limitation does not hinder the applicability of
our proposal in practice since these constructs are not recom-
mended when publishing RDF data as Linked Data (Hogan
et al., 2012). Furthermore, according to (Glimm et al., 2012),
RDF collections do not range amongst the most used constructs
in the Web of Data.

Our tool, in its current form, is not able to incorporate lit-
erals in the schema mappings, which are mandatory for cer-

tain data exchange problems. For instance, if we wish to ex-
change people that was born in the US, then it is necessary
to include US as a literal in the schema mappings. Algorithm
createSchemaMappings transforms every source literal into a
variable (see Figure 14). To deal with this issue, this algorithm
can be straightforwardly modified to take a list of constants that
must not be transformed.

6. Conclusions

In the general context of the Web of Data, it is not appealing
to generate schema mappings building on data models, that is,
classes, properties, and constraints, since there exists many data
models that comprise very few constraints or no constraints at
all. Researchers have proposed an alternative paradigm to gen-
erate schema mappings using exchange samples, each of which
comprises a subset of source data and a subset of target data,
in which the target data is the expected result of exchanging
the source data. Unfortunately, some of these proposals require
user intervention to handcraft several exchange samples and,
if these exchange samples cannot be used to generate schema
mappings, the users are responsible for repairing them; or they
are hybrid and rely on data models, together with their con-
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straints, which is not appealing in the general context of the
Web of Data.

In this article, we present a tool to automatically generate
schema mappings amongst RDF datasets using a single ex-
change sample and a set of n:m correspondences. It does not
rely on constraints of the source and target data models and
does not require any user intervention. We have validated our
tool using ten data exchange problems amongst DBpedia, Free-
base, and GovWILD datasets. The time to execute this valida-
tion never exceeded one second, and the data exchanged were as
expected by experts in every case, which suggest that it is very
efficient in practice and also that the generated schema map-
pings are appropriate.

We have also evaluated the scalability of our proposal when
data exchange problems scale. We have used four synthetic
data exchange patterns proposed by MostoBM, a benchmark
for testing data exchange proposals in the context of the Web
of Data. The synthetic data exchange patterns were instantiated
into 2 000 data exchange problems that we have used to evaluate
our proposal. Our evaluation results suggest that it works quite
well as the data exchange problems it faces scale.
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