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1. Introduction

Positron emission tomography (PET) as a biomedical research 
technique and clinical diagnostic procedure is one of the most 
important applications in nuclear medical imaging devices. In 
the past three decades, there has been a significant advance-
ment in PET image reconstruction methods, but several chal-
lenges remain [1–3].

PET image reconstruction usually involves recovering the 
unknown spatial–temporal radioactivity distribution from the 
acquired annihilation photon pairs. Until now the most attrac-
tive methods have been statistical reconstruction algorithms, 
which are well suited to modeling of the acquisition effects 
such as positron range, spatially varying spatial resolution, 
and non-uniform attenuation [4–7]. These effects are included 
as components in the least square (LS) or maximization 
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likelihood (ML) objective functions for image reconstruc-
tions, which are derived from a priori statistical knowledge 
assumptions of the noisy measurement data. LS minimizing 
criteria measure the goodness of fit between the predicted data 
by means of modeling the acquisition process and the meas-
ured data, and derived approaches include LS–conjugated 
gradient (LS-CG) [8], expectation maximization–LS (EM-
LS) [9], penalized weighted least square (PWLS) [10]and so 
on. ML criteria maximize the products of Poisson probabili-
ties, which serve as statistical models of the PET measure-
ments, including the originated ML—EM [11–13], shifted 
Poisson–EM (EMSP) algorithm for random pre-corrected 
data [14–16], accelerated EM algorithm–ordered subset EM 
(OSEM) [17, 18] and various maximum a posteriori (MAP) 
strategies by imposing image priors (e.g. Gibbs prior) and dif-
ferent independent priors (e.g. Gaussian prior, Gamma prior) 
[19–23]. Tong et al introduced a state space solution frame-
work with H∞ optimization, but still based on a predefined 
compartment model [24].

However, in PET emission scans, the measurement data 
are unfortunately contaminated by random coincidence 
events and scatter coincidence events and affected by attenu-
ation, detector efficiency, energy resolution, time resolution, 
etc [25–28]. Generally, the PET measurement data y are first 
processed by various data corrections (including random cor-
rection, normalization correction, deadtime correction, scatter 
correction and attenuation correction sequentially), then the 
output yrndsa (the subscript means the corrections applied) 
is used for image reconstruction. y is Poisson distributed; 
however, the above data processing procedure makes PET 
measurement data after corrections yrndsa follow a more com-
plicated distribution rather than a single Gaussian/Poisson 
distribution or their simple combinations. Various data correc-
tions make it nearly impossible to obtain an exact a priori sta-
tistical model of measurement data or noises as the statistical 
reconstruction algorithms demand. Additionally, due to the 
individual differences in patients, there will be unavoidable 
mismatch between general modeling and a specific patient. 
All the aforementioned uncertainties will limit the accuracy 
of PET image reconstruction and lead to suboptimal results. 
Furthermore, with the development of a full 3D PET scanner 
and in 3D acquisition mode [29–34], the uncertainties are 
more complicated than in 2D acquisition mode. For example, 
the uncertainties in time resolution and detector efficiency 
will be different due to development in scintillators and photo-
multiplier tubes in newer systems [35]. As a result, PET image 
reconstruction becomes an extremely complicated problem.

For any image reconstruction method, analytical or statis-
tical, the expected image x̂ is reconstructed by solving a cer-
tain inverse problem as some explicit or implicit function of 
the measurement data yrndsa, say ˆ =x R y( )rndsa . The noise in the 
measurement data propagates, and eventually leads to accu-
racy problems or uncertainty in reconstructed images. For a 
fixed radioactivity distribution x, measurement data yrndsa can 
be described as a random variable with a probability density 
function conditioned on x. Then x̂ should also be a random 
variable with a probability density function conditioned 
on x. Therefore, noise in the reconstructed images can be 

characterized by the covariance matrix x̂Cov( ) or its diagonal 
entries, namely, variance. Apart from the reconstructed image, 
quantitative estimation of image variance and uncertainty is 
also critical in many cases of theoretical study and clinical 
applications. Practical applications of such quantitative anal-
ysis have been achieved to optimize scanner systems [36, 37] 
as well as controlling iteration number and designing regulari-
zation functions or parameters [19, 38, 39].

While it is relatively straightforward to compute variance 
for linear analytical approaches such as filtered backprojec-
tion [40, 41], the situation in the case of iterative methods is 
further complicated. Several groups have been dedicated to 
developing closed-form expressions for different iterative 
algorithms over the last two decades. These efforts fall into 
two main categories: iteration-based and fixed-point analysis. 
The iteration-based analysis techniques calculate variances as 
functions of iteration number and have been successfully used 
in MLEM [42], OSL-MAP-EM [43] and unregularized block 
iterative algorithms [44].This category is attractive for algo-
rithms that are terminated before convergence, as is common 
practice for the EM algorithm and its ordered-subset variants. 
The final results calculated for this category are influenced 
by the iterative algorithm used, the initial state, and the itera-
tion number. Alternatively, the fixed-point category [19, 45] 
assumes that the iterative algorithm has converged at a unique 
and stable solution, allowing us to compute image statistics, 
independent of the iteration number. These two categories are 
actually complementary, and more general frameworks [46, 
47] considering both iteration-based and fixed-point analysis 
were later developed for a range of reconstruction algorithms. 
However, the above process of variance estimation employs a 
derived framework apart from that used for image reconstruc-
tion. As is often the case, the estimation of image variance is 
carried out after image reconstruction.

In this paper, we try to perform both mean and variance 
image estimation from the viewpoint of signal energies 
instead of only statistical assumptions, which makes the 
framework able to handle from imperfect statistical assump-
tions to even no a priori statistical assumptions. Unlike con-
ventional approximate expressions, the variance is calculated 
along with the image reconstruction in one unified framework. 
The data errors during PET data acquisition are used as input 
and an estimation of errors between the estimations of the 
imaging object and its expected values as output. Therefore, 
the minimax criterion can be adopted to minimize the esti-
mation errors with possibly maximized data errors. A system 
gain is calculated based on the energies of errors, which 
makes the criterion robust to complicated statistical proper-
ties of measurement data and modeling uncertainties [48–50]. 
The proposed minimax criterion can incorporate all possible 
uncertainties into the objective function based on the ∞-norm 
of system gains [51, 52]. Correspondingly, in this paper, we 
choose H∞ reconstruction as the optimization for the ∞-norm 
minimax objective function [52, 53]. H∞ reconstructions can 
minimize the expectation errors and help to reduce the vari-
ance errors with possibly maximized data errors and modeling 
uncertainties in the system. The performance and accuracy of 
reconstructed mean and variance images are first validated 
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using Monte Carlo simulations. Our method can obtain 
improved reconstruction results over conventional statistical 
reconstruction algorithms and shows advantages in cases 
that contain complicated noise distribution. Experiments on 
phantom scans by a small animal PET scanner and real patient 
scans are also conducted for assessment of clinical potentials.

2. Theory

2.1. Mathematical modeling and statistical formulation of PET 
image reconstruction

The goal of mathematical modeling of data acquisition is to 
describe the transforms from spatial distributions of imaging 
objects to projection distributions on detector pairs in the PET 
system. Denoting the spatial distribution of the imaging object 
by a set of spatial variables R= | = ⋯ ∈x x i n{ 1 }i

n, where n 
is the total number of voxels, and the expected values (means) 

of projection bins by R¯ = ¯ | = ⋯ ∈y y j k{ 1 }j
k, where k is the 

total number of bins, a mathematical expression of the trans-
form can be obtained:

¯ = + ¯y Dx e (1)

where D is the system response model giving the probability 
matrix of mapping the transform from x to ȳ, and ē is the 
means of background noises. A block diagram of the above 
procedure is shown in figure 1(a).

The problem of PET image reconstruction is to find an 
estimation of the imaging object x̂ from the corrected meas-
urement data yrndsa. Since image reconstruction is an ill-posed 

inverse problem, one solution is to apply statistical models of 
measurement data as regularizations. A simple block diagram 
of statistical formulation is shown in figure 1(b): the statis-
tical properties of system noises or measurement data are first 
modeled based on certain statistical distributions (Gaussian, 
Poisson, their combination or other derivations) in block 
M, then inputted into system block D; the system output is 
generated and compared with corrected measurement data 
yrndsa based on the predefined criteria; when convergence is 
achieved, estimations of the imaging object x̂ will be obtained. 
Three major basic criteria (LS, ML and MAP) are listed as 
follows.

ˆ = ∥ − ∥x y Dxarg min
x

rndsa 2
2

 (2)

ˆ =   |x p y xarg max ( )
x

rndsa (3)

ˆ = |

= = |

x p x yarg max ( )
x

p x y

p y

p y x p x

p y

rndsa

( , )

( )

( ) ( )

( )
rndsa

rndsa

rndsa

rndsa

 (4)

where p represents the probability density, and p(x, yrndsa) is 
the joint probability density of x and yrndsa. The statistical for-
mulation tries to find an optimized relationship between mea-
surement data yrndsa and imaging object x (or expected values 
of projection bins ȳ) by defining different objective functions. 
All the above objective functions demonstrate the implied 
statistical knowledge assumptions on measurement data or 
noises in mathematical modeling.

2.2. Minimax criterion

As discussed previously, there are mismatches between mod-
eling assumptions and statistical distribution of corrected mea-
surement data; here we introduce the minimax criterion to 
reconstruct the measurement data yrndsa. As shown in figure 1(c), 
a new block F is designed to reconstruct measurement data 
yrndsa; the difference between expected values of imaging object 
x and estimation values x̂ is designed as the output of a block P 
which contains system response D and noise e. Because mea-
surement data yrndsa are constant during image reconstruction, 
the system can be simplified with an inner loop of block F and 
yrndsa incorporated into block P and yield a black box system J 
as shown in figure 1(d). For this system, the minimax criterion 
can then be applied to minimize the output (estimation errors 

− ˆx x) with possibly maximized input (errors and uncertainties 
e) through a transformation system J:

ˆ =
− ˆ

x Jmin max
x x e (5)

In order to solve the minimax function, a proper upper bound 
of estimation errors must be defined first, which means the 
transfer function of system J will also be required to have 
a system gain that conforms to the same predefined upper 
bound. When the upper bound is defined as γ2, the maximum 
of system gain should satisfy

γ∥ ∥ <Jmax .2 2 (6)

Figure 1. Block diagrams. (a) PET data acquisition; (b) statistical 
model based iterative PET reconstruction; (c) designed system for 
PET image reconstruction; (d) simplified block diagram (black box) 
of (c).
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Because the ∞-norm of the system can be interpreted as 
the peak system gain, if the ∞-norm of the system satisfies 

γ∥ ∥ <∞J 2 2, then all the system gains will be less than γ2, as 
illustrated in figure 2. Moreover, the ∞-norm of the system 
gain is an element of the Hardy space, whose members consist 
of all stable, causal, transf er functions [51]. The continuous 
form of the ∞-norm ∣J∣∞ will be

σ∥ ∥ = = ¯
ω

∞
∥ ∥ ≠

∥ − ˆ ∥
∥ ∥

J Jsup sup ( )
e

x x

e
2

0

2

2

2
2

2
2 (7)

where sup stands for supremum, and σ̄ J( ) is the maximum 
singular value of J. From equation (7), it is easy to obtain

γ∥ ∥≤∥ ∥ = <∞
∥ ∥ ≠

∥ − ˆ ∥
∥ ∥

J Jmax sup
e

x x

e
2

0

2

2

2
2

2
2 (8)

The problem is transformed from seeking the maximum 
system gain of J to calculating the ∞-norm of system gain 
with upper bound γ2.

Equation (8) also reflects the meanings of minimax; in 
order to calculate the inequality, intuitively we can minimize 
the numerator (estimation errors − ˆx x) while maximizing the 
denominator (system disturbance e). Then the objective func-
tion for our problem will be

γ∥ − ˆ ∥ − ∥ ∥ <
− ˆ

x x emin max 0
x x e

2
2 2

2
2

 (9)

Seeking solutions under errors and uncertainties is a dif-
ficult problem. By introducing the ∞-norm of system gain, 
solutions with peak system gain will perform well under 
any circumstance and make the problem globally optimized. 
Furthermore, the minimax criterion allows one to identify a 
robust solution that has the best worst-case performance. The 
robustness of the estimator arises from the fact that it yields an 
energy gain less than γ2 for all bounded energy disturbances 
no matter what they are, and dependence on accurate statis-
tical modeling is no longer needed.

2.3. A general PET reconstruction framework

PET images reflect the concentration and metabolism of 
radiotracers in vivo, and the physical natures of radiotracer 
metabolism in organs or tissues can be adopted as constraints. 
We have successfully applied the natural decay of the radio-
tracer [54] and compartment models [24, 55] as constraints. 

Here we build a more general framework, which is able to be 
free of constraints. As stated in the above papers, the iterative 
PET image reconstruction can be presented as

+ = ˆ +x m x m v m( 1) ( ) ( ) (10)

where m represents the current iteration step, x̂ is the estima-
tion of x and v is the tiny possible disturbances, which also 
accounts for the uncertainties between general modeling and 
an individual patient. More generally, the above equation can 
be extended to be

+ = ˆ +x m H m x m v m( 1) ( ) ( ) ( ) (11)

Here, H is the updating term derived from constraints if 
available.

Correspondingly, the PET measurement equation for each 
iteration step will be

= +y Dx m e m( ) ( )rndsa (12)

Furthermore, the iterative reconstruction algorithm may also 
be affected by its initialization selection (especially the con-
vergence speed), so the initialization of x is also considered 
as x (0) in our objective function. Along with the state transi-
tion uncertainties v in equation (11) and the measurement data 
error e in equation  (12), the ∞-norm of the system will be 
extended from equation (8) to be

∑

∑
‖ ‖ =

‖ − ‖

‖ − ‖ + ‖ ‖ + ‖ ‖
∞

− − −

J

x m x m

x x v m e m
sup

( ) ˆ( )

(0) ˆ(0) ( ( ) ( ) )
m

Z m

p
m

V m E m

2

( )
2

2
( )

2
( )

2
0

1 1 1

 

(13)

Z(m), p0, V(m) and E(m) are the weighting matrixes at itera-
tion m to make the criterion more extensible. After defining 
the upper bound γ2, the final objective function of the min-
imax criterion for PET image reconstruction can be derived 
based on equations (9) and (13), which minimizes the estima-
tion errors − ˆx x with possibly maximized initial uncertainty 

− ˆx x(0) (0), measurement uncertainty e and state transition 
uncertainty v:

∑

∑
γ

γ

∥ ∥ = ∥ − ∥

− ∥ − ∥

− ∥ ∥

+ ∥ ∥

− −

−

−

−

J x m x m

x x

v m

e m

min max ( ) ^( )

(0) ^(0)

( ( )

( ) )

z m z m v e x x m
Z m

p

m
V m

E m

( ) ^( ) , , (0) ^(0)

2
( )

2

2 2

2
( )

2

( )
2

0
1

1

1

 

(14)

Here the final objective function of the minimax criterion for 
PET image reconstruction is established without any assump-
tions of statistical distributions of measurement data and 
uncertainties. The system gain is calculated based on the ener-
gies of uncertainties.

2.4. H∞ optimization

There are many methods that can be adopted to solve the 
above objective function; here we choose the well validated 
H∞ filter to optimize this ∞-norm problem. Many papers have 

Figure 2. Illustration of system gains and predefined upper bound.
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been published to show the robustness and optimization of H∞ 
filter [51, 53]. Here a specific H∞ filter has been derived based 
on equation (14). The H∞ filter represents a typical minimax 
problem where the worst situation is first induced by the errors 
and uncertainties, then the estimator is introduced for improve-
ment; in other words, the H∞ filter is in fact a two-person game 
between the external disturbances and the estimator. This solu-
tion is just like optimization using a game theoretic algorithm 
which can be implemented through recursive updating of the 
filter gain K(m), the Riccati difference equation solution P(m), 
and the state estimates x̂ m( ) as follows:

¯ = +P m P m V m( ) ( ) ( ) (15)

γ= − ¯ + ¯− − −S m I Z m P m D E m DP m( ) ( ( ) ( ) ( ) ( ))2 T 1 1 (16)

= ¯ −K m H m P m S m D E m( ) ( ) ( ) ( ) ( )T 1 (17)

ˆ + = ˆ + − ˆx m H m x m K m y Dx m( 1) ( ) ( ) ( )( ( ))rndsa (18)

+ =
=

P m H m P m S m H m
P p

( 1) ( ) ( ) ( ) ( )
(0)

T

0
 (19)

where H∞ gain K(m) indicates the system gain (correspond-
ingly shows the convergence of the estimation). Convergent 
results will be obtained when the gain K(m) goes steadily. 
m still represents the number of iterations. From the above 
solution procedure, it can be noticed that the H2 norm filter 
for this objective function is just the widely used Kalman 
filter. Detailed proofs of the above solution can be found 
in [53].

2.5. Variance estimation

It has been well proved that the Kalman filter gives an unbiased 
estimate. In the limiting case, if the parameter γ approaches ∞, 
the H∞ filter approaches the Kalman filter [53]. When a rela-
tively large γ is employed, the H∞ filter can also be approxi-
mately regarded as an unbiased estimate. Thus the true image 
x can be a reasonable approximation of the mean image ˆE x( ) :

ˆ ≈E x x( ) . (20)

Then the covariance matrix will be

ˆ = ˆ − ˆ ˆ − ˆ

≈ ˆ − ˆ − =

x E x E x x E x

E x x x x P

Cov( ) (( ( ))(( ( )) )

(( )(( ) )

T

T
 (21)

where the right-hand side of the approximately equal sign is 
defined as the estimate error covariance in the H∞ filter in sec-
tion 2.4. Hence the covariance matrix of the estimated image 

x̂Cov( ) is approximated by the estimate error covariance P. 
As the H∞ filter recursive procedure progresses, both the esti-
mated state x̂ and covariance x̂Cov( ) can be updated simulta-
neously, and eventually arrive at convergent results.

Along with the mean of the estimated image ˆE x( ), the 
covariance matrix x̂Cov( ) should in principle suffice as a com-
plete statistical noise description set of the reconstructed state 
and measurement uncertainties. The diagonal entries of this 

matrix represent the ensemble variance of individual voxels of 
the estimated state. The off-diagonal entries stand for covari-
ance of two voxels.

2.6. Computation issues

The design of the H∞ filter consists of choosing the weighting 
matrices Z, E, V, p0 and the performance bound γ2 [56]. When 
there are accurate modelings of some effects of PET acquisi-
tion, E, V, and p0 can be initialized by corresponding covari-
ance matrices of random variables from the models. If there 
are no models or one does not want to use current models, 
E, V, and p0 can be simply initialized by identity matrixes. 
Moreover, since we generally assume the estimation results 
after convergence are just what we desired, Z will be initial-
ized by the identity matrix. γ2 is the predefined upper bound 
of performance. Theoretically, the smaller the γ2 value, the 
smaller the estimation error; however, the selection of γ2 must 
make the Riccati equation  have a positive definite solution. 
So first, we define and iteratively update a residual matrix 
R(m + 1)−1 through

γ= −− − −R P Z(0) ( (0) (0))1 2 1 (22)

γ
+ = +

+ −

− − − −

− −
R m H m R m D E m D H m

V m Z m
( 1) [ ( )( ( ) ( ) ) ( )

( )] ( )

1 1 T 1 1 T

1 2 (23)

As a result, the optimal γ value can be determined as:

γ

γ
γ

γ

γ ξ

+ +
− >
→ +
+ >
→ > +
+
→ > +
+
→ = +
+

− − − −

−

− − −

− −

− − −

− − −

− − −

H m R m D E m D H m V m
Z m

H m R m D E m D H m
V m I

I H m R m D E m D H m
V m

H m R m D E m D H m
V m

H m R m D E m D H m
V m

[ ( )( ( ) ( ) ) ( ) ( )]
( ) 0

[ ( )( ( ) ( ) ) ( )
( )]

( )( ( ) ( ) ) ( )
( )

max{eig[ ( )( ( ) ( ) ) ( )
( )]}

max{eig[ ( )( ( ) ( ) ) ( )
( )]}

1 T 1 1 T 1

2

1 T 1 1 T

1 2

2 1 T 1 1 T

2 1 T 1 1 T

1 T 1 1 T

0.5

 

(24)

where max{eig(A)} denotes the maximum eigenvalue of the 
matrix A, and ξ is a constant larger than 1 to ensure that γ 
is always greater than a certain optimal performance level. If 
the γ value is too close to the optimal performance level, i.e. 
ξ ≈  1, it might lead to numerical errors because the matrix 
R(m) is now close to a singular matrix.

3. Experiments and results

Three groups of experiments are conducted to validate the 
performance of the proposed minimax reconstruction frame-
work, including a Monte Carlo simulated data set from a 
Zubal thorax phantom, experiments with a Derenzo phantom 
with a small animal PET scanner and real patient scans with a 
commercial whole body PET scanner.

J. Phys. D: Appl. Phys. 48 (2015) 155401
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3.1. Monte Carlo simulations of Zubal phantom

The first data set used for validation is generated by Monte Carlo 
simulations. Simulations in our study are performed using the 
toolbox GATE [57]. The simulated PET scanner in our study 
is a Hamamatsu SHR74000, which is a newly designed full 
3D whole body PET/CT scanner from Hamamatsu Photonics 
KK. The gantry of the PET scanner is shown in figure 3(a). 
The scanner has large fields of view (FOVs): the transaxial 
FOV is 576 mm, and the axial FOV is 318 mm. The energy 
window is generally set to 400–650 keV during acquisitions 
and corresponding simulations to alleviate disturbances of the 
scatter coincidence events. According to the results of system 
performance evaluation, the scatter fraction is 38.1% in full 
3D acquisition mode. All the physical phenomena from the 
annihilation of positrons to the interactions between gamma 
photons and scintillators are completely simulated, the same 
as real PET data acquisitions in our studies.

The phantom used for simulations is a Zubal thorax 
phantom [58]; one sample of the activity distributions in the 
central slice is shown in figure 3(b). There are four different 
kinds of region of interest (ROI): ROI1, heart; ROI2, muscle; 
ROI3, chest wall; ROI4, lung. Each ROI has a different level 
of activity concentration. The ratio of activity concentrations 
at each level during simulation is about 5 : 3 : 2 : 1 in the four 
regions. (Note that the activity distribution is not exactly uni-
form in each ROI). The simulated isotope is F18-FDG. The 
sinogram slice of the simulation output is arranged as 64 bins 
covering the whole transaxial FOV by 64 angles over 180 
degrees. To validate the accuracy of the variance, a total of 
500 noisy data sets are simulated independently. For each 
data set, about 1M counts are collected. Random coincidences 

are corrected by the online delayed-window method. Besides 
emission scans, corresponding blank scans and transmis-
sion scans are simulated to calculate attenuation coefficients 
and perform normalization correction. Scatter correction is 
performed with the software designed for our PET scanner, 
which is based on the single scatter simulation (SSS) method.

3.1.1. Activity mean image reconstruction. The size of the 
reconstructed activity image is 64 ×  64. The images recon-
structed from one particular data set by our method are com-
pared with results reconstructed by EM reconstruction. The 
optimal iteration number for EM reconstruction is determined 
according to the statistical approach published in [59]. The 
EM algorithm and corresponding system probability matrix 
used in our study are from the MATLAB image reconstruction 
toolbox developed by Professor J Fessler of the University of 
Michigan. For H∞ reconstruction, from the descriptions in 
section 2.4, the convergence of the algorithm is indicated by 
the H∞ gain, and the convergent reconstruction results can be 
obtained when the H∞ gain goes steadily.

Since experiments in this section are based on Monte Carlo 
simulations, the ground truths of activity distributions in each 
experiment can be obtained exactly. In order to compare the 
reconstruction results quantitatively, the relative root mean 
squared error (RMSE) is defined for all experiments as

∑=
−

=

−
RMSE

n
i

n
X X

X

1

1
1

( )

( )
i i

i

R T 2

T 2 (25)

where Xi
R is the reconstructed activity concentration in pixel i, 

Xi
T is the ground truth of activity concentration in pixel i, and 

n is the total number of pixels inside the corresponding ROIs.
The results for the reconstruction of the activity maps by 

the two algorithms are shown in figure 4. Visually, the H∞-
reconstructed image is much smoother than that reconstructed 
by the EM method. Moreover, the EM reconstructed image 
seems to experience obvious noise effects, mainly due to the 
complicated noise property. The image RMSEs calculated 
between reconstruction results and ground truths are summa-
rized in table 1, where four ROIs are compared separately. The 
H∞ method has overall lower RMSEs than the EM method 
except in ROI1. These figures  and results illustrate that the 
traditional EM method has less capacity to handle noise with 
unknown statistical a priori distribution. The H∞ reconstruc-
tion framework, on the other hand, consistently yields better 
quality radioactivity estimates. Same conclusions can be 
drawn from the visual examples of the selected horizontal 
profiles, as shown in figure 5.

3.1.2. Variance estimation and analysis. During the H∞ solu-
tion procedure, the variances are calculated simultaneously 
along with the activity mean image reconstruction. To validate 
the calculated variances statistically, activity mean images 
are first reconstructed from all 500 data sets, and voxelwise 
ensemble variances are computed as MC simulation results. 
To get a more quantitative comparison, again, we computed 
the relative root mean squared errors (RMSEs) of the H∞ 

Figure 3. (a) The gantry of a Hamamatsu SHR74000 PET scanner; 
(b) one sample of emission activity distributions; (c) Derenzo 
phantom.
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method theoretical predictions relative to the MC statistical 
results for the corresponding ROIs:

∑=
−

=

−
RMSE

n
i

n
1

1
1

(VAR VAR )

(VAR )
i i

i

R MC 2

MC 2 (26)

where VARi
R is the H∞ predicted variance in pixel i, and the 

MC simulation variance VARi
MC is regarded as the ground 

truth. Besides, the average value of variances in each ROI is 
also calculated for both the H∞ predicted variance and the MC 
statistical variance.

The variance images and corresponding vertical and hori-
zontal profiles through the center for H∞ and MC statistical 
methods are shown in figure  6. Both variance images pos-
sess an overall distribution similar to that of the mean image, 
which indicates that variances are strongly dependent on the 
true activity image. Quantitative comparison between the two 
methods is shown in table 2. The mean values of variance for 
the H∞ method are relatively close to that of the MC results, 
especially in ROI2 and ROI4. However, the RMSEs in ROI3 
and ROI 4 are higher than those in ROI1 and ROI2. Overall, 
the comparisons show a reasonably good agreement between 
H∞ theoretical predictions and the MC statistical results.

3.2. Small animal PET scan with Derenzo phantom

The second data set is acquired with a Derenzo phantom using 
a Concord microPET R4 small animal PET scanner. The 
microPET R4 is a dedicated scanner for studies of rodents. 
The transaxial resolution in the center of the FOV is about 
1.92 mm according to our recent system performance evalua-
tion. The imaged Derenzo phantom is shown in figure 3(c); it 
consists of six groups of rods with different diameters and dif-
ferent center-to-center spacings. The rod diameters are 1 mm, 
1.5 mm, 2 mm, 2.5 mm, 3 mm and 3.5 mm respectively. These 
experiments illustrate the recovery ability of spatial resolution.

The acquired listmode data are processed to be a sinogram 
of 96 bins by 96 angles, and random coincidences are cor-
rected by an online delayed-window method. The percentage 

of random coincidences in the total acquired coincidences 
is about 2% in this experiment. After normalization correc-
tion and Fourier rebinning, the measurement data are recon-
structed and the central slice is extracted for illustration. The 
above processes are finished by programs provided along with 
the scanner. Generally, attenuation correction and scatter cor-
rection are not required in small animal PET imaging.

Figure 7 shows the central slice reconstructed by the two 
algorithms. The size of the reconstructed central slice is 
96 × 96. Convergent reconstruction results from the EM algo-
rithm and H∞ reconstruction are illustrated. As expected, the 
estimated variance image has an analogous distribution to that 
of the reconstructed activity map. Since the disturbances from 
data errors in the small animal PET scan are relatively small, 
and data corrections and modelings are relatively simple, as 
the reconstructed images show, they are close to the simula-
tion study. Both algorithms can obtain reasonable results, and 
rods with 2.5 mm diameter can be distinguished clearly. H∞ 
reconstruction can also recover the ROIs well; additionally, 
the image from H∞ reconstruction is smoother than that from 
EM reconstruction.

3.3. Real patient scan

The third data set used is a real patient scan acquired with 
the Hamamatsu SHR-22000 whole body PET scanner located 
at the Second Affiliated Hospital of Zhejiang University. The 
SHR-22000 is also designed by Hamamatsu Photonics KK. 
The scanner has 32 crystal rings, and can be operated in 2D or 
3D modes. The recent performance evaluation shows that the 
transaxial resolution of the central FOV is about 3.7 mm, and 
more details can be found in [60].

The volunteer patient has a tumor in his left lung. First a 
20 min whole body emission scan is performed, then a 20 min 
transmission scan is followed using rotating 68Ge rod sources. 
Finally, a 60 min blank scan (without any radioisotope during 
acquisition) is performed to calculate the normalization coef-
ficients and attenuation coefficients. The above triple scans 
are acquired in extended 2D mode, that means data from 63 
slices are acquired in all: 32 direct slices plus 31 cross slices 
between direct slices. The raw sinogram data are 384 bins × 
384 angles, which is reconstructed to images of 96 × 96 in our 
experiments. The random correction, normalization correc-
tion, deadtime correction, scatter correction and attenuation 
correction are performed on the measurement data with the 

Figure 4. The true activity image and reconstructed images by EM and H∞ algorithm. No post-filtering was applied to the images shown.

Table 1. RMSEs of reconstructed images.

ROI1 ROI2 ROI3 ROI4

EM 0.1403 0.1711 0.2083 0.2874
H∞ 0.1513 0.1537 0.1989 0.2263
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Figure 5. The horizontal (left) and vertical (right) profiles through the center of the true image (black), the EM reconstruction (blue) and 
H∞ reconstruction (red).

Figure 6. Comparison of voxelwise variances: variance images computed (a) using the H∞ method and (b) from the 500 reconstructions 
statistically. (c), (d) The vertical (c) and horizontal (d) profiles through the center of (a) and (b).

(a) (b)

(c) (d)

Table 2. Average values and RMSEs of estimated variances for each ROI.

ROI1 ROI2 ROI3 ROI4

Average value of MC 0.0813 0.0441 0.0177 0.0131
Average value of H∞ 0.0662 0.0430 0.0263 0.0186
RMSE 0.1982 0.1181 0.5693 0.5104
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programs provided with the scanner prior to reconstruction. 
The scatter fraction is about 18% in this extended 2D acqui-
sition mode according to the recent performance evaluation, 
which is relatively small compared with that of the SHR74000 
in full 3D acquisition mode.

These experiments show the reconstruction of real patient 
data, where completely accurate modelings are not available. 
The reconstructed images from different algorithms and the 

estimated variances are shown in figure 8. The activity mean 
images are Gaussian-smoothed for display. The EM recon-
struction can retrieve the tumor region; however, the unavoid-
able uncertainties during modeling will affect the contrast of 
the reconstructed images. The H∞ reconstruction can obtain 
strong boundaries in reconstructed images and also provide 
good identification of the tumor. Furthermore, the variance 
image presented by H∞ reconstruction also gives us interesting 

Figure 7. Reconstruction results of Derenzo phantom scan by two algorithms.

Figure 8. Reconstruction results of real patient scan by three algorithms.

Figure 9. Plots of the average variances computed theoretically (triangle marker) and statistically (square marker).
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diagnostic information, namely about the inherent accuracy of 
the measurement, thus possibly providing confidence for phy-
sicians to better diagnose patients.

4. Discussion

In this paper, we introduce a minimax criterion, for joint PET 
mean and variance image estimation, and solve it using an H∞ 
filter. The proposed H∞ framework differs from the previous 
approaches mainly in the following three aspects: (1) we tackle 
the estimation problems of the mean and corresponding vari-
ance of the radioactivity map simultaneously; (2) no a priori 
knowledge of noise statistics is required; and (3) the min–max 
estimation criterion is to minimize the worst possible effects 
of the disturbances (modeling errors and additive noises) on 
the signal estimation errors, which will ensure that, if the dis-
turbances are small, the estimation errors will be as small as 
possible. These aspects make the H∞ framework more robust 
under any type, and to a lesser extent any level, of noise.

However, in the solution procedure of the H∞ filter, a 
matrix inversion is required in every step to calculate the H∞ 
gain. Generally, inversion of small matrices is fairly easy, but 
the inversion of a large matrix will incur more computational 
costs in a practical implementation. Thus the computational 
load increases when moving from the EM to the H∞ filter. One 
solution is employing the steady state H∞ filter as a further 
evolvement of the H∞ filter, which will achieve significant 
computational saving with only a little loss of accuracy [61]. 
Furthermore, this proposed H∞ filter approach runs efficiently 
on graphics processing units(GPUs), since large numbers of 
computations are done in matrix forms. Further investigations 
on the implementation with GPUs are underway.

PET image reconstruction methods seek to provide 3D or 
2D estimated images from measurement data. Since these esti-
mates are functions of noisy data, the noise inevitably propa-
gates and eventually leads to uncertainty in the reconstructed 
images. We want to emphasize that one of the important 
concerns in PET imaging is the fact that most reconstruc-
tion methods usually provide only the reconstructed images 
without quantitative metrics representing their quality and 
reliability, for example, covariance. Given the noise nature 
of PET measurements, estimating the activity value is not 
enough to give a complete picture of the measurements. In 
order to provide more quantitative image reconstructions, 
covariance information is clearly needed here as well. The 
proposed H∞ method realizes joint estimation of both activity 
value image and covariance information, thus approaching the 
reconstruction in a complete way. The covariance information 
may be further used to quantitatively yield an explicit con-
fidence region and even allow calculation of error bars in a 
straightforward way. Practical applications of such quantita-
tive analysis to designing regularization functions, controlling 
iteration number and optimizing scanner systems have also 
been achieved.

Since the PET state space framework is optimized by mini-
mizing the estimation errors, the estimation error covariance 
P has a general trend of decrement. In contrast, it is com-
monly acknowledged that the PET image reconstruction is 

an ill-conditioned problem. The amplification effect of data 
noise and modeling uncertainties on the reconstructed image 
becomes obvious at large enough iterations. Thus the statis-
tical variance of reconstructions tends to increase with the 
iteration. To illustrate this discrepancy between theoretical 
results and statistical results, the average variances of all 
pixels within the variance images are calculated and plotted as 
a function of iteration in figure 9. Comparable magnitudes of 
the two results are limited to only a few iterations. Since large 
statistical variances indicate a reconstructed image contami-
nated by noise, it is crucial to terminate iteration early before 
the reconstructed images become unacceptably noisy.

The weighting matrixes in the objective function are very 
flexible. When one has accurate models, one can set them to 
be corresponding covariance matrices of random variables 
from the models. If one does not have models or one does 
not want to use the models, one can just simply set them to be 
identity matrixes. Note that, as introduced in section 2.3, the 
objective function equation (14) can be extended to dynamic 
PET image reconstruction. To achieve this application of the 
minimax framework in dynamic PET reconstruction, one can 
just substitute equation  (10) by the differential equations of 
predefined kinetic models for dynamic PET imaging.

5. Conclusion

We have presented an efficient optimal minimax criterion for 
joint estimation of the expected activity map and variance dis-
tributions in PET imaging. That no a priori statistical knowl-
edge assumptions are required makes the minimax criterion 
robust to both the changes of statistical properties of mea-
surement data after data corrections and uncertainties during 
system modeling. The framework is optimized with a robust 
H∞ filter. Quantitative and qualitative analysis on Monte 
Carlo simulations validates the performance and accuracy of 
the joint estimation. Experiments on phantom scans with a 
small animal PET scanner and real patient scans are also show 
its clinical potential.
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