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Abstract — As the use and prevalence of mobile technol-
ogy increases so too does the importance of effective security
for these devices. In particular, sensitive user information
must be protected, which includes protecting against any
covert channels that would allow such information to be
compromised. This paper will examine a new covert channel
capable of circumventing existing application-level protec-
tions on the Android operating system (OS). The authors
will also show that this channel is capable of achieving
significantly higher throughput than similar, previously dis-
covered channels, which necessitates the implementation of
additional security protections and controls at the operating
system level.
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I. INTRODUCTION

The prevalence of mobile computing technologies,

particularly devices running the Android operating system

(OS), has been growing at a rapid pace in recent years, with

Android devices having the largest share of the smartphone

market at the time of this writing. [1] This includes an

increase in both the number of people who own these

devices and their range of uses, with even some e-readers

and digital video recorder (DVR) devices now running

Android. As a result, the amount of sensitive data which

is accessible through Android devices has also increased,

making the management and protection of this information

all the more critical and important.

In order to accomplish the task of protecting user

information Android uses a permissions-based security

model which requires applications to statically declare

all of the permissions they use in their corresponding

AndroidManifest.xml file. Users then have to approve

this set of permissions when they install any application.

However, as has been discussed in previous works [2], the

protections offered by this security model can be overcome

if applications with different permission sets are able to

communicate and collaborate with each other. This danger

is particularly relevant given the existence of a number of

different covert channels for Android [2]–[4].

This paper will explore a flexible, high-capacity covert

channel for inter-application communication on the An-

droid OS based on Intents. Section 2 will provide an

overview of the relevant aspects of the Android OS and

introduce the concept for the proposed channel, with

Section 3 detailing the implementation of this new covert

channel. The channel will then be evaluated in terms

of throughput, reliability, and detectability in Section

4. Section 5 will illustrate the potential impact of this

channel and Section 6 will provide recommendations for

corresponding mitigation followed by a conclusion in

Section 7.

II. CONCEPT

Although the Android operating system is designed

to isolate different applications from each other, it also

provides several mechanisms for legitimate interaction

and communication between applications. One of the

primary mechanisms for inter-application communication

is the sending and receiving of Intents -a special data

type defined by the Android OS. The primary purposes

of Intents are to allow applications to request that some

action be performed (such as viewing a picture) or to

notify interested applications of some event (such as

the ringer mode being changed). Intents also allow for

the transmission of additional information, most notably

through the inclusion of another OS-provided data type:

a Bundle, which is simply a collection of key-value

mappings from Java Strings to any of a limited number

of supported data types [5], [6].

Two different kinds of application components exist

for sending and receiving Intents, namely Activities

(essentially representations of the different application

interface screens) and Services, which are used to run

tasks in the background, especially those which may take a

significant amount of time to complete.1 Intents can be sent

directly to a specific receiver (this is known as an explicit

Intent) or they can be broadcasted across the system (an

implicit Intent). Explicit Intents are generally used to send

data and requests between different components of a single

application while implicit Intents are most commonly used

for communication between different applications. In the

case of a broadcasted (implicit) Intent, the Intent will be

1Any length of time for which it would not be acceptable for the user
interface to be unresponsive represents a significant amount of time in
this context.
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Figure 1. Sending an Intent Between Applications

delivered to an application which has a matching Intent

filter [7]. If there are multiple applications with matching

Intent filters, the user is asked to select one from the list

of available options.

The ability to encapsulate data in an Intent using

Bundles provides a flexible means of sending data between

applications, as well as between components within the

same application. The support for inter-application data

transfer provided through Bundles is of particular interest

as it also provides a flexible medium for a covert channel.

This is due to the fact that Bundle keys can only map

to a set number of different data types. By associating a

code with each supported data type, legitimate key-value

mappings can be used to encode covert bits based on what

data type a given key is mapped to (the actual value stored

is irrelevant in this context). Complete messages can then

be encoded using a pre-defined ordering of all the keys

stored in the Bundle. A receiving application which is

aware of both the key ordering and the data type to code

mappings can then decode such messages upon receiving

the Bundle (transmitted by means of an Intent).

III. IMPLEMENTATION

This covert channel was implemented for version 8 of

the Android API (Android 2.2 / Froyo), which allowed 22

different data types to be used for hiding numeric values

from 0 to 21 for every key2. This API version was chosen

since, at the time of this writing, it was the lowest (earliest)

version of the API which has any appreciable market

share according to [8] and therefore this implementation

can be expected to work on nearly any Android device

(given that the relevant parts of the Android OS are fully

backwards compatible through all current versions). For

simplicity, keys were generated in an alphabetical sequence

of increasing length, with the key “a” mapping to the first

value and the key “b” mapping to the second (once the

single character keys were used up the keys “aa” and then

“ab” were used and so on). Realistically, these keys would

be meaningful strings based on the advertised purpose of

the sending application; however, such keys are highly

context-dependent and would be functionally equivalent

to the meaningless strings used in our implementation.

Once the entire message was encoded, the Bundle was

placed inside an Intent which was designed to match the

receiver application’s Intent filter and the Intent was openly

broadcasted. The receiver then extracted the Bundle from

the received Intent and iterated over the set of Bundle

keys in order. The type of value associated with each key

was subsequently translated into a corresponding numeric

code between 0 and 21 to reconstruct the original message.

When implemented in such a way, this channel can easily

be used to send numeric data, such as GPS coordinates.

Instead of being associated with numeric codes, each

Bundle-supported data type could be mapped to a specific

symbol, character, or even predetermined message to allow

for the transmission of non-numeric data. Still, only being

able to communicate in terms of 22 symbols may be of

little use if the data being transmitted is textual (such as

contact information). Of course, textual information, as

well as any other form of data, could still be transmitted

at the cost of the additional complexity of translating

between the literal data and numeric values (e.g. using the

channel to implement a bitstream). However, a simpler

and more direct solution is possible due to the fact that

one of the data types which a Bundle is able to contain

is another Bundle, which allows numeric expansion codes

to be encoded within a nested Bundle.

Using this strategy, the Bundle value type has a special

meaning rather than an actual encoded value. The first

key-value pairing3 within the secondary (nested) Bundle

is then interpreted using the same data-type to encoded

value mapping being applied to the enclosing Bundle. This

interpreted value is then used to indicate which alternate

character set to use when interpreting the next key-value

2For version 8 of the Android API, 29 different data types are actually
supported by the Bundle class, but only 22 were successfully used for
this channel as some types, such as all of the specializations of the
ArrayList type, were indistinguishable from each other when retrieved
by the receiver.

3First according to the same key ordering, although a secondary
ordering could be used. Additional key-value pairings could also be
used, with the values retrieved from each pairing being accumulated or
combined to allow for a greater number of expansion codes.
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public static Bundle encode(int[] codes)  {                        
    Bundle bundle = new Bundle();                                                                
    for(int i = 0; i < codes.length; i++)  {                       
        switch(codes[i]) {                                        
        case 0: bundle.putBoolean(key, true);                     
            break;                                                
        case 1: bundle.putByte(key, (byte) 1);                    
            break;                                                
        case 2: bundle.putInt(key, 1);                            
            break;                                                
        case 3: bundle.putCharSequence(key, (CharSequence) "A");  
            break;                                                
        case 4: bundle.putDoubleArray(key, new double[0]);        
            break;                                                
        ...                                                       
        default:                                                  
            throw new CodeNotSupportedException(codes[i]);        
        }                                                         
    }                                                             
     
    return bundle;      
}                                           
 

 

 

 

 

public static int[] retrieveEncodedValue(Bundle bundle) { 

    List<String> keys = orderKeys(bundle.keySet());       

    int[] codes = new int[keys.size()];     

    int i = 0;                                           

  

    for(String key: keys) {                               

        if(bundle.getBoolean(key))                        

            codes[i] = 0;                                 

        else if(bundle.getByte(key) != 0)                 

            codes[i] = 1;                                 

        else if(bundle.getInt(key) != 0)                  

            codes[i] = 2;                                 

        else if(bundle.getCharSequence(key) != null)      

            codes[i] = 3;                                 

        else if(bundle.getDoubleArray(key) != null)       

            codes[i] = 4;                                 

        ...                                               

        else                                              

            throw new NoValueFoundException(key);         

                                                          

       i++;                                               

    }                                                     

                                                          

    return codes;                                         

}                                                         

Figure 2. Encoding and Decoding Covert Data using a Bundle

pairing within the main Bundle.

In this way, the entire set of lowercase characters from

“a” through “z” (as well as the space character to allow for

more meaningful messages) was able to be successfully

transmitted using this channel, with the set of these 27

characters being divided between two smaller character

sets (one containing 21 characters4 and the other containing

the remaining 6) with an expansion code of 1 indicating

that the next key-value pairing should be interpreted using

the second character set. For our implementation, these

mappings were encapsulated in concrete subclasses of an

abstract dictionary class which was packaged in a library

shared by both applications (the sender and the receiver),

thereby allowing any other mapping to be used simply by

switching to a new dictionary implementation.

It is important to note that when an Intent is delivered

to an Activity, the corresponding application screen will

be displayed to the user, which would establish a clear

and obvious relationship between the sender and receiver

applications. To avoid this, the message-bearing Intent can

be broadcasted to a Service instead since when an Intent

is delivered to a Service user focus is able to remain on

the sender application, thereby making the transmission

transparent to the user. There is an additional issue that if

the sender performs data collection and transmission within

4Only 21 characters codes are available for this implementation as
the 22nd data type (Bundle) was reserved for the encoding of expansion
codes.

an Activity, that application would only be able to perform

these tasks while it has user focus [9], [10]. However,

the sender application could also have a Service of its

own for performing these activities, allowing collection,

transmission, and receiving of data to happen continuously

in the background without alerting the user.

IV. EVALUATION

To evaluate this channel with regards to throughput,

robustness (error rate), and detectability the channel

implementation described in the preceding section was

tested on a Motorola Photon Q running Android 4.0.4.

A series of messages were sent between the sender and

receiver applications. In our testing these were specifically

textual messages, but, as explained above, these messages

could contain any form of data. The messages varied with

regards to the amount of data being sent, ranging from

a single character up to 10,000 characters5. The number

of Intents used to send these messages also varied, from

a single Intent up to 500 Intents for a single message.

For testing purposes, the receiving application sent an

acknowledgement to the sending application for each Intent

5Given that the value mapping used in our implementation only directly
supported 27 values, each character is only counted as being 4 bits, not
8; however, since one expansion code was used, our implementation was
capable of supporting 42 different values without modification (aside
from updating the mappings within the dictionary class), meaning that
each character would actually equate to 5 bits of data (ignoring the
remainder), making the effective throughput of the channel higher than
indicated.
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Table I. CHANNEL PERFORMANCE

Number Average Highest
of Intents Throughput* Recorded Error Rate
Sent Throughput*
1 39,014.88 81,300.81 0.0
2 47,076.27 85,106.38 0.0
5 37,676.82 67,659.00 0.0
10 40,311.14 78,817.73 0.0
25 43,805.95 74,660.30 0.0
50 44,098.52 75,703.09 0.0
100 40,546.17 75,734.63 0.0
500 41,603.74 76,467.21 0.0

*Throughput is in terms of bits per second;
encoding, decoding, and response times are

not included in throughput calculation

it received. These responses included the text received

(for error checking) and the time when the Intent was

received. The difference between this time and the time

each Intent was sent was accumulated and used to calculate

the throughput for that transmission (without consideration

for message encoding or decoding or response time from

the receiver, which is not part of the actual channel). The

highest achieved throughput using this calculation method

was 85,106 bits per second using two Intents to send

1,000 characters (500 characters per Intent). The total

transmission time, counting the encoding and decoding

of all messages and response time from the receiver, was

also recorded, with the highest throughput achieved when

using this calculation method being 34,996 bits per second

using two Intents to send 5,000 characters.

Both of these rates far exceed the bandwidth of other

known, similar covert channels [2], [4], with the highest

thoughput channel encountered during our research being

just over 4,300 bits per second [2]. Additionally, the

channel proved to be very reliable, with zero bit errors

being encountered during our testing; this was unsurprising

given that the application communication protocol based

on the passing of Intent objects (i.e. Intent-based protocol)

which was used as the carrier for this channel is a central

and well tested part of the Android OS.

In addition to being well tested, the Intent-based inter-

application communication protocol is also well exercised,

with Intents being frequently passed through the system.

As a result, this channel has the ability to blend in

with legitimate Intent traffic (i.e. Intents which would

be sent even if this channel were not in use on a given

device). However, this requires that the communicating

applications maintain an awareness of their context (what

their advertised purpose is) as well as their environment

(what other applications are currently running, what kinds

of Intents they are sending, and how frequently these other

Intents are being sent). For example, two applications

with a legitimate reason to communicate using Intents

containing a Bundle could select the keys used in a way

that causes them to form a meaningful ordering. The types

of the corresponding values could also be manipulated to

communicate the desired symbols or codes by establishing

a translation scheme between the different supported

data types (or at least as subset of those data types).

In this way, the covert information could be encoded

into perfectly legitimate Intent traffic. This addresses

the matter of context awareness. The other aspect of

detectability for this channel, environmental awareness,

requires only sending Intents (both purely legitimate

Intents and those used to transmit covert messages) at

a frequency and of a size which matches “normal” Intent

traffic for their environment. Otherwise, analysis of Intent

traffic on a given device could identify the communications

between the involved applications as being suspicious. The

definition of normal Intent traffic will depend on what

other applications are running on the device as well as the

advertised purpose of the applications using this channel.

It is important to note that this channel does not

disguise the fact that there is some form of communication

occurring between the involved applications due to the fact

that an Intent broadcasted or sent from one application

will be delivered to the other application involved in the

channel by the operating system. However, the channel

does allow the involved applications to effectively disguise

the fact that any illegitimate communication is occurring.

V. IMPACT

As mentioned earlier in this paper, the protections

offered by the Android permissions system can be violated

if applications with different permission sets are able to

effectively collaborate with each other. For example, if a

user has installed two applications, one with permission

to access the user’s contact list and another which has

internet access, these applications can create the behavior

of an application which has been granted access to both

the user’s contact data and the internet even though the

user never approved this combination of permissions for

either application. To achieve this effect, the applications

can pre-arrange a sender-receiver relationship6 where the

application with access to sensitive information (user

contact data in this example) sends any or all of this

information to the receiver application.

The two installed applications could also implement

a master-slave relationship where one application (pre-

sumably the one with the ability to exfiltrate sensitive

information) actively controls the collaboration by sending

instructions to the slave application. These instructions

could include requesting that any currently available

information which matches some provided criteria be sent

to it, or to activate a malicious functionality in the slave

application which was previously dormant (to include

the collection and transmission of sensitive user data).

Ultimately, the exact instruction set which the master could

use is highly flexible and would depend on the context and

purpose of both applications. If the master application is

also able to establish two-way communication with some

6Could also be described as a source-sink relationship. [2]
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malicious actor7 on a remote system (most likely using the

internet), that actor would be able to control the behavior

of both applications by using the master application as a

proxy to the second application.

This relationship could be expanded even further to

incorporate multiple slave applications, with each one

potentially having access to a different set of protected

user data such as Short Message Service (SMS) messages,

location information, and the user’s contact list. Each slave

could then be controlled through the master application,

effectively granting the external actor access to the

combined permissions of every application involved in

this collaboration. The implementation of this external

coordination is outside the scope of the paper and is

mentioned here simply to illustrate a worst-case scenario

based on malicious application collaboration8.

The communication between applications on the same

Android device, however, is of direct relevance to this

paper since if a covert channel were used to establish a

sender-receiver or master-slave relationship as described

earlier in this section, the involved applications would be

able to effectively hide their malicious collaboration. A

number of covert channels for the Android OS are known

to exist, and any of them could potentially be used for

to disguise such collaboration. However, many of these

previously explored channels have much lower bandwidths,

and those which are capable of higher bandwidths tend to

generate large amounts of noise (excess system activity)

[2], [4]. In contrast, this channel is capable of yielding

high throughput with minimal system noise (i.e. number of

Intents sent), and, in fact, the highest recorded throughput

was achieved when using only two Intents to send a block

of data.

While lower bandwidth channels would still be suffi-

cient to leak data such as GPS coordinates, credit card

information, and contact lists to a receiver application9,

the availability of a higher throughput covert channel like

the one detailed in this paper could provide a benefit to

applications targeting large data sets. For example, images

and/or the user’s messaging history could be covertly

leaked using this channel10. Therefore the existence of this

channel does pose a danger to users. This channel could

also be used by malicious applications which have access

to sensitive data (such as a user’s contact list) but have

limited time windows for transmitting that information to

the receiving application (i.e. can only perform actions

7The term “actor” here refers to an external process or system which
is actively causing some action or actions to be performed.

8Note that the coordination with the off-device actor could be
accomplished using adaptations of known network covert channels for
the Android OS [3].

9Here receiver refers to either the receiver application in a sender-
receiver relationship or the master application in a master-slave rela-
tionship, although the slave application could also be a covert channel
receiver.

10We say and/or because the user’s messages would likely include
images.

when the application has user focus). For such applications,

being able to transmit data more quickly while still hiding

that data transfer would be appealing.

VI. MITIGATION

Several options exists for preventing applications from

communicating through this channel. The first is to

uninstall or restrict any applications found to be using this

channel, which requires the ability to accurately detect its

presence. The second option is to disallow the passing of

Bundles between applications. Considering that Intents,

and their ability to carry Bundles, have been a core part

of the Android architecture since the first released version

of the Android API, this option would be very costly as

it would require breaking backwards compatibility with

all currently existing version of the OS. Furthermore, the

removal of this ability from any or all of the currently

released versions of Android would be impractical as

many applications rely on it in order to function. A third

option would be to implement more rigourous security

controls around application communication to restrict

which applications can communicate with each other and

how. This could be accomplished by classifying certain

application permissions as sensitive/restricted and emplac-

ing additional barriers between applications with such

permissions and those without. For example, applications

with access to sensitive information could be restricted

from sending Intents containing Bundles to any application

which does not have explicit permission to access that

data. Further protection could be provided through the

implementation of active monitoring of inter-application

communication since, at present, the Android OS security

model relies on a static structure (permissions granted

to applications upon installation and application sand-

boxing) to secure the system without any concept of

dynamic security controls capable of reacting to suspicious

application behaviour.

VII. CONCLUSION

The ability to violate such a central part of the Android

OS’s security policies as the application permissions

system represents a serious issue. The fact that such

an ability is available through another core part of the

Android architecture, specifically the Intent application

communication protocol, only serves to increase the

severity of this problem. The Intent-based covert channel

described in this paper provides a highly-reliable, high

capacity communication channel which could allow col-

laborating applications to violate the existing Android

security model. In order to protect users against the dangers

posed by this channel, the authors recommend imposing

additional levels of isolation between applications with

access to sensitive information and those without and

also implementing dynamic security controls based on

active system monitoring to enhance the existing Android

security model.
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