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Abstract
Accurate and robust reconstruction of the radioactivity concentration is of 
great importance in positron emission tomography (PET) imaging. Given the 
Poisson nature of photo-counting measurements, we present a reconstruction 
framework that integrates sparsity penalty on a dictionary into a maximum 
likelihood estimator. Patch-sparsity on a dictionary provides the regularization 
for our effort, and iterative procedures are used to solve the maximum likelihood 
function formulated on Poisson statistics. Specifically, in our formulation, 
a dictionary could be trained on CT images, to provide intrinsic anatomical 
structures for the reconstructed images, or adaptively learned from the noisy 
measurements of PET. Accuracy of the strategy with very promising application 
results from Monte-Carlo simulations, and real data are demonstrated.

Keywords: positron emission tomography, image reconstruction, sparse 
representation

(Some figures may appear in colour only in the online journal)

1.  Introduction

Positron emission tomography (PET) uses the idea of injecting chemical compounds labeled 
with positron-emitting isotopes into a body to measure their spatial and temporal distribution 
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externally. However, estimating the radioactivity concentration from measured data is a chal-
lenging problem and has been the focus of research of numerous researchers over the past 
several years.

The first attempt at reconstructing the emission activities occurred with the fil-
tered backprojection (FBP) method using Radon transform. However, FBP method dis-
regards the spatially-variant system response of PET, and statistical noise is neglected 
and often treated in a post-hoc manner. Hence the accuracy of FBP method is  
severely limited.

On the other hand, assuming data is Poisson distributed, iterative statistical reconstruc-
tion algorithms are able to model the physical detection process, and thus have been the pri-
mary focus of many recent efforts. However, from the perspective of statistical inference, such 
high dimensional maximum likelihood estimators are inevitably ill-conditioning, i.e. have 
the ‘checkerboard effect’ which is known for maximum likelihood-expectation maximiza-
tion (ML-EM) in the PET community (Shepp and Vardi 1982). Common approaches to that 
are to add penalty constraints and compute the corresponding penalized ML solution, or the 
so called maximum a posteriori (MAP) estimation (Levitan and Herman 1987, Chang et al 
2004). Typical penalty terms are quadratic smoothness, logcosh penalization, total variation 
and Huber potential function (Chang et al 2004, Qi and Leahy 2006). The main concern in 
designing these penalty functions is balancing between smoothing uniform regions and pre-
serving edge sharpness. However, due to the low SNR (signal to noise ratio) nature of PET 
measurement, controlling such trade-off between smoothness and image details has been so 
far proven technically difficult.

Though some tissues are heterogeneous, in many situations, we can fairly assume that 
within patches of certain sizes a PET image can be considered as piece-wise constant. With 
this assumption in mind, intuitively, if we already knew the position of the boundary, where 
sharp variation is allowed and even encouraged, the rest of the image should readily be as 
smooth as possible. This idea forms the basis of these reconstruction methods that incorporate 
anatomical priors (Gindi et al 1993, Bouman and Sauer 1996, Tang et al 2008, Dewaraja et al 
2010, Vunckx et al 2012). Since different anatomical structures have different physiological 
functions, we can expect to see differences in tracer uptake between anatomical structures. 
This general observation has also been borne out in high-resolution autoradiographic images 
in which functional images also clearly reveal the morphology of the underlying structures 
(Gindi et al 1993). While the anatomical modalities have superior resolution to PET, accurate 
estimates of anatomical boundaries can be formed from them to influence the PET reconstruc-
tion (Dewaraja et al 2010). However such anatomy based PET reconstruction methods rely 
heavily on the accuracy of image registration of PET and anatomical images like computed 
tomography (CT) and magnetic resonance imaging (MRI). Moreover, in some studies, the 
findings of anatomical and functional imaging modalities may disagree, and in some circum-
stances anatomical imaging modalities might miss some regions that appear suspicious on 
PET images.

This problem motivated us to decompose the boundary structures into local features. By 
decomposing, we mean to learn its intrinsic local structures such that anatomical image 
can be represented efficiently through the learned features. This idea utilizes the recently 
developed theory of sparse representation and dictionary learning. Aharon et al learns 
an over-complete dictionary from training set by K-SVD algorithm, and the elements of 
the dictionary are local image patches (Aharon et al 2006). They show that images with 
similar structures can then be sparsely represented by the learned elements. Moreover, 
such a sparse representation approach can effectively eliminate random noises. Given the 
fact that PET and anatomical images share similar boundary structures, we can effectively 
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represent the structures in PET images with the local features learned from anatomical 
images. Because we are dealing with small image patches that contain local edge elements, 
patches from PET can be reconstructed with reasonable accuracy by an appropriate linear 
combination of learned edge elements. For smooth regions, one patch is sufficient to rep-
resent them.

Several efforts related to sparse representation and dictionary learning have been made in 
the medical imaging community, Chen first demonstrated the effectiveness of sparse repre-
sentation in MR image reconstruction using a pre-trained MR brain dictionary (Chen et al 
2010). Ravishankar proposed to adapt the pre-trained dictionary to the input to reconstruct 
the MR images (Ravishankar and Bresler 2011). Xu also developed a dictionary learning 
based algorithm to reconstruct low-dose CT images (Xu et al 2012). However, the penalized 
weighted least-square function they used for data consistence have been proven negatively-
biased (Fessler 1994). Furthermore, the validation, which trained the dictionary based on the 
ground truth or high-dose image to reconstruct the exactly corresponding low-dose image, is 
doubtful (Xu et al 2012).

In this paper, a novel algorithm that combines a maximum likelihood function and spar-
sity penalty is proposed. The resulting model is capable of representing the measured data 
with Poisson statistics, while the sparsity penalty term in the objective function encourages 
the reconstructed image patches being sparsely represented by the dictionary. An iterative 
procedure is then provided to optimize the resulting objective function. To demonstrate 
the applicability of the novel method, we have tested the proposed algorithm in terms of 
reconstruction accuracy and detectability based on Monte-Carlo generated data and real 
patient data.

2.  Method

2.1.  Problem formulation

2.1.1.  Likelihood estimate for data fidelity measure.  In the measurement process of PET,  
a coincidence event indicates that two gamma rays interact with the opposite detector pairs 
within a small coincidence timing window. During PET emission scans, one wishes to include 
only true coincidences that are related to gamma rays from the same annihilation and that 
have not scattered in the body prior to detection. However, in reality, the coincidence events 
include those records that originate from two unrelated positions, and those records that the 
annihilation photons have Compton scattering and lose their directions. The former is called 
random coincidences (RC) and the latter is called scattered coincidences (SC). RC events are 
a primary source of background noise in PET.

PET measured data, called sinogram y, is the sum of such events at each detector bin along 
the scanner ring, i.e. y = {yi, i = 1, ⋯, M}, where M is the number of detector bins. Given that 
detecting each decay event by the system is independent and can be modeled as a Bernoulli 
process, the sinogram data y can be assumed as a collection of independent Poisson random 
variables. Also, the measurement y is related to the unknown activity map x by the projective 
transform.

� ∼ = + +y y y Gx r sPoisson { } s. t. (1)

where G is the system matrix representing the average probabilities of detecting an emis-
sion from voxel site j at detector i, which is mainly determined by physical property of PET 
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scanner; r and s are the RC and SC events respectively. Based on the independent Poisson 
assumption, we can write the likelihood function of y as

� ∏∣ = −y x
y

y
Pr( ) e

!
i

y i
y

i

M

i

i

(2)

Instead of maximizing the above likelihood function, we often minimize its negative log-
likelihood function to estimate x since the log of likelihood function is easier to deal with:

� ∑= − ∣ = − = + +L x y x y y y y Gx r smin ( ) min log (Pr ( ) ) min log ( ) s. t.
x x x

i
i i i

M

(3)

The constant term log(yi!) has been neglected. For penalized maximum likelihood reconstruc-
tion algorithms, one seeks to estimate of the image x that minimizes an objective function 
consisting of likelihood function and a penalty term.

� λ + = + +L x R x y Gx r smin ( ) ( ) s. t.
x (4)

where λ is weighting parameter and R(x) is a prior penalty term.

2.1.2.  Sparsity penalty on dictionary.  Numerous penalized methods have been proposed for 
PET reconstruction like quadratic penalization, Gibbs smoothing, Huber potential, etc (Qi and 
Leahy 2006). In this paper, we propose to regularize the likelihood function by encouraging 
sparsity with respect to dictionary. More specifically, we want each patch of the reconstructed 
image to be sparsely represented by the elements of the dictionary, which could be pre-trained 
on database or adaptive learned from the noisy measurements.

An image patch of size ×n n  can be expressed as a n dimensional vector ∈ ℝp n. 
Given an emission image vector ∈ ℝx N, we decompose it into S overlapping patches 

∈ ℝ = …p s S, 1, ,s
n , by matrix operator Es, i.e. ps = Esx. The sparse penalty of x with respect 

to dictionary D is as follows (Aharon et al 2006)

� ∑ α μ αα = ‖ − ‖ + ‖ ‖
α α

R x E x Dmin ( , ) min ( )
s

S

s s ssparse 2
2

0 (5)

where αs is the sparse coefficient for sth patch ps, ps = Esx, ‖αs‖0 denotes the number of non-
zero entries of αs, and μ is weighting parameter of sparsity. Taking sparsity constraint (5) as 
penalty term for (4), we propose to minimize the following objective function to reconstruct 
PET images.

� Ψ λα α= + = + +
α

x L x R x y Gx r smin ( , ) ( ) ( , ) s. t.
x,

sparse (6)

where L(x) is likelihood function, Rsparse(x, α) is sparsity constraint and λ is the weighting 
parameter.

2.2.  Algorithms

The optimization algorithm alternates between minimizing the objective function (6) with 
respect to each variable x, D, α with other variables fixed. We first demonstrate how to solve 
the x-subproblem by rewriting objective function (6) with the items that contain x:
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� ∑ ∑Ψ λ αα= = − + ‖ − ‖

= + +

x x y y y E x D

y Gx r s

arg min ( , ) log ( )

s. t.

x
x

i
i i i

s

S

s s

M

2
2

(7)

We note that (7) is a typical MAP reconstruction problem with quadratic penalty (Levitan 
and Herman 1987). Various techniques have been developed to optimize it. Here we use the 
efficient expectation maximization (EM) based algorithm to minimize (7).

We now explain in detail the expectation maximization based scheme that we used for the 
x subproblem. Following the hidden variable formulation (Shepp and Vardi 1982), the x sub-
problem (7) is equivalent to minimize the following function Ψx(cij, x, α)

� ∑ ∑ ∑Ψ λ αα= = − + ‖ − ‖x c x g x c g x E x Darg min ( , , ) ( log ( ) )
x

x ij

j

N

i

M

ij j ij ij j

s

S

s s 2
2 (8)

where cij is the hidden variable, representing the number of photons emitted from image pixel 
j and detected at line of response (LOR) i, and gij is the ijth entry of system matrix G. This new 
objective function is derived based on the independent Poisson statistical assumption of cij. 
The hidden variable is formulated here so that if they were observed, the maximum likelihood 
based function in (8) is readily solvable. Therefore, EM algorithm proceeds by two steps:

	 •	E-step : Estimate the hidden variable cij given current estimate xk in the kth iteration and 
sinogram y, i.e. ξ= ∣̂c c x y( , )ij ij

k , where ξ denotes conditional expectation. Plugging in the 
estimated ̂cij into Ψx(cij, x, α), we have an intermediate function Ψ α̂̂ c x( , , )x ij .

	 •	M-step: Minimize the intermediate function Ψ α̂̂ c x( , , )x ij  by zeroing its derivative with 
respect to x.

For E-step, the expectation of cij conditioned on sinogram yi and current estimate of xj is given 
by (Shepp and Vardi 1982)

� ∑
ξ^ = ∣ =

+ ^ + ^
c c y x

g x

g x r s
y( , )ij ij i j

k ij j
k

j

N
ij j

k
i i

i (9)

^ ^r s,i i are the estimated random events and scatter events respectively (Qi and Leahy 2006). The 
resulting function Ψ α^̂ c x( , , )x ij  is

� ∑ ∑ ∑Ψ λ αα^ = − ^ + ‖ − ‖̂ c x g x c g x E x D( , , ) ( log ( ) )x ij

j

N

i

M

ij j ij ij j

s

S

s s 2
2 (10)

However, when minimizing the function Ψ α^̂ c x( , , )x ij , we note that the second term 

∑ α‖ − ‖E x D
s

S
s s 2

2 is not separable and direct solution by zeroing the derivative of (10) with 

respect to xj is generally not possible. Instead, an approximate solution like iterated coordi-
nate decent can be used here but it converges slowly unless given a good initial estimate of x 
(Bouman and Sauer 1996). Another approach is the one-step-late method, in which the partial 

derivative of ∑ α‖ − ‖E x D
s

S
s s 2

2 is evaluated at the current estimate xj
k (Green 1990). In gen-

eral, however, this method does not converge. Here, we adopt De Pierro’s convexity trick (De 
Pierro 1995) to replace the penalty term with its convex separable surrogate function. We first 
rewrite α‖ − ‖E x Ds s 2

2 and [Esx]l as follows:
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� ∑α α‖ − ‖ = −E x D E x D([ ] [ ] )s s

l

n

s l s l2
2 2 (11)

�
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑β

β
β β= − + = ∀ ⩾

=

E x
e

x x E x j[ ] ( ) [ ] s. t. 1, , 0s l

j

N

s lj
s lj

s lj
j j

k
s

k
l

j

N

s lj s lj,
,

, 1
, , (12)

[Esx]l denotes the l-th entry of the vector Esx, es, lj is the lj-th entry of matrix Es, xj
k is current 

estimate of the image vector x at pixel j. Since ([Esx]l − [Dαs]l)2 is convex with respect to 
[Esx]l, we have

�
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑α β

β
α− ⩽ − + −E x D

e
x x E x D([ ] [ ] ) ( ) [ ] [ ]s l s l

j

N

s lj
s lj

s lj
j j

k
s

k
l l

2
,

,

,

2

(13)

Applying this inequality to equation  (10) yields its convex separable surrogate function 
ϕ(x;xk):

�
∑ ∑ ∑ ∑ ∑ϕ λ β

β

α

= − ^ + −

+ −

x x g x c g x
e

x x

E x D

( ; ) ( log ( ) ) ( ( )

[ ] [ ] )

k

j

N

i

M

ij j ij ij j

s

S

l

n

j

N

s lj
s lj

s lj
j j

k

s
k

l s l

,
,

,

2

(14)

We choose βs, lj to be ∑β =
=

e e/s lj s lj
j

N
s lj, ,

1
,  and minimize (14) by differentiating ϕ(x;xk) with 

respect to x.

� ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑ ∑ ∑

ϕ

λ λ
β

α
β

∂
∂

= − ^ + + − − =

x x

x

g c
x

e
e

x E x D
e

x

( ; )

1
2 [ ] [ ] 0

k

j

i

M

ij
i

M

ij
j s

S

l

n

s lj
s lj

s lj
j s

k
l s l

s lj

s lj
j
k

,
,

,

,

,

(15)

Then we can find that +xj
k 1 is the root of following second order polynomial equation

� ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∑ ∑ ∑ ∑
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λ

α λ

+ + = = = − ^

= − − +

A x B C
x

A e e C c

B e E x D A x g

1
0, 2 ,

2 ([ ] [ ] )

j j j j
j

j

s

S

l

n
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j
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s lj j

i

M

ij

j

s

S

l

n

s lj s
k

l s l j j
k

i

M

ij

, ,

,

(16)

Because ϕ(x;xk) of (14) is a strictly convex problem (14), +xj
k 1 is the only strictly positive solu-

tion of equation (16) (detailed proof is similar to De Pierro (1995)).

� =
− + −

+x
B B A C

A

4

2j
k

j j j j

j

1
2

(17)

Note that because there is no exact solution for x-subproblem, we iteratively take E-step 
and M-step until inner convergence to get an approximate solution. The alternating direction 
minimization method is expected to minimize each subproblem alternately. Therefore, such 
an inner converged solution is sufficient for achieving the minimum of Ψ(x, α).
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The α-subproblem is solved by orthogonal matching pursuit (OMP) (Tropp and Gilbert 
2007). If we use a global dictionary, the dictionary D is fixed in the algorithm after pre-trained 
on CT images using K-SVD (Aharon et al 2006). For an adaptive dictionary, it is learned from 
the current estimate xk in each iteration step using K-SVD algorithm. The whole iteration 
scheme stops when the relative change of x is smaller than the pre-specified tolerance. We 
have summarized the optimization procedures in algorithm 1.

2.3.  Implementation

2.3.1. Tuning parameters.  There are two parameters in the presented algorithm which needed 
to be manually tuned. The first one is λ, weighting parameter before likelihood function in 
equation (6). It depends on noise level, and it should be strengthened when SNR increases and 
vice versa. It is intuitive that data fidelity should be stressed when measurements are ‘clean’, 
while sparsity regularization comes into play when measurements cannot be trusted due to 
high level noise corruptions. Generally, it is hard to find simple methods to determine the 
appropriate value for λ. In all of our experiments, we empirically found it works well nearby 
3. Another parameter is error tolerance ϵ in the OMP sparse coding stage of equation (18) in 
algorithm 1. This value is related to patch size and noise level. In (Elad and Aharon 2006), the 
authors empirically choose it to be 1.15 · σ, where σ is standard variation of Gaussian noise. 
While PET measurements are assumed to be Poisson distributed, and as we also do not priorly 
know the statistics of noises, we empirically tune it within [0.05, 0.105].

2.3.2.  Dictionary.  Both global and adaptive dictionaries are trained from the extracted image 
patches by the K-SVD algorithm (Aharon et al 2006). In the literature, the size of the diction-
ary element ranges from 6 × 6 to 8 × 8. A large element size may fail to capture fine local 
structures, while more computational time would be needed if we chose a small size. In our 
case, we find 7 × 7 works well in all of our experiments. The number of dictionary elements 
is a trade-off between over-completeness and computational cost. Provided that PET images 
have a relative simple image structure and a strong similarity of the structures between the to-
be-reconstructed PET image and the images whose patches are used for training the dictionary, 
we find 144 is enough in experiments. The global dictionary (GD) is pre-trained from eight 

Algorithm 1.  Iteration procedures of proposed optimization algorithm.

Require: Sinogram y and system matrix G, weighting  
parameter λ.
1: Initialize α = 0, x = FBP(y).
2: repeat
3:  repeat ▹Solving x subproblem

4:      E-step compute Ψ ^ ∣̂ c x y( , )ij
k  using (9).

5:      M-step: update ∀x j,j
k  using (17),

6:   until Relative change of x < 10−3

7:   D = K − SVD(x) ▹If we use adaptive learned dictionary
8:   α = Sparse coding using OMP:

	 α α α∀ = ‖ ‖ ‖ − ‖ ⩽ ϵ
α

E x Darg min s. t.s s s s s0 2
2

s
(18)

9:     k ← k + 1
10: until Relative change of x < 10−4.
11: Return xk
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slices of thorax CT images, one of which is shown in figure 1(c). This learned dictionary would 
be used throughout the experiments as a GD, as shown in figure 1(b). The adaptive dictionary 
(AD) is learned from its corresponding measured data, as we explained in the previous section.

3.  Experiments

To validate the proposed algorithm, we conduct two groups of thorax experiments based on: 
Monte Carlo simulated data and the real patient thorax data. Simulation studies include exper-
iments based on Zubal thorax phantom to evaluate the reconstruction accuracy and the lesion 
phantom to test detectability of reconstruction algorithms. The real patient data include the 
data obtained from CTI ECAT PET scanner provided by Prof Fessler4 and one data set of lung 
cancer scanned by SHR-22000. Finally, we present the experiments in terms of the two tuning 
parameters and dictionary settings.

Reconstructions are evaluated by regional relative bias and relative variance, which are 

defined as bias ∑= ∣ − ^ ∣ ^
N

x x x
1

/
j

N
j j j, variance =

−N

1

1
 

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ − ^

^
x x

xj

N j j

j

2

. x̂j denotes j-th pixel 

value of ground truth. N is the overall number of pixels in the examined region. Since each 
region does not necessarily share the same number of pixels, the overall bias and variance may 
not add up to the whole bias and variance. The absolute difference between the reconstructed 
image and the ground true image is presented for visual judgments. As for quantitative 
evaluation of detectability, we use Jaccard index (JI) to evaluate the accuracy of lesion 

detection. The Jaccard index, defined as JI= ∩
∪

A B

A B
, measures the overlap of two regions, 

the true lesion region A and the recovered lesion B. The proposed methods with GD and AD 

were compared with the classical maximum likelihood-expectation maximization (ML-EM) 
algorithm and the state-of-the-art method separable paraboloidal surrogates with ordered-
subsets (SPS-OS) regularized by the Huber potential function (Fessler and Erdogan 1998, 
Mehranian et al 2013).

3.1.  Monte Carlo simulations

3.1.1.  Zubal thorax phantom.  We first use the Monte Carlo simulated Zubal thorax phantom to 
validate the proposed algorithm. The Monte Carlo simulation is able to produce realistic sino-
gram data by simulating the imaging physical process. More importantly, it offers the oppor-
tunity to evaluate the reconstruction algorithms quantitatively against the ground truth. In this 
study, the simulated PET scanner was Hamamatsu SHR-22000 and all the settings were as same 
as the real situation, including dead time, energy resolution, etc. The Zubal thorax phantom, as 
indicated in figure 1(a), has four regions of interest. Sinogram had 128 × 128 projections. Two 
sets of measured data under different counting rates (1 × 106 and 5 × 105) were tested.

Figure 2 demonstrates the reconstruction results upon the Monte Carlo simulated data set. 
Due to Huber potential regularization, SPS-OS method produces a slightly smoother image 
than ML-EM method and the edges are also better preserved. On the other hand, by encourag-
ing sparsity, the GD method could suppress much more noise and image details are also well 
recovered. In the third row of figure 2(d), there exists many artifacts in the AD reconstructed 
images. From the subtraction images in figure 2 (the second and fourth rows), we find that the 

4 http://web.eecs.umich.edu/fessler/result/et/pet,emis/
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most errors concentrate on the edges and region of interest (ROI) 4 for all four algorithms. 
Tables 1 and 2 further confirm this evidence that the proposed methods give better bias and 
variance performance in each ROI under both counting rates, especially within ROI4.

3.1.2.  Lesion detection.  In this study, we demonstrate the experiments concerning the detect-
ability of proposed algorithms. As in the first row of figure 3(a), we design a simple thorax 
phantom (128 × 128) containing six circular lesion regions with different sizes. The six lesion 
regions are numbered from #1 ∼ #6 with lesion radius of 6.5 to 1.5 pixels, decreasing one 
pixel at a time. Sinogram data of the designed lesion phantom were obtained by Monte Carlo 
simulation procedures with the same settings as in section 3.1.1.

After images are reconstructed by the presented algorithms, we first use K-means to cluster 
the intensity values of each pixel into three clusters, corresponding to dark background, thorax 
background and lesions respectively. Then, we further employ K-means algorithm to cluster 
the lesions based on their pixel coordinates. In this process, to present the essential perfor-
mance of algorithm detectablility, we minimize the artificial intervene by only predefining 
the number of clusters in the second stage clustering the lesions. We also replicate K-means 
algorithms for 10 times at each stage to eliminate the effect of random initializations.

In figure 3, we present the reconstruction and clustered lesion regions under two different 
counting rates of Monte Carlo simulations. First of all, we note that the proposed method pro-
duces clearer reconstructed images. Secondly, the clustered lesion of ML-EM suffers from ran-
dom noises while SPS-OS and proposed methods seem to give comparable detecting results. 
In the 5 × 105 studies, SPS-OS, GD and AD methods all fail to discern the 6th lesion. Though 
ML-EM image has the six clusters, the true lesion region has been submergedd in high noises. 
Quantitative analysis given by Jaccard index of each region with respect to the ground truth are 
presented in table 3. From the table, we can find that the proposed algorithms give better per-
formance in terms of lesion detectability. More importantly, when lesion size is comparable or 
smaller than patch size, AD method tends to preserve such lesion regions better than GD method.

3.2.  Real patient data

3.2.1.  CTI ECAT data.  In this data set, the 47 slices real patient data are obtained from subject 
who was scanned on an CTI ECAT PET scanner. The raw sinogram, along with the attenuation 

Figure 1.  Zubal thorax phantom (left), trained global dictionary (middle), and one of 
eight CT thorax slices for training GD (right). (a) Zubal phantom. (b) Global dictionary. 
(c) One CT thorax slice.
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Figure 2.  Reconstruction of Monte Carlo simulated Zubal phantom data. The first two 
rows correspond to the reconstructed images and subtraction images under 106 counting 
rate. The last two rows correspond to the reconstructed images and subtraction images 
under 5 × 105 counting rate. (a) ML-EM. (b) SPS-OS. (c) GD. (d) AD.
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Table 1.  Statistical analysis of reconstruction on Zubal phantom with 1 × 106 
counting rate.

Bias Variance

Whole ROI1 ROI2 ROI3 ROI4 Whole ROI1 ROI2 ROI3 ROI4

ML-EM 0.1812 0.1441 0.2143 0.1492 0.2650 0.0522 0.0393 0.0650 0.0331 0.0855
SPS-OS 0.1820 0.1587 0.2020 0.1388 0.2897 0.0524 0.0481 0.0570 0.0294 0.0952
GD 0.1557 0.1389 0.1701 0.1345 0.2133 0.0387 0.0334 0.0445 0.0266 0.0560
AD 0.1584 0.1388 0.1755 0.1347 0.2211 0.0413 0.0345 0.0484 0.0282 0.0608
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and efficiency factors, are radial samples by 192 angular samples (over 180°). Sinogram have 
been pre-corrected for delayed coincidences, and four slices of reconstructed images are pre-
sented for visual judgment. During this studies, we also fix the tuning parameters in the four 
presented model through reconstructing all the four slices.

Figure 4 shows the reconstructed images using ML-EM, SPS-OS and the proposed algo-
rithms with GD and AD. Similar to the simulation studies, ML-EM reconstructed images have 
severe noise corruptions and SPS-OS tends to over-smooth the images. Especially in the last 
two slices, the Huber penalty function produces severe artifacts. The proposed algorithms 
produce better image structures and more details are preserved.

3.2.2.  SHR-22000 data.  This data set is a real patient scan acquired by the Hamamatsu SHR-
22000. The volunteer patient had a tumor in his left lung. During the scanning, 20 min trans-
mission scan was performed after the 20 min whole body emission scanning. At last, 60 min 
blank scan was performed to calculate the normalization coefficients and attenuation coeffi-
cients. We choose the 32-nd slice out of the 63 overall slices. The raw sinogram data are 384 
bins × 384 angles, which are reconstructed to image with size 128 × 128.

Figure 3.  Reconstruction and clustered lesion regions of the lesion phantom. The 
first two rows correspond to the reconstructed images and the final lesion clusters 
of experiments with 1  ×  106 counting rate. The last two rows correspond to the 
reconstructed images and the final lesion clusters of experiments with 5 × 105 counting 
rate. (a) True. (b) ML-EM. (c) SPS-OS. (d) GD. (e) AD.

(a) (b) (c) (d) (e)
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Figure 5 shows the reconstructed images of the real patient data. All four methods are able 
to resolve the tumor in the patient’s left lung whereas image reconstructed by EM method is 
very noisy and SPS-OS tends to over-smooth the image. The proposed algorithms can reduce 
the noise but also better delineate the tissues.

3.3.  Implementation analysis

3.3.1. Tuning parameters.  To determine parameter ranges and examine the robustness of the 
two tuning parameters within the range, we calculate the relative bias and variance based on 
different choices of λ and ϵ. λ ranges from 0.01 to 10 and ϵ is between [0.05,0.5]. The sino-
gram data in this study is the Zubal phantom with 106 counting rate in section 3.1.1. When 
different value of λ is tested, ϵ is fixed at 0.055. While λ is set 3 for the experiments in terms 
of different choices of ϵ.

As in figure 6, we can find that bias and variance are relatively stable when λ is in [1, 
3]. While the algorithm performance is more sensitive to ϵ. Based on figures 6(c) and (d), ϵ 
around 0.1 achieves lower bias and variance.

3.3.2.  Dictionary.  This study examines the impact on sparse representation under a diction-
ary trained using the patches extracted from images with different structures from the one 
to be reconstructed. In this experiment, the global dictionary that we have been using to 
reconstruct thorax PET images is used to reconstruct the Brain phantom in figure 7(a). The 
sinogram of Brain phantom (128 × 128) is obtained through Monte Carlo simulation with 
1 × 106 counting rate.

In figure 7, images reconstructed by ML-EM is blur. SPS-OS produces high contrast and 
clean images but many tiny features have also been over-smoothed. The proposed method 
with global dictionary produce satisfactory results though the global dictionary is trained 
from mismatched thorax images. This is because we decompose the anatomical structures 
into local features. Though the global structures are different between training data and the to 
be reconstructed image, these small patches can be reconstructed with reasonable accuracy by 
an appropriate linear combination of dictionary elements. Quantitative evidence is provided 
in table 4. We also notice that, in this case, AD method gives better estimates by learning local 
features directly from measured data. However, the sparsity of the representation for recon-
structed PET image is affected by using the dictionary trained with the patches extracted from 
images that have different structures. In table 5, we present the average number of dictionary 
elements to reconstruct one patch of PET image. When the dictionary is trained using the 
patches extracted from thorax CT images, one to nine atoms in the dictionary are enough to 
represent a patch in the reconstructed PET thorax image. However, 22 atoms are needed for a 
PET brain image in this experiment. The accuracy of sparse representation method would be 
severely hampered if the sparsity assumption can not be guaranteed.

Table 2.  Statistical analysis of reconstruction on Zubal phantom with 5 × 105 
counting rate.

Bias Variance

Whole ROI1 ROI2 ROI3 ROI4 Whole ROI1 ROI2 ROI3 ROI4

ML-EM 0.1918 0.1631 0.2186 0.1574 0.2653 0.0590 0.0497 0.0694 0.0372 0.0873
SPS-OS 0.1868 0.1707 0.2009 0.1436 0.2871 0.0572 0.0566 0.0596 0.0310 0.0947
GD 0.1611 0.1496 0.1708 0.1362 0.2241 0.0445 0.0434 0.0471 0.0293 0.0611
AD 0.1696 0.1604 0.1795 0.1392 0.2202 0.0493 0.0489 0.0524 0.0310 0.0615

S Chen et alPhys. Med. Biol. 60 (2015) 807



819

Figure 4.  Reconstruction results of the real patient data obtained from CTI ECAT. 
From left to right: ML-EM, SPS-OS, GD, AD. From top to bottom, the 19th, 27th, 
35th, 43th slices. (a) ML-EM. (b) SPS-OS. (c) GD. (d) AD.

(a) (b) (c) (d)

Figure 5.  Reconstruction results of the patient data obtained from SHR-22000. From 
left to right: (a) ML-EM, (b) SPS-OS, (c) GD, (d) AD.

(a) (b) (c) (d)
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We then present the results based on different sizes of dictionary element in the proposed 
algorithm, 7 × 7 and 10 × 10. The Zubal thorax phantom data with 106 counting rate in sec-
tion 3.1.1 is used. In figure 8, we can see that images reconstructed by 10 × 10 patch size are 
over-smoothed compared to 7 × 7. As the region pointed by the red arrow in the first row of 
figure 8, it is missed completely in GD method with 10 × 10 patch. In the second row, region 
enclosed by the rectangle is zoomed in. We can also find that dictionary with smaller patch 
size preserve image detailes better.

4.  Discussion

We have developed a sparse representation and dictionary learning based framework for 
PET reconstruction. Given the similarity between functional image structures and anatomi-
cal image structures, we train a global dictionary from the anatomical thorax images. On the 
other hand, we also investigate the possibility of adaptively learn the dictionary from the noisy 
measured data. Combining the sparse representation using trained dictionary and maximum 
likelihood estimation of Poisson distribution, we formulate the reconstruction as an optimiza-
tion problem. An iterative alternating procedure is then developed accordingly.

In the experiments section, we validate the proposed framework on Monte Carlo simula-
tion data and real patient data. The results of classical ML-EM and SPS-OS with Huber poten-
tial function are also presented for comparisons. In Zubal phantom, the proposed algorithms 
produce more accurate estimates of the activity map in terms of their relative bias and vari-
ance. Moreover, the experiments show that the proposed method gave more robust reconstruc-
tions when the counting rate decreases. In the lesion phantom study, six lesion regions with 
decreasing radius are designed to demonstrate detectability of reconstruction algorithms. The 

Figure 6.  Relative bias and variance of reconstructions under different λ and ϵ, 
λ ∈ [0.01, 10] and ϵ ∈ [0.05, 0.5]. (a) Bias for λ range. (b) Variance for λ range. (c) Bias 
for ϵ range. (d) Variance for ϵ range.
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Figure 7.  True Brain phantom, reconstructed Brain phantom by ML-EM, SPS-OS, 
GD trained from thorax CT slices and AD (from left to right). (a) True. (b) ML-EM.  
(c) SPS-OS. (d) GD. (e) AD.

(a) (b) (c) (d) (e)
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proposed method continues to produce cleaner image structures. Quantitative analysis based 
on Jaccard index shows that GD and AD method outperform the other two algorithms in terms 
of lesion detection. Moreover, the AD method that learns intrinsic local structures directly 
from measurements is better at preserving fine structures like the smaller lesions in the sec-
ond row. In the real patient case, we demonstrates the results of four slices of real thorax data 
provided by Prof. Fessler and thorax patient data. In these cases, the proposed model also 
preserve better image structures. On the contrary, the classical ML-EM method reconstructed 
images are corrupted by noise and SPS-OS method tends to struggle in smoothness and sharp 
variations and produce artifacts.

One major concern is the possible loss of information in PET image that is missed in the 
anatomical priors. The global dictionary is trained from CT slices that have similar image 
structures with PET images. Most local patches from PET images can be reconstructed with 
reasonable accuracy by an appropriate linear combination of global dictionary elements. The 
experiments of both simulation and real data have verified this, especially in Brain phantom 
study, where anatomical priors and PET image have different image structures. However, due 
to different intensity of PET and CT images, complex and/or fine structures may fail to be 
recovered accurately. For instance, in lesion study 3.1.2, lesions in the bottom row are smaller 
than the patch size and they do not exist in the training set. You can find that their profiles 
are less accurately recovered by proposed model than the first row. ML-EM and SPS-OS 
method without anatomical priors also did not preserve them well due to high level noise 
corruptions in the reconstructed images. On the other hand, the AD method that learns local 
features directly from measurement gives more accurate estimats when anatomical prior and 
PET image structure mismatched. The fine structures, like small lesions, are also better recov-
ered by AD method.

Due to the time consuming process of sparse coding, patch extraction and dictionary learn-
ing (only for AD), the computational time of proposed model is slower than ML-EM and 
SPS-OS method. As you can see in the method section 2, the proposed algorithm is designed 
to be parallel as each pixel being updated independently in the iteration scheme. Therefore, 
further accelerations based on ordered subsets (OS) and graphics processing unit computa-
tion can be readily utilized. We believe dual modality, like MRI-PET and PET-CT, can benefit 
from the proposed paradigms that incorporate anatomical priors into PET reconstruction by 

Table 3.  Jaccard index of detected lesions.

1 × 106 counting rate 5 × 105 counting rate

ML-EM SPS-OS GD AD ML-EM SPS-OS GD AD

Lesion#1 0.6939 0.6990 0.8563 0.8447 0.4308 0.6850 0.8947 0.8509
Lesion#2 0.8393 0.7698 0.9029 0.8750 0.4524 0.7638 0.7455 0.8165
Lesion#3 0.6635 0.6273 0.8519 0.8481 0.3636 0.6832 0.8608 0.8481
Lesion#4 0.6600 0.7347 0.7442 0.7805 0.2628 0.8222 0.6579 0.8250
Lesion#5 0.4545 0.3810 0.5238 0.5909 0.2410 0.8261 0.8261 0.8636
Lesion#6 0.5455 0.2222 0.2222 0.4444 0.0957 0 0 0

Table 4.  Statistical analysis of reconstructions based on Brain phantom.

ML-EM SPS-OS GD AD

Bias 1.3239 1.0730 1.0597 1.0459
Variance 5.5813 3.2954 3.1065 2.9672
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providing global dictionaries. The individual anatomical scan done just before the PET study 
could be better source for dictionary training. But such general global dictionary obtained 
without exact correspondence demonstrates the wider applicability of the proposed methods. 
However, experiments based on PET-CT or MRI-PET and investigations of its practical issues 
for clinical use are definitely the most urgent and important work in the future. By now, we 
only investigate the thorax images. Intuitively, similar results can be achieved for brain and 
cardiac PET, where PET have been used in research and clinical practice. Since pre-trained 
anatomical dictionary gives competitive results throughout the experiments. We think it would 
be interesting to construct a global dictionary for the whole human body, which consists of 
several categories for each part of human body. Such work is under investigation.
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Figure 8.  Reconstructions with different dictionary element sizes in the proposed 
algorithm. (a) True. (b) GD 7 × 7. (c) GD 10 × 10. (d) AD 7 × 7. (e) AD 10 × 10.

(a) (b) (c) (d) (e)

Table 5.  Average number of dictionary elements to reconstruct one patch for 
PET images.

Zubal 106 Zubal 5 × 105 Lesion 106 Lesion 5 × 105 Brain

Average number 4.56 5.34 1.66 1.40 22.48

CRI ECAT data SHR-22000 data

Slice #19 Slice #27 Slice #35 Slice # 43 Lung

Average number 7.59 9.09 7.42 6.87 4.95
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