
Covert Channels in SSL Session Negotiation
Headers

Justin Merrill

Rochester Institute of Technology

justinmerrill978@gmail.com
Daryl Johnson

Rochester Institute of Technology

daryl.johnson@rit.edu

Abstract—The Handshake headers of the SSL/TLS protocol
contain several multi-byte random data fields used in the gener-
ation of the encryption keys used during the session. This random
data can be replaced with covert messages that can be intercepted
on the wire using packet capture techniques. By encoding data
into these fields, a modified SSL client can send messages to a
legitimate destination, with legitimate application payload data
and still leak covert messages to a receiver listening on the wire.

Keywords: SSL, TLS, Random Field, Covert Channel

I. INTRODUCTION

The Secure Socket Layer (SSL), and its successor protocol

known as Transport Layer Security (TLS), are an important

and ubiquitous part of the current Internet landscape. It

provides the underlying security that makes services such as

ecommerce and secure online correspondence possible. The

TLS protocol does this by acting as an intermediate layer

between the transport protocol (TCP) and whatever application

protocol is being used [1]. When the client connects to the

server, a secure session is negotiated between them. After

this takes place all application traffic is encrypted before

transmission, preventing eavesdropping.

The TLS protocol performs two primary functions [1]. The

first is ensuring the application data is protected from eaves-

dropping and manipulation while in transit. This is done using

a combination of a cipher algorithm and hashing algorithm

negotiated by the client and server during the initial session

setup. The second primary function is allowing the client to

authenticate the server’s identity before connecting with it.

This is done via X.509 certificates associated with each unique

server [6]. Since these certificates must be signed and checked

against a limited number of well known and auditied Root

Certificate Authorities who verify the request is legitimate

before issuing a certificate. This makes it much harder to

maliciously impersonate a well known secure service.

While TLS vastly improves security, it can also make

protecting a network more difficult. Since TLS sessions en-

crypt all of the application data traveling over them, they

make it difficult to inspect packets for hidden or malicious

payloads. Wrapping covert or malicious traffic will prevent the

transmitted data itself from being monitored but still leaves a

few key vulnerabilities open to detection. The destination IP

address and TCP port are still visible. Such attempts can be

monitored and thwarted by targeting suspicious destinations

and ports. So, while encrypting covert traffic can help hide

it from detection, it is itself not a covert channel. A covert

channel is, as Butler Lampson states in one of the earliest

papers on the subject, ”not intended for information transfer

at all” [3].
TLS has several potential covert channel opportunities dur-

ing the initial connection process. During this time, a subset

of the TLS protocol known as the TLS Handshake Protocol

is used to negotiate the parameters for the session [1]. This

paper will specifically focus on several fields of fixed length

random bytes used in the process of generating the encryption

keys used during the session.

II. AVAILABLE CHANNELS IN HANDSHAKE

When an SSL client first connects to a server, it goes

through a process of negotiating the encryption suite to be

used and verification of certificates. The process goes through

the following steps [5]:

ClientHello

Client opens a connection and informs the server

of TLS functionality and cipher suites supported.

Included is a random field that will be used to

formulate the final key and prevent replaying of data.

ServerHello

Server chooses the cipher it will use for the session,

passes along its own info to the client. Server in-

cludes its own random value.

ServerCertificate

Server passes along its public certificate so that the

client may verify it.

ServerHelloDone

Server announces to the client that it is done sending

initial negotiation messages.

ClientKeyExchange

Client exchanges pre-master secret, a value both the

client and the server will use to generate the final

symetric encryption keys.

ClientCipherSpec

Client switches into secure communications mode.

Finished

Client announces end of session negotiation.

70 Int'l Conf. Security and Management | SAM'15 |

ChangeCipherSpec

Server switches into secure mode.

Finished

Server also announces end of session negotiations.

The pair is now ready to exchange application data.

Within this negotiation process there are three fields of

random bytes that are used. Random fields make an excelent

candidate for a covert channel. Since the data contained in the

field is by definition supposed to be random, any value can

be inserted into the field without interfering with the normal

operation of the protocol. If steps are taken to ensure the covert

messages are encoded or encrypted before being sent it will

be very difficult to differentiate covert messages from random

data.

During the ClientHello and ServerHello phases of the ses-

sion setup, both sides generate a 28 byte random value and

send it to the opposing side [1]. This value is combined with

a 32-bit datetime stamp and sent over the wire in unencrypted

plaintext. This technique has already been partially explored as

a means to leak and intercept the encryption keys and perform

an attack on the encrypted session [2]. Its usefulness is not

limited to leaking keys, as a full covert message payload can

be transmitted using the same channel.

One of the things that makes this channel particularly useful

is that the data is sent in plaintext between the two endpoints.

This means the party wishing to receive the covert message

does not need to operate or hijack the sever endpoint in

order to receive the message. As long as they are able to

capture the TLS negotiation packets somewhere along the

path between client and server, the message can be recovered.

Another benefit is that, if both the client and server endpoints

are compromised by the covert message sending party, a bi-

directional data stream can be used as both client and server

hello messages contain random fields.

Use of this covert channel presents a slightly more difficult

vector to the receiver. The client encrypts the premaster secret

before putting it on the wire. This requires the receiver to

either control the sever being used as an endpoint or have

copied the servers private key needed to decrypt the message.

However, the encrypted premaster secret can also work in the

covert message sender’s favor, as it makes it very difficult to

examine the contents and discover the covert message.

III. PROCEDURE

A. Design

After deciding on the random fields as potential covert

channels, several obstacles needed to be overcome to make the

channels usable. The first was to find a way of generating SSL

packets with their ClientHello random value field filled with

our desired covert message. This task is more difficult than

it would first seem. The packet can not be modified outside

of the original sending applications SSL library. If one was to

modify the random value in transit, the client and server would

generate different master keys and the session setup would fail.

Therefore it was necessary to modify the SSL library itself to

inject the data into the ClientHello message.

Modifying the SSL code is complicated by the fact that

almost all applications using SSL do not implement the

protocol themselves but rely on a shared library. The most

common of these are OpenSSL with open source and Unix

software and Schannel in the Microsoft DotNet framework.

These were quickly ruled out for the first round of testing as

they are shared across the system and would be difficult to

modify. Microsofts Schannel is not possible to use as it is

closed source and can not be modified.

What was needed was a self-contained SSL implementation

with source code available that could be easily implemented.

Enter the Legion of the Bouncy Castle. Bouncy Castle is an

implementation of several cryptographic functions, including

SSL/TLS support, in operating system independent libraries.

It was created to produce crypto libraries, in C and Java, that

would be free of backdoors and government meddling [4].

The rest of the projects code was planned to be written in

C (because of its ease of use and rich framework) and the

Bouncy Castle API was well documented so it was chosen as

the SSL library for the tests.

B. Testing

The first test was to see if both random fields could be

exploited to send data without affecting the ability to create

a valid SSL session. After reading over the code, the spots

where the random fields were formulated were located. They

were each one simple line of code which invoked a random

byte generating function to get the required number of bytes

and insert them into the packet structure. A static variable

containing a preformatted message was added to each class

and the random generator functions were replaced with a

simple array copy that inserted the pre-created message into

the field. Some additional code was written to open up an SSL

session to a webserver, running on the local LAN, on HTTPS

port 443.

With the test code written, the Wireshark packet capture

tool was started and a display filter was added to show only

SSL traffic. When the test code was executed, it successfully

opened a connection to the server, negotiated a complete

SSL session, than disconnected. When the packet capture was

examined, both fields had successfully carried their messages

without disrupting the proper operation of the protocol.

For the second test, the process was automated more on

the sending side to allow a larger user defined message to

be sent. The sending program was modified to take a target

webserver hostname on the command line and ask the user to

enter a message. Due to the way the Bouncy Castle library

was implemented and the impossibility of getting the private

key for a major website, the second test focused only on the

ClientHello random field channel. To ensure proper message

transmission and make the channel more useful, the message

data is encoded into a simple packet format before being

inserted into the header field. A library was written to do the

process of encoding the data and returning an array of packets.

The program then quickly opens and tares down sessions until

all packets have been sent. The packets were retrieved the

same way, using Wireshark packet captures. This test was also

Int'l Conf. Security and Management | SAM'15 | 71

successful and the message was decoded properly by hand on

the receiving end.

C. Implementation

Although it needed to be simple, a few fields were needed

to comprehensively create the covert message transmission

format. The specific byte layout is shown below in Figure 1.

The first field is the message identifier field, to allow this to be

identified as a covert packet. The value chosen for the second

test was cc. That is followed by a message ID number, to help

the receiver distinguish between multiple messages from the

same client. Since this test code only sends one message at

once, it is always set to zero. Next is the packet type field. It

is either set to one, for a normal data packet, or two for the

final packet carrying an MD5 hash of the complete message.

This is followed by a sequence number, incremented once for

each packet in the message and a length field for how many of

the remaining bytes are data and how many are zero padding.

Fig. 1: Covert packet format

IV. BANDWIDTH

The throughput of this covert channel is highly variable.

After leaving space for the overhead bytes, the Hello message

channel can carry 20 bytes a session and the premaster secret

can carry 38 bytes a session. The number of sessions that

can be opened is limited more by the client then any physical

limitation of the system. It would not be unusual to have many

sessions opening and closing at once as modern websites often

load a lot of dynamic content and update items on the page

automatically every few seconds. With that in mind, opening

and closing connections as fast as possible for extended

periods would look highly suspicious. It is a balance between

thoughput and stealth.

V. FUTURE WORK

The ground work that has been laid in this paper proves

these two channels are usable as a method of covert communi-

cations. There is still a lot of work that would need to be done

to turn the concept into a usable implementation however. The

biggest weakness currently is the necessity of using Wireshark

and manual packet reassembly to extract the message at the

other end. A program would need to be written to log all SSL

Handshake sessions which are visible to the packet sniffer

then examine them for covert messages. Once the messages

are extracted, it is a simple process to reassemble and they

can be verified as complete, due to the included MD5 hash.

Another problem is creating a stealthy transmission client.

The current one is simple because it was built for experimental

use. If this channel was actually to be used in the field, the

covert channel should be worked into a system library like

OpenSSL or a legitimate application like Firefox. If the pre-

master secret channel is to be used, a decoy server the message

sending party controls needs to be set up or the private keys

of a legitimate site would need to be exfiltrated. Without that

private key, the channel is not visible to the observing packet

capture program.

VI. CONCLUSION

TLS, the current successor protocol to SSL, is a ubiquitous

part of the modern Internet landscape. While using SSL to hide

covert messages in the Application data is fairly obvious, there

are a few novel ways of sending covert messages using the

pre-session negotiation handshake packets. Specifically, three

random data fields that can be used to carry covert messages.

Using a specially written program, otherwise normal looking

TLS packets can be copied and the hidden messages decoded.

This could present a useful vector for exfiltrating data from a

network without arousing suspicion.

REFERENCES

[1] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by
RFCs 5746, 5878, 6176.

[2] Eu-Jin Goh, Dan Boneh, Benny Pinkas, and Philippe Golle. The design
and implementation of protocol-based hidden key recovery. In Colin Boyd
and Wenbo Mao, editors, Information Security, volume 2851 of Lecture
Notes in Computer Science, pages 165–179. Springer Berlin Heidelberg,
2003.

[3] Butler W. Lampson. A note on the confinement problem. Commun. ACM,
16(10):613–615, October 1973.

[4] Legion of the Bouncy Castle Inc. Bouncy castle. https://www.
bouncycastle.org/”, 2013.

[5] Robertckl. ”how does ssl work? what is an ssl handshake?”. http://www.
symantec.com/connect/blogs/how-does-ssl-work-what-ssl-handshake,
2014.

[6] Carlos Scott. Network covert channels: Review of current state and analy-
sis of viability of the use of x.509 certficiates for covert communications.
Technical Report 1, University of London, Egham, Surrey TW20 0EX,
England, 1 2008.

72 Int'l Conf. Security and Management | SAM'15 |

