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ABSTRACT 
An ideal semiconductor device would permit unimpeded flow of 
electrons from its source to its drain in a fashion that can be 
switched on and off by its gate at high frequency.  Electron flow 
through real semiconductor devices is impeded by interactions 
with the crystalline structure of the material. Electrons which 
interact with the crystal may generate phonons which manifest 
as thermal energy generation and degrade real device 
performance from its ideal limit.  Accurate simulation of 
electron-phonon interactions cannot rely on the traditional 
continuum assumption because of the reduced length and time 
scales of modern semiconductor devices.  Allowable electron-
phonon interactions are constrained by the conservation of 
energy and momentum.  Direct enforcement of the conservation 
laws is achieved through computation of an interaction table that 
contains thousands of rows each of which representing a 
conservative interaction.  The rows represent both phonon and 
electron creation and annihilation.  The electron and phonon 
wavevector space is discretized into 65,856 elements and the 
table is computed by searching the discretized wavevector space 
for electron and phonon states that first satisfy the conservation 
of momentum.  Subsequently, these states are compared against 
the conservation of energy using the phonon and electron 
dispersion relations.  Anisotropic phonon dispersion relations 
were calculated using a second nearest neighbor lattice 
dynamics approach with interatomic force constants from 
Density Functional Theory.  Electron dispersion relations were 
computed using an empirical pseudopotential approach.  This 
method was demonstrated for computation of electron-phonon 
interactions in silicon, resulting in an initial interaction table 
containing approximately 58,000 interactions.  Computation of 
the electron energies associated with the first conduction band 
in an anisotropic manner illustrate reasonable agreement with 
published work.  The interaction densities show similar 
functionality relative to the electron-phonon interaction rate 
predictions and phonon generation rates from published 
literature.  The interaction table directly enforces the 
conservation laws on all electron-phonon interactions and the 
interaction table approach can be used for high fidelity electron-
phonon simulations to quantify the mechanism, rate, and 
location of thermal losses arising at the nanoscale. 

Keywords: Electron-Phonon Interactions, Interaction 
Table, Nanoscale Thermal Transport 

NOMENCLATURE 
α Atom number identifier 

ℏ Modified Plank’s constant 

τ Atom position vector 

ω Angular frequency 

Ω Crystal volume 

ψ State vector 

E Energy 

G Reciprocal lattice vector 

k Phonon wavevector 

m Electron mass 

N Number of atoms 

q Electron wavevector 

r Position vector 

s Phonon polarization 

u Crystal periodic function 

V Potential 

1. INTRODUCTION
Electron-phonon interactions are the source of thermal energy 
generation in semiconductor devices and impact both thermal 
and electrical performance.  Scattering by phonons is one of the 
most important processes in charge transport for semiconductors 
as it limits electron velocity [1] and ON-current [2, 3].  Accurate 
prediction of electron-phonon interactions is required for high 
fidelity device simulations.   

Prediction of electron-phonon interactions with the methodology 
presented with this work offers serval advantages that lead to 
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higher fidelity electron-phonon simulations.  First, anisotropic 
electron and phonon dispersion relations are used to represent 
the electron and phonon states.   Some works, like Rowlette and 
Goodson [4],  employ simplified analytic models for electron 
dispersion and quadratic relations for the phonon dispersion.  
The use of anisotropic dispersion relations for both the phonon 
[5] and electron population results in a more detailed 
computation of the allowed interactions subject to conservation 
rules.  Second, compiling electron-phonon interactions within a 
pre-computed table allows direct enforcement of the 
conservation laws in every electron-phonon scattering 
interaction.  Simulation methods like those of the Monte Carlo 
technique of Wu et al [6] for phonon transport delete phonons 
from the simulation domain after a scattering event and new ones 
are introduced randomly from the equilibrium distribution.  This 
does not result in conservation of momentum or energy in an 
individual scattering event.   And lastly, knowledge of all the 
interactions available for phonons and electrons allows for 
updating the electron and phonon populations with the actual 
number of phonons or electrons involved in individual scattering 
events based on relative probabilities of interaction.  This 
eliminates the need for scaling factors and random numbers 
typical of Monte Carlo simulations [1, 7, 8] resulting in higher 
fidelity simulations. 
 
2. METHODS 
2.1 Theory 
Silicon is the most common semiconductor material used in 
commercial devices today.   The crystal structure of silicon 
dictates the dispersion relationships for phonons and electrons 
that have a direct effect on allowable interactions.  Dispersion 
relations for phonons have been computed with prior work using 
the lattice dynamics approach with interatomic force constants 
up to second nearest neighbors from Density Functional Theory 
and documented in [5].  Electron dispersion relations are 
computed with the empirical pseudopotential approach [9, 10].  
This approach relies on solution of an effective one electron 
Schrodinger equation as shown in equation 1,  
 

�−ℏ
2
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𝛻𝛻2 + 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙� |𝜓𝜓⟩ = 𝐸𝐸|𝜓𝜓⟩  ,   (1) 

 
where ℏ is modified planks constant, m is the electron mass, |𝜓𝜓⟩ 
is the electron wavefunction, Vlat is the lattice potential, and E is 
the energy.  As the lattice potential is periodic, the electron 
wavefunctions can be expanded using Bloch’s theorem [10]. 
 

|𝜓𝜓⟩ = 1
𝛺𝛺1/2 𝑒𝑒

𝑖𝑖𝑖𝑖∙𝑟𝑟 ∑ 𝑢𝑢𝑞𝑞𝑞𝑞𝑒𝑒𝑖𝑖𝑖𝑖∙𝑟𝑟𝐺𝐺   ,   (2) 

where Ω is the crystal volume, q is the wavevector, r is position 
vector, uqG is a crystal periodic function, and G is a reciprocal 
lattice vector.  Upon simplification and manipulation, equation 1 
becomes equation 3. 
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where VGG’ is the Fourier transform of the lattice potential.  
Solution of the Schrodinger equation with these simplifications 
relies on an intractable number of plane waves to accurately 
represent both the core wavefunctions and valance 
wavefunctions, so approximation is required.  With the 
pseudopotential approach, the modified lattice potential (VGG’) is 
transformed to represent the effective potential felt by just the 
valance electrons.  This implies that the solutions only give 
results for valance wavefunctions and are valid only outside the 
core region of the ions.  Typically, the pseudopotential is 
expressed as the product of a piece depending on the atomic 
locations in the unit cell and a form factor accounting for the 
shape of the atomic potential as is shown in equation 4. 
 

𝑉𝑉𝐺𝐺𝐺𝐺′ = 1
𝑁𝑁𝛼𝛼
∑ 𝑒𝑒−𝑖𝑖(𝐺𝐺−𝐺𝐺

′)∙𝜏𝜏𝛼𝛼  𝑉𝑉𝐺𝐺−𝐺𝐺′𝛼𝛼   ,   (4) 

where G and G’ are reciprocal lattice vectors, τα is the position 
vector to the location of atom α, Nα is the number of atoms in 
the unit cell, and  VG−G′ is the form factor.  With the empirical 
form of this approach, adjustable parameters within the form 
factor are tuned to reproduce binding properties of the crystal 
and band structure features that match experimental data [10].  
Considering the two atom basis of silicon with the origin directly 
between the two identical atoms and the atomic locations given 
by ±𝜏𝜏𝛼𝛼 = ± 𝑎𝑎

8
(1, 1, 1), the pseudopotential becomes equation 5. 

 
𝑉𝑉𝐺𝐺𝐺𝐺′ =  𝑉𝑉𝐺𝐺−𝐺𝐺′[𝑐𝑐𝑐𝑐𝑐𝑐�(𝐺𝐺 − 𝐺𝐺′) ∙ 𝜏𝜏𝛼𝛼�]  ,  (5) 

 
A limited number of form factors are required to show good 
agreement between the band structure and experimental data 
(energy band splitting).  The values used for this work are that 
given by Cohen and Bergstresser [9] and shown in Table 1 
labeled by the square of the difference in reciprocal lattice 
vectors.   

TABLE 1:  FORM FACTOR PARAMETERS IN UNITS OF 
RYDBERGS  

(G − G′)2  𝑉𝑉𝐺𝐺−𝐺𝐺′ 
3 -0.21 
8 0.04 

11 0.08 
 

Phonon and electron dispersion relations allow prediction of 
possible electron-phonon interactions.  In the inelastic 
interaction, an electron emits a phonon as it transitions to a lower 
energy state or an electron absorbs a phonon to reach a higher 
energy state.  This interaction is schematically illustrated with 
Fig. 1 [11]. 
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FIGURE 1:  ELECTRON PHONON INTERACTION 
ILLUSTRATION.  THE VECTORS LABELED E’q’ AND Eq 
REPRESENT DIFFERENT ELECTRON STATES AND THE 
VECTOR LABELED ks REPRESENTS A PHONON [11]. 

Interactions are constrained to satisfy the conservation of 
momentum and energy as illustrated with equations 6 and 7.   

𝑞𝑞 + 𝑘𝑘 = 𝑞𝑞′ + 𝐺𝐺,   (6) 

E(q) + ℏω(k) = E′(q′),  (7) 
 
where q and q’ are electron wavevectors, k is a phonon 
wavevector, G is a reciprocal lattice vector, E and E' are electron 
energies, and ω is the phonon frequency.   
 
2.2 Implementation  
Computation of allowable electron-phonon scattering 
interactions relies on discretization of the wavevector space.  The 
first octant of the First Brillouin Zone (FBZ) was discretized with 
a uniform mesh of 14x14x14 elements in the Kx, Ky, and Kz 
directions to produce 1,372 wavevector states.  A search scheme 
applied to the discretized FBZ is implemented in which the 
wavevector of the centroid of each element is compared to every 
other one in the FBZ to determine all of the combinations that 
conserve momentum.  Momentum conservation is ensured up to 
the addition of a reciprocal lattice vector (G) and both normal 
and Umklapp processes are considered.  If an interaction is 
deemed to satisfy momentum conservation (equation 6), it is 
then checked for energy conservation using the results of the 
computed dispersion relations and equation 7 (up to a pre-
specified relative tolerance).  The interactions that are deemed to 
meet the criteria of equations 6 and 7 are included in the electron-
phonon interaction table. 

 
3. RESULTS AND DISCUSSION 
The lattice dynamics formulation used for computation of 
phonon dispersion relations documented in [4] resulted in 
anisotropic prediction of dispersion relations that showed good 
agreement with experimental data in high symmetry directions.   
 
Prediction of the first conduction band energies using the 
empirical pseudopotential method are illustrated over 1/8 of the 
FBZ in Fig. 2. 

 
FIGURE 2:  ELECTRON FIRST CONDUCTION BAND 
ENERGIES ACROSS 1/8 OF THE FIRST BRILLOUIN ZONE.   
 
Traditional models of the first conduction band rely only on high 
symmetry directions of the crystalline structure, whereas Fig. 2 
accounts for the full anisotropic nature of the silicon crystal 
structure.  This provides a full accounting for all energy and 
momentum conditions of the discrete electron states that are 
available to interact with the crystalline structure and partner 
with phonons to dissipate thermal energy. 
 
Fig. 3 shows a prior prediction from Hamaguchi [12] of the first 
conduction band energy vs. wavevector magnitude along the 
high symmetry direction L-G-X.  Overlaid on Fig. 3 is our fully 
anisotropic model limited to the same symmetry direction.   
 

 
FIGURE 3:  ELECTRON FIRST CONDUCTION BAND 
ENERGIES FOR CURRENT MODEL PREDICTIONS COMPARED 
AGAINST FIG. 1.9 OF HAMAGUCHI [12].   
 
The anisotropic model compares well against previously 
published results.  Conversely, the anisotropic electron model is 
not limited to planes of high symmetry and enables conservation 
of momentum and energy with all possible phonon partners. 
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The anisotropic electron model, equations 1-5 presented in Fig. 
2, was used in conjunction with the anisotropic phonon model, 
previously published in [5], to generate a scattering table as 
described by equations 6 and 7.  The results are illustrated with 
Fig. 4.   
 

 
FIGURE 4:  NORMALIZED NUMBER OF ELECTRON-PHONON 
INTERACTIONS PLOTTED AS A FUNCTION OF PHONON 
FREQUENCY.   
 
The Fig. 4 results match the limited one-dimensional 
investigation previously documented by Medlar and Hensel [13].   
In addition, the trends illustrated with Fig. 4 show similar 
functionality relative to both the electron-phonon scattering rate 
predictions of Liao et al. [14] and the phonon generation rates of 
Rowlette and Goodson [4].   
 
The results illustrate that electrons preferentially scatter with 
phonon of different types.  For example, the interactions above 
approximately 12 THz, which are a dominant source of thermal 
energy generation, represents interactions between electrons and 
optical phonons.  The secondary peak centered at 5 THz 
represents interactions between electrons and acoustic phonons.  
Optical phonons generated from electron scattering have 
relatively low group velocities but subsequently decay into two 
acoustic phonons through three-phonon scattering.  Thus, 
designing heat sinks to dissipate energy generation reflected in 
electron-phonon scattering should account for the spectrum of 
generated phonons.  Spectrum focused heat removal has the 
possibility to permit semiconductor devices to be operated at 
higher frequency than can be achieved today due to present 
thermal limitations. 

 

4. CONCLUSION 
Computation of anisotropic electron dispersion relations and a 
search of the wavevector space for conservative interactions 
allowed for development of an electron-phonon interaction 
table.  This method provides the basis for development of a full 
electron-phonon scattering algorithm that will directly enforce 
the conservation laws in any given interaction and redistribute 
phonons and electrons by exact amounts relative to the 
likelihood of specific interactions thus improving modeling 
fidelity.   
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