
Covert Channel Using ICMPv6 and IPv6 Addressing

Geoffrey Ackerman
Department of Computing Security

Rochester Institute of Technology

gma8175@rit.edu

Daryl Johnson
Department of Computing Security

Rochester Institute of Technology

daryl.johnson@rit.edu

Bill Stackpole
Department of Computing Security

Rochester Institute of Technology

Bill.Stackpole@rit.edu

Abstract— Internet Protocol version 6, the latest revision
of the Internet Protocol (IP), is rising in popularity. Along
with it has come ample opportunity for the discovery and
utilization of fresh, new covert channels. This paper proposes
a covert channel using this "IP Next Generation Protocol",
widely referred to as IPv6, as well as its associated protocol
ICMPv6. As a proof-of-concept, two hosts running respective
sender and receiver python scripts will take advantage of
ICMPv6 Echo messages and the IPv6 addressing scheme to
send and receive data unbeknownst to any host, person, or
other entity that may be monitoring or watching over the
network.

Keywords: IP, IPv6, ICMPv6, Covert Channel, Sniffing, Spoofing

1. Introduction
A covert channel is a communication channel that trans-

fers information in ways prohibited by computer security

policy and unspecified by the respective protocol. This can

be accomplished through the use of the covert channel’s

structure to transfer small amounts of data at a time. While

encryption denies a traffic observer knowledge of the con-

tents of a conversation, the goal of covert channels is to deny

knowledge of the conversation itself. Without knowledge of

the operation of a covert channel, observation of the traffic

would not reveal the channels existence or contents. Even

if the message is seen, there is no way of knowing that the

datagram is something out of the ordinary. It is an example

of security through obscurity. This paper will discuss some

IP-based covert channels that have been discovered and will

propose, demonstrate, and evaluate a new channel using the

IPv6 and ICMPv6 protocols.

1.1 Covert Channel Types
Covert channels are generally categorized as storage or

timing channels. A storage channel "involves the direct or

indirect writing of a storage location by one process and

the direct or indirect reading of the storage location by

another process" [1]. A timing channel involves transfers

of information based on a chosen timing interval whose

messages must be synchronized with a similar clock on each

end. Additionally, some advocate for a third category called

behavioral channels [2]. These channels use an alteration

of internal states or behavior of an application to leak

information.

1.2 Related Covert Channels
Joe Klein, a network expert with the North American IPv6

Task Force, said,

"We are expecting a lot here to be discovered and

disclosed. But just like the early implementation

of any technology, we expect to find defects and

covert channels." [3]

Many IPv6-based and IPv4-based covert channels have

already been found. One such example of an IP-based

covert channel is known as the Loki Project [4]. This

channel uses the ICMPv4 protocol. Covert data is sent and

received through Echo-Request and Echo-Reply packets.

More specifically, the tool uses the data field of these

echo messages, a field of both arbitrary length and content

normally used for timing information, to hide the data. Since

this field is both optional and not useful to most devices, it

is not normally checked.

Another example is a tool called VoodooNet, or

v00d00n3t [5], which is one of the most commonly ref-

erenced covert channels using IPv6. Created by R.P. Mur-

phy and presented at Defcon 14 in 2006, this tool uses

a technique known as 6to4 tunnelling by encapsulating

IPv6 network traffic within today’s standard, IPv4. Through

optional extension headers in IPv6 packets, messages can

be transferred from one host to another. This methodology

of 6to4 tunneling was not revolutionary, as it had been

demonstrated and used for years, but the use of it as a way

to covertly send information was.

IPv6 implements "extension headers", which are used to

carry optional Internet Layer information. No intermediary

nodes read these headers as they are only meant for the

destination node. These headers can be abused to create

covert channels, as described in [6]. One example uses

unusual options in the extension header so that when the

destination node reads this option, it will skip the extension

header and move on to the next one, thus allowing covert

data to be stored in the data section of the skipped header.

Another example uses the PadN option, which is used to

align packet boundaries by inserting two or more octets of

padding into a header’s Options. Per the IPv6 RFC, this

padding should consist of 0’s. However, certain operating

systems will accept non-zero padding, thereby allowing

Int'l Conf. Security and Management | SAM'15 | 63

arbitrary covert data.

An extensive study of IPv6-based covert channels can be

found in the dissertation "Network-Aware Active Wardens

in IPv6" by Grzegorz Lewandowski of Syracuse University

[7]. In this paper, Lewandowski theorizes many fields in

many different protocols that use IPv6 that may be used as a

covert channel. He suggests the idea of setting a false source

IPv6 address multiple times but does not explore the idea

any further. To understand how this can be used as a covert

channel, one must have an understanding of the protocols.

2. Protocol Overviews

2.1 History of IPv6
Due to the unprecedented expansion of Internet usage and

the ever-increasing number of new devices being connected

to the Internet, the impending shortage of IPv4 address space

available for use was recognized. In response, the Internet

Engineering Task Force (IETF) initiated the design and

development of new protocols and standards to eventually

supplant Internet Protocol version 4. The result, the "IP

Next Generation Protocol", was developed with larger 128-

bit addresses compared to the 32-bit addresses used by

IPv4. This allows for an astoundingly larger address space,

approximately 3.4x1038 addresses, as compared to the ap-

proximately 4.3x109 addresses available in IPv4. The basic

protocol was published in 1998 [8] and as of September

2013 the percentage of users using IPv6 reaching Google

services surpassed two percent [9]. In 2006 the associated

Internet Control Message Protocol (ICMPv6) specification

[10] was published to serve as a critical component of IPv6.

2.2 ICMPv6
ICMPv6 uses Echo-Request and Echo-Reply messages in

the same way as ICMPv4. Within these message packets

there are six distinctive fields (Table 1). This covert channel

will use the Identifier field, which is 16-bits in length, and

the optional Data field of arbitrary length. The Identifier’s

purpose is to match corresponding Echo-Request and Echo-

Reply messages with each other. This gives two hosts

exchanging echo messages confirmation that they are talking

with the intended target. The actual number used does not

have an effect on the outcome of the communication. The

data field consists of zero or more octets of arbitrary ASCII

data, generally used for timing information (i.e. computing

round trip time).

Table 1: ICMPv6 Packet
Type Code = 0 Checksum
Identifier Sequence Number Optional Data

2.2.1 Neighbor Discovery Protocol
In version 6 of IP and ICMP, ARP no longer exists. As

a replacement, there is the Neighbor Discovery Protocol

[11] operating in the Link Layer of the Internet model

[12]. Hosts and routers use this new protocol for address

autoconfiguration, determining the link-layer addresses of

neighboring hosts, to keep track of which neighbors can be

reached, and to find routers that are available to forward

their packets. The protocol uses Router and Neighbor So-

licitations and Advertisements. Any host can issue a Router

Solicitation to find any routers attached on a link. These

packets are sent out periodically. A router can also advertise

its presence on a link using Router Advertisements. Routers

will advertise themselves periodically or in response to

a specific solicitation. Similarly, any node can determine

link-layer addresses of any neighbors using a Neighbor

Solicitation. These are also used to determine if a known

host is still reachable using a cached link-layer address.

Hosts use Neighbor Advertisements to respond to Neighbor

Solicitations. All of these packets play an integral role in the

functioning of the ICMPv6 protocol, and therefore the IPv6

protocol.

2.3 IPv6
The IPv6 addressing scheme (Table 2) commonly consists

of a 48-bit ISP-assigned "Site Prefix" field, a 16-bit "Subnet"

field, and a 64-bit "Interface Identifier". An example ad-

dress is: 21DA:D3:1:2F3B:2AA:FF:FE28:9C5A/64 (leading

zeroes and groups of one or more consecutive zeroes can be

omitted):

Each address consists of eight groups of four hexadec-

imal numbers. Each of these groups is 16 bits, or two

octets. An address can be assigned through various means,

including from the network interface’s MAC address, from

a DHCPv6 server, or through manual configuration. Every

IPv6-enabled interface must have a link-local address, which

has the prefix fe80::/64. The site prefix can be either link-

local, unique local (equivalent to IPv4 private addresses), or

global (equivalent to IPv4 Internet addresses). Global IPv6

addresses are globally routable and can be used to connect to

addresses with a global scope anywhere, or addresses with

link-local scope on the directly attached network. Global

Unicast addresses have an IPv6 prefix of 2000::/3 [13].

Table 2: IPv6 Address
Site Prefix Subnet Interface ID
21DA:00D3:0001: 2F3B: 02AA:00FF:FE28:9C5A

3. New Covert Channel Process
The proposed covert channel is demonstrated as a proof-

of-concept two-sided python script, which utilizes Scapy

[14]. Scapy is a packet manipulation tool that can create and

send custom packets containing arbitrary data. The python

64 Int'l Conf. Security and Management | SAM'15 |

script consists of a sender and a receiver on two different

hosts, both run with root privileges.
The Identifier field of an ICMPv6 Echo-Request packet,

which can be manually configured by the sender, and the

Data field, which consists of optional arbitrary data of

arbitrary length, will be modified to initiate a connection

and to establish a dynamic alphabet by which messages can

be encoded and decoded. The use of a dynamic alphabet is

purely for the sake of complexity. If this channel were to

be discovered, the randomization and changing of alphabets

would help to mitigate any frequency analysis done on the

source IPv6 addresses. Once the encoding step is complete,

the sender will use a statically configured IPv6 source

address to represent, transmit, and deliver a desired message

via raw UDP packets. A few assumptions must be made for

the purpose of this proof-of-concept: 1) both the sender and

receiver have access to root privileges, 2) IPv6 is enabled on

all devices that the covert channel traverses, 3) sender and

receiver real IPv6 addresses must be a shared secret of both

parties, and 4) UDP is not blocked.
The proposed covert channel uses the ICMPv6 protocol

much in the same way as the Loki Project. However, it is

unique in that the Echo-Request messages are solely used

to establish the alphabet(s) that will be used to encode and

decode the subsequent message. The message is created and

transferred when this process is taken one step further using

an alternative method. UDP datagrams with spoofed, unique

source IPv6 addresses are used to transfer the message with

the source addresses representing the actual message frag-

ments. Every two octets of the interface identifier represents

one character of a message that has been created using the

alphabet defined in each Echo-Request packet. An example

using three unique source IPv6 addresses sending "Hello

World" is illustrated in Fig. 1.

Fig. 1: Hello World Example

Note: the use of simple hex-based encoding/decoding

could potentially be replaced with a more complex encryp-

tion mechanism. The use of encryption with this channel

would help to normalize character frequencies and eliminate

the effectiveness of frequency analyses. That being said, this

paper’s focus is on making use of the spoofed IPv6 source

addresses of UDP packets, not the variety of techniques that

could be utilized to establish a way to obscure or obfuscate

the intended message.

3.1 The Process
3.1.1 Initial Alphabet Definition

Since the encoded message will be an IPv6 address, each

plaintext alphanumeric character must have an associated

string of four hexadecimal values (the alphabet), as illus-

trated in Fig. 2.

Fig. 2: Example Alphabet

The receiving host, known as Bob, starts his receiving

script, which begins by passively sniffing the network for

ICMPv6 messages with his IPv6 address as the destination

address. The sending host, known as Alice, reads in the

message to send and chooses the number of UDP packets

to send per alphabet. Alice then calculates the number of

unique alphabets that are needed and creates them using a

random 4-digit hex-string generator.

In Fig. 3 Alice is seen inputting her message and deciding

on the number of packets to encode and send per each

unique alphabet. Then three variables, two of which are sent

with the initial alphabet, are displayed. Once the appropriate

number of alphabets are created and stored, the message

needs to be encoded. The encoding occurs before anything

is sent to Bob. Based on the chosen number of packets

per alphabet, each alphabet is used to encode a certain

number of characters in the original message. The encoding

is accomplished character by character - each plaintext

character is compared with each letter in the alphabet array

and if they match, the associated hex string is used as that

letter’s encoding and as one octet of the IPv6 address to be

spoofed.

Int'l Conf. Security and Management | SAM'15 | 65

Fig. 3: Alphabet Creation

Now Alice is ready to initiate the message sending pro-

cess. To start, an ICMPv6 Echo-Request is built with an

arbitrary ID value (e.g. 0x62, or 98 in decimal) and the first

alphabet is inserted into the Data field starting at the 98th

position (Note: any follow-up alphabet Echo-Requests will

have an ID value of 0x63. These values are arbitrary but

they must be an agreed upon, non-random value). All data

in positions 0-97 are randomly generated values. The Echo-

Request message is then sent to the recipient’s IPv6 address.

When Bob reads through all of the packets that have been

captured by the filter he set, he looks for an Echo-Request

destined for his address, with an ID Value of 0x62, and data

in an alphabet format at position 98. The following is the

alphabet as it is stored in the Data field of the Echo-Request,

shown in Fig. 4.

A2e8ca927fB7c6db6874Cdb94c8a2bDdfcddd0b6Ec42c

e9029F29afff6d2G1958ga7d8Hfbf9he10aIc418i3890

J93efjf048K598dk3095Laf13l2ba9Mcb13md50cN9d03

nf0beO995co1eb1Pff74p205eQa9e6q1782R6b73rf4c2

Sc9d4s9cd4Tb50bt24d8U7bc9u3a54V421cvfdfbW72c9

w10a1Xe2ebx59d0Yf236y4ba0Z5206z67921fda424d10

31bd84395a59ac064f207f193841799f8421715

Fig. 4: Alphabet w/in ICMPv6 Echo-Request (Alice)

When this is found, the alphabet is stored and an Echo-

Reply is crafted as an ACK to be sent back to Alice.

Immediately after, Bob begins sniffing for UDP packets

destined for him (Fig. 5).

Fig. 5: Listening for UDP Message Fragments (Bob)

3.1.2 Message Sending

After sending the initial alphabet Echo-Request, Alice

begins sniffing the network, awaiting the Echo-Reply ac-

knowledging retrieval of the alphabet. Once the ACK is

received, five UDP packets with Global prefixes are created

from the first alphabet and sent to Bob. Four characters from

the message are used per packet (i.e. the four groups of

two octets used as the interface identifier in the IPv6 source

address). Each address is created from the original message,

spoofed as the source address, and sent to Bob via UDP

(Fig. 6).

Fig. 6: Message Fragments Sent! (Alice)

3.1.3 Message Retrieval

Bob reads each source IPv6 address in each UDP packet

addressed to his IPv6 address and parses out the interface

identifier. These encoded message fragments are stored until

the entire message is received. After all UDP packets have

been inspected, Bob sends an Echo-Request with a message

in the Data field signaling that the message fragments have

been received and he is ready for the next alphabet to be

defined (Fig. 7).

66 Int'l Conf. Security and Management | SAM'15 |

Fig. 7: Messages Received - Ready for next Alphabet (Bob)

3.1.4 Repeat Until Complete
From this point onward, assuming there is more message

data to send, the cycle of (Alice) defining an alphabet, (Bob)

ACK, (Alice) sending message fragments, (Bob) reading and

storing IPv6 interface identifiers, and (Bob) requesting a new

alphabet is repeated. Once the end of the message is sent

and Bob requests a new alphabet, Alice sends an Echo-

Request with an ID Value of 0x64, signaling the end of

the message. Once the end of the message is signalled, Bob

can decode the message using each alphabet he has stored

for the chosen number of message fragments, as specified

in the initial alphabet definition (Fig. 8).

Fig. 8: Received Encoded and Decoded Messages (Bob)

4. Covert Channel Characteristics
To evaluate this covert channel, Eric Brown’s criterion

as described in [15] will be used. Using the following

characteristics and metrics this channel’s implementation is

evaluated.

4.1 Type
This covert channel is considered a storage channel. While

the described proof-of-concept’s implementation depends on

the sender and receiver agreeing on a set period of time to

sniff the network while waiting for the necessary packets to

come through, the actual data being sent is stored within a

field of an IPv6-based UDP packet (i.e. the Source Address

field). The timing itself does not contribute to the message

being sent.

4.2 Throughput
The throughput of this covert channel was tested using a

2,000 character message, which required 500 UDP packets.

The average time it took for these 500 packets to be sent

using variable amounts of virtual RAM is shown in Fig. 9.

The results show that the amount of vRAM allocated per

VM is generally proportional to the channel’s throughput.

The tests conducted were performed on two Linux virtual

machines running Ubuntu 14.04 in VMware Workstation.

The host machine was a Lenovo U430p laptop with the

following specifications:

Windows 8.1 (64-bit)

Intel Core i3-4010u @ 1.70 GHz

4.00 GB RAM w/ 99.73 MHz bus speed

Fig. 9: Channel Throughput

The overall average time it took for each full message

transmission was 3.799 seconds. Dividing the total number

of characters in the message by the time it took to send

equates to 531.2 characters per second. Since one character

is represented by four bytes of data, the overall average

bandwidth of this covert channel is 2124.938 bytes/second.

The calculated throughput of this channel may vary by

the chosen time interval used by each party and the number

of alphabets used. There is an inverse relationship between

this time interval and the overall bandwidth of the channel.

Additionally, an attacker would likely limit the successive

transmission of packets in order to avoid detection due

to floods of packets. Spreading out the transmissions over

longer intervals of time and limiting the amount of UDP

messages sent at once reduces the throughput while decreas-

ing probability of detection. Finally, the overall bandwidth of

the channel will be limited by 1) The third party application

(Scapy) that is used to send and receive the packets as it

will have a limit to how quickly it can do so, and 2) The

natural latency caused by the infrastructure that the packets

must traverse to and from the source and destination.

Int'l Conf. Security and Management | SAM'15 | 67

4.3 Robustness
The authors consider the survivability of this channel to be

high. An extremely important aspect of this covert channel

is its routability. Because the IPv6 address varies only in the

interface identifier, the prefix can be link-local, unique local,

or global, whichever the user decides would work best in

the given situation. Encountering firewalls or proxy servers

may cause problems, but due to the need for both IPv6

and ICMPv6 protocols in modern networks, these perimeter

devices will likely allow all of this traffic in and out. With the

increased number of Internet connected devices using IPv6,

network managers will not want to implement a block of this

protocol for fear of restricting their clients and other IPv6

users who are legitimately on the network. Additionally, if

the user is aware of the unique local prefix of the site he/she

is a part of, they would be able to circumvent a firewall

restricting non-site specific addresses simply by using that

unique local prefix instead of a global prefix for each spoofed

source address. Moreover, sending the data over standard

ports, such as port 80, 443, or 8080, would only decrease

the likelihood of the data being blocked.

4.4 Detection
Little traffic generated by this channel looks out of place

or malicious. The one packet-field that appears different

from normal is the data field of the Echo-Requests that are

sent to and from each host. However, this field is rarely

inspected by any devices since its intended purpose is timing

information. Using the standard Ping networking utility, this

data field is padded with arbitrary data (e.g. on Windows, in

both ICMPv4 and ICMPv6, the alphabet is used). However,

there is no standard for this payload data and it can be 0 or

more bytes in length. It would be possible for an intrusion

detection system, such as Snort, an open source network

IDS/IPS, to use manual rules that will check for anomalous

payloads in particular packets. If the payload of the Echo-

Request packets were to be checked for abnormal length or

content, an alarm may be triggered. The default payloads for

common operating systems could additionally be learned and

used to detect any abnormal ICMPv6 packets. That being

said, using standard default rule sets, Snort failed to detect

anomalous payloads in [16] in multiple tests. On top of that,

there is nothing abnormal about the IP addresses that are

spoofed.

If this covert channel were implemented using a site-

specific prefix, a site with a large amount of IPv6 traffic

would need some sort of constantly-updating white list to

keep track of every legitimate IPv6 address on the network.

If properly implemented, anti-spoofing and anti-alien firewall

rules could be used to detect site-specific addresses coming

in from the Internet. If implemented using the global prefix,

as demonstrated in the proof-of-concept, it may be possible

for network border watchers to recognize non-local source

addresses. However, being the equivalent of public IPv4

addresses, these global addresses are not likely to be seen

as abnormal. Furthermore, the likelihood of IPv6 source

addresses to be analyzed statistically and for abnormalities is

low. Overall, the authors consider the probability of detection

to be low-to-medium.

4.5 Prevention
One quick and easy way to prevent this channel’s im-

plementation would be disabling ICMPv6, eliminating the

receiver’s ability to decode the message that he receives.

However, due to the importance and vitality of the ICMPv6

protocol, it cannot be blocked. If IPv6 is enabled, ICMPv6

must also be enabled (and vice-versa). Therefore, a user can

enable IPv6 on his or her host machine (assuming it is not

already enabled by default), establishing an open channel to

anyone on the outside. Another way to prevent this attack

is to totally block all IPv6 traffic from coming in or going

out. While this may have been an applicable solution five

years ago, prior to the depletion of IPv4 address space, it

is no longer viable. Businesses must be aware of and ready

and able to manage the use of IPv6 on their network. They

must have the protocol enabled on all devices and network

managers must monitor, analyze, and inspect this traffic

thoroughly. It is common best practice to block ICMP that is

initiated from an external host. This defense could prevent a

dynamic alphabet from being possible. Completely disabling

UDP would prevent the main covert channel from existing

entirely.

Intrusion detection/prevention systems pose a threat to this

covert channel. Snort can trigger alerts based on signature,

protocol, and anomaly-based inspection. ICMPv6 payloads

can be inspected for length and if they are longer than a

specified value, an alert is triggered. With the alphabet in

the Echo-Request payloads, this type of rule could possibly

detect this aspect of the covert channel. However, the afore-

mentioned tests show that Snort IDS fails to detect abnormal

ICMP traffic, such as large packet sizes, using the standard

rule sets that come with the software. So unless specific

rules are applied to detect proper versus improper length

of a payload or variations in how certain operating systems

build these packets, even the most widely deployed IDS/IPS

solution worldwide will not detect or prevent the dynamic

alphabet aspect of this channel.

Due to the covert channel’s mechanism, little will trigger

an alarm at the network level. Therefore, on Brown’s rating

scale of hard, moderate, and easy this channel is considered

hard to prevent.

5. Future Work
Further investigation into the IPv6 protocol should be

performed to find additional storage fields that are variable

and not normally considered worthy of analysis. These fields

may become the basis for even more IPv6 covert channels.

Automated timing of the channel has not been tested with

68 Int'l Conf. Security and Management | SAM'15 |

success; the users of the proof-of-concept must interact with

the scripts by issuing a KeyboardInterrupt when needed

(i.e. at each timing interval’s end). Testing of Snort rules,

other IDS/IPS rules, and firewall rules against the channel’s

mechanism need to be performed as well for more precise

data on robustness, detectability, and preventability.

6. Conclusion
IPv6-based attacks are by no means uncommon and they

will only become more and more prevalent as time goes on

and IPv6 becomes more widely accepted and implemented.

If network managers do not take IPv6 into account when they

are building and monitoring their network infrastructure,

they are likely to be a target of an IPv6-based attack.

Whether a corporation sees IPv6 as a business driver or

not, the protocol is probably running on their network. A

network with IPv6-enabled routers, firewalls, and IDS/IPS

can have rogue IPv6 traffic coming in and out of the

network without being scrutinized. In this case, the new

covert channel has free reign to run between any number

of devices on the network. As demonstrated by this covert

channel proof-of-concept, an open IPv6 channel presents a

serious vulnerability to a company’s network and can result

in a dangerous exploitation. The covertness of this channel

is such that with an IPv6 implementation, or lack thereof,

there is a very serious risk of successful attack using these

standard and essential "Next Generation" protocols.

References
[1] "Covert Storage Channel." ATIS Telecom Glossary. N.p., n.d. Web. 1

Dec. 2013.
[2] Johnson, Daryl, Peter Lutz, and Bo Yuan. "Behavior-Based Covert

Channel in Cyberspace." Proc. of The 4th International Conference
on Intelligent Systems & Knowledge Engineering, Belgium, Hasselt.
N.p.: n.p., 2009. Print.

[3] Lemos, Robert. "Covert Channel Tool Hides Data in IPv6."
www.securityfocus.com. N.p., 11 Aug. 2006. Web. 09 Oct. 2013.

[4] Loki Project Daemon9 AKA Route. "Project Loki." www.phrack.com.
Phrack Magazine, Aug. 1996. Web. 12 Nov. 2013.

[5] Murphy, R. P. "IPv6 / ICMPv6 Covert Channels." Las Vegas: Defcon,
Aug. 2006. PDF.

[6] Mavani, Monali, and Leena Ragha. "Covert Channel in IPv6 Destina-
tion Option Extension Header." Circuits, Systems, Communication and
Information Technology Applications. International Conference. 2014.
(CSCITA 2014). Proc. of 2014 International Conference on Circuits,
Systems, Communication and Information Technology Applications
(CSCITA), India, Mumbai. Vol. 1. N.p.: Institute of Electrical and
Electronics Engineers (IEEE), 2014. 219-24. Print.

[7] Lewandowski, Grzegorz. "Network-Aware Active Wardens in IPv6."
Diss. Syracuse U, 2011. Print.

[8] Deering, S., and R. Hinden. "Internet Protocol, Version 6 (IPv6)
Specification."Http://www.ietf.org/. N.p., Mar. 2006. Web. 30 Sept.
2013.

[9] Roberts, Phil. "Internet Society." http://www.internetsociety.org/. N.p.,
24 Sept. 2013. Web. 02 Nov. 2013.

[10] Conta, Et Al. "Internet Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6) Specification." sww.ietf.org. N.p.,
Mar. 2006. Web. 30 Sept. 2013.

[11] Narten, T., E. Nordmark, W. Simpson, and H. Soliman. "Neighbor
Discovery for IP Version 6 (IPv6)." IETF Tools. Internet Engineering
Task Force, Sept. 2007. Web. 12 Nov. 2013.

[12] Braden, R., Ed., "Requirements for Internet Hosts - Communication
Layers", STD 3, RFC 1122, October 1989.

[13] Hinden, R., OâĂŹDell, M., and S. Deering, "An IPv6 Aggregatable
Global Unicast Address Format", RFC 2374, July 1998.

[14] "Scapy." Secdev.org, n.d. Web. 30 Sept. 2013.
<http://www.secdev.org/projects/scapy/>.

[15] Brown, Eric, Bo Yuan, Daryl Johnson, and Peter Lutz. "Covert
Channels in the HTTP Network Protocol: Channel Characterization
and Detecting Man-in-the-Middle Attacks." N.p., n.d. Web. 22 Sept.
2013.

[16] Stokes, Kristian, Bo Yuan, Daryl Johnson, and Peter Lutz. "ICMP
Covert Channel Resiliency." N.p.: n.p., 2009. PDF.

Int'l Conf. Security and Management | SAM'15 | 69

