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Simultaneous Reconstruction and Segmentation
of Dynamic PET via Low-Rank and Sparse
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Abstract—Although of great clinical value, accurate and robust
reconstruction and segmentation of dynamic positron emission to-
mography (PET) images are great challenges due to low spatial
resolution and high noise. In this paper, we propose a unified frame-
work that exploits temporal correlations and variations within im-
age sequences based on low-rank and sparse matrix decomposition.
Thus, the two separate inverse problems, PET image reconstruc-
tion and segmentation, are accomplished in a simultaneous fashion.
Considering low signal to noise ratio and piece-wise constant as-
sumption of PET images, we also propose to regularize low-rank
and sparse matrices with vectorial total variation norm. The re-
sulting optimization problem is solved by augmented Lagrangian
multiplier method with variable splitting. The effectiveness of pro-
posed approach is validated on realistic Monte Carlo simulation
datasets and the real patient data.

Index Terms—Augmented Lagrangian multiplier, convex opti-
mization, dynamic PET reconstruction, low-rank/sparse decom-
position, poisson likelihood function, segmentation.

I. INTRODUCTION

W ITH the increasingly wider availability of radio-
tracers, dynamic positron emission tomography (PET)

imaging enables to provide quantitative and noninvasive in-
formation of different biologic and physiologic processes
through reconstructing the spatiotemporal distribution of radio-
pharmaceutical (tracer) labeled biological substrates in liv-
ing tissue. In practice, dynamic PET images are often seg-
mented into regions of interest (ROI) to obtain time activity
curves (TAC) which can be further analyzed to estimate phys-
iological parameters, such as blood flow, metabolism, and re-
ceptor concentration depending on the characteristics of the
tracer. However, even with the recently developed technology
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PET/computed tomography (CT) or PET/magnetic resonance
imaging (MRI), segmenting PET images with the aid of anatom-
ical information still has many challenges. This is mainly be-
cause, in many studies, the findings of anatomical and functional
imaging modalities have disagreed, and in some circumstances
anatomical imaging modalities (i.e., CT or MRI) might miss
some regions that appear suspicious on PET images. Therefore,
reliable and automated detection and characterization of the tis-
sue elements from dynamic PET images have been so far proven
technically difficult because PET has relatively low spatial res-
olution, high noise, and lacks of anatomical information.

Conventionally, reconstruction and segmentation are viewed
as two separate steps. Segmentation requires the high quality
reconstruction algorithm as an essentially introductory step. In
the past decade, there were abundant efforts in medical imag-
ing community devoted to the reconstruction for PET. Prior to
dynamic PET, various algorithms have been developed for re-
constructing static PET images, including analytic filtered back-
projection (FBP) [1], maximum likelihood expectation maxi-
mization estimate (ML-EM) [2], maximum a posteriori (MAP)
[3], state space analysis [4]. Especially for MAP reconstruction,
designing penalty terms that preserve regional smoothness and
sharp variations of edges has been the focus of researches on
PET reconstruction [5]. These investigated penalty terms in-
clude Gibbs priors, logcosh, total variation, Huber potential [6],
[7], [8]. Some researchers also incorporated anatomical priors
from anatomy modalities, like CT and MRI, to help reconstruct
PET images [9]. For dynamic PET imaging, temporal priors in-
cluding spatiotemporal spline modeling [10], [11], [12], tracer
kinetics [13], [14], signal subspaces [15], wavelets [16] are also
exploited extensively in the literature.

Although of great progresses achieved, all aforementioned
reconstruction techniques incorporate statistical assumptions
on the measurement distribution (i.e., Poisson, shifted Pois-
son [17]). In general, there is a tradeoff in spatial and temporal
resolution, i.e., if the number of photon counts collected for
each time frame is large, then the number of time frames that
can be collected in a unit of time is small, and vice versa. In
order to permit a reasonable temporal resolution, the signal to
noise ratio (SNR) of the measured dynamic PET data is rela-
tively low. Such noisy images make the following segmentation
a very challenging issue.

In the segmentation efforts, many strategies from com-
puter vision community has been applied to PET images, no-
tably the geometric level set methods [18], [19], [20], graph-
cut-constrained framework [21], [22], [23]. These models, in
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general, are based on piecewise smooth assumptions and often
need manual initialization. Besides, many machine learning-
based methods are also investigated like active appearance mod-
els [24] and spectral clustering [25], [26], [27]. The active ap-
pearance model learns shape priors from existing database, and
spectral method takes TAC as a feature point for each voxel and
apply spectral clustering to segment the image into ROIs that
group voxels with a similar TAC.

Unlike other state-of-the-art methods which focus on either
activity map reconstruction or segmentation as two sequential
processes, our approach treats the spatiotemporal reconstruction
and spatial boundary finding problem as a coherent and unified
process. Since accurate segmentation requires knowledge and
modeling of the noise distribution in images, which is extremely
difficult for dynamic PET because the noise is spatially variant
and correlated between voxels in image domains. If these two
problems are tackled in a joint or simultaneous fashion, raw
sinogram data can be well modeled by Poisson statistics while
segmentation also enforce homogeneity for each region. Thus,
more consistent and probably more appropriate results can be
expected.

In this paper, we propose to simultaneously reconstruct and
segment dynamic PET image sequence. Dealing directly with
sinogram data, we are able to accurately model the noise statis-
tics by Poisson likelihood function. Through low-rank and
sparse decomposition of image sequence, the segmented tissues
are extracted in the sparse matrix while the low-rank constraint
also eliminates the noise by intrinsic averaging within tissues.
Considering the low SNR issue of PET measurement data, we
also incorporate vectorial total variation (VTV) norm of both
low-rank and sparse matrices into the model. An iterative pro-
cedure is then provided for optimizing the resulting objective
function. The proposed model is validated with realistic Monte
Carlo simulated data and real patient data.

A. Related Work

We realized that some of the recent research efforts upon
simultaneous reconstruction and segmentation may be relevant
to our study. Kamasak proposed to segment dynamic PET image
directly from sinogram data [31], [32]. Given the number of
ROIs, their model alternates between reconstructing activity
maps and clustering TACs. In [33], a level-set-based method
for simultaneously reconstructing and segmenting CT image
was proposed, which assumed that intensity value within each
region was bounded. Since stronger smooth and boundary priors
can be incorporated into reconstruction after segmentation, the
reported model is able to produce images with higher quality.
However, first of all, how to perform the initialization curve for
each region remains a challenging issue. Second, the assumption
of bounded regions is prone to fail in low SNR cases.

As for low-rank and sparse decomposition, Gao employed
such paradigm to reconstruct 4-D-CT images with undersam-
pled cardiac data in [34], where the sparse term was further
sparsified by framelet transform to extract the moving objects.
Moreover, the measured sinogram of CT were assumed to have
i.i.d Gaussian noise, which is far from realistic in practice. In
[35], similar strategy was applied to reconstruct undersampled

dynamic MRI imaging, where framelet transform was replaced
by Fourier transform. While it turns out that the stationary back-
ground is also sparse in the framelet/Fourier domain. This vio-
lates the incoherence condition in robust principle component
analysis (PCA), which requires the low-rank matrix to be non-
sparse [36]. Since when both matrices are sparse, the identi-
fiability of the proposed method is questionable. As a result,
the sparse components in [34], [35] contain both the station-
ary background and moving objects. More importantly, these
drawbacks may heavily hamper their applications to handle the
complicated nature of PET images.

B. Contribution of This Paper

The contribution of this paper may be summarized as follows:
1) Low-Rank and Sparse Modeling for Dynamic PET: De-

spite the similar form of objective function, we have a
completely different formulation for decomposing dy-
namic PET. Based on the metabolism imaging nature of
dynamic PET, in the first place, we model the image se-
quence by low-rank matrix given the fact that TACs within
each tissue should be approximately identical. We then
take one more step forward to low-rank/sparse decompo-
sition by noting that the rank of image sequence can be
further minimized by extracting the tissue having differ-
ent metabolism rates relative to the background. Thus, in
this way, more appropriate segmentation can be obtained
for PET without framelet or Fourier transform.

2) Poisson Likelihood and VTV Regularization: We model
sinogram with Poisson statistics, not the straightforward
Gaussian as previous study did [34]. Hence, more accurate
decomposition and reconstruction can be expected. Given
the intensity-varying nature of dynamic PET, we incor-
porate vectorial TV norm to regularize the low-rank and
sparse components in both temporal and spatial domains
[37]. Because vectorial TV norm is able to combine infor-
mation from other frames, more consistent image structure
could be preserved by our model.

II. METHOD

In this section, we present the framework of our low-rank and
sparse decomposition model. We first recap the imaging model
and Poisson likelihood function of PET measurement. Then we
elaborate the low-rank/sparse decomposition of dynamic PET
image sequence and introduce the VTV norm. Finally, an iter-
ative algorithm is provided to minimize the resulting objective
function.

A. Dynamic PET Imaging Model

Dynamic PET imaging involves a sequence of contiguous ac-
quisitions with certain frame rate in order to capture the tempo-
ral information of radio-tracer. Within each frame, the detected
events can be assumed to follow the Poisson statistics assump-
tion. For each individual frame, sinogram y denote the sum of
detected coincidence events at each detector bin within the time
period, i.e., y = {yi, i = 1, . . . , I}, where I is the number of de-
tector bins. Assuming y as a collection of independent Poisson
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random variables, the relationship between measurement y and
the unknown activity map x is as follows:

y ∼ Poisson{y}, y = Gx + r + s (1)

where x ∈ RJ is the unknown vectorized activity map and J
is the number of voxels, G is the system matrix with gij rep-
resenting the probabilities of detecting an emission from voxel
site j at detector i. It is mainly determined by physical property
of PET scanner and the effects of attenuation by the patient’s
body. r and s denote the random coincidence and scattered coin-
cidence events, respectively. Based on the independent Poisson
assumption, we can write the likelihood function of y by

Pr(y|x) =
I∏

i

e−y i
yyi

i

yi !
, y = Gx + r + s. (2)

Instead of maximizing above likelihood function, we often min-
imize the negative log-likelihood function of (2) since it is often
easier to deal with.

min
x

Ψ(y|x) = − log(Pr(y|x)) =
I∑

i

yi − yi log(yi). (3)

(3) constitutes the data fidelity term of many single frame PET
reconstruction algorithms.

For dynamic PET, we can combine multiple frame sinogram
into sinogram matrix by taking the mth sinogram vector ym ∈
RI as the mth column of matrix Y .

Y = [y1 ,y2 , . . . ,ym , . . . ,yM ], Y ∈ RI×M . (4)

M is overall number of frames. Since the unknown activity map
x ∈ RJ for each frame is also vector, the same procedure can
be applied to get the image matrix X .

X = [x1 ,x2 , . . . ,xm , . . . ,xM ], X ∈ RJ×M . (5)

With these definitions, we obtain Ψ(Y |X) by summing up the
likelihood function (3) for each frames.

min
X

Ψ(Y |X) =
M∑

m=1

I∑

i=1

yim − yim log yim (6)

where yim is the ith bin value of the mth frame sinogram ym ,
and yim is the ith entry of mth frame ym .

B. Low-Rank and Sparse Decomposition

Given the definition of X = [x1 ,x2 , . . . ,xm , . . . ,xM ], its
jth row is the TAC of the jth voxel. In many situations, it is
fair to assume that PET images are locally piecewise constant.
Each piece corresponds to a certain type of tissue that the TACs
of voxels within this tissue are almost identical. In other words,
row vectors that belong to voxels from the same tissue should
be linear dependent. Hence we can reconstruct dynamic PET
sequence by enforcing X being low-rank to eliminate random
noise of TACs. However, it is interesting that if we take one
more step forward by further minimizing the rank of X , we are
able to segment the tissues in dynamic PET image sequence.

To be more specific, the intuition behind the decomposition is
that it segments the tissues according to the magnitude of TAC
into background components (L) and foreground components

(S). The L components have average TAC so that the tissue
TACs within L are similar to one another but are dissimilar
to those drawn from the S components. Therefore, the image
matrix can be decomposed as X = L + S. Moreover, matrix L
should be low-rank since it merely contains the average TACs
for each voxel. The heterogeneous tissues that have different
metabolism rates should be sparse relative to background. This
leads to the following decomposition model:

min
L,S

rank(L) + λ‖S‖0 + μΨ(Y |X) s.t. L + S = X (7)

where L is the background with shared metabolism rates for
each pixel, S is composed of the heterogeneous tissues, ‖S‖0
denotes the number of nonzero entries of S, Ψ(Y |X) is the
negative log-likelihood function in (6) and μ is weighting pa-
rameter. Unfortunately, this is a highly nonconvex problem and
no efficient solution is known. Therefore, we resort to solve its
convex surrogate function [36]

min
L,S

‖L‖∗ + λ‖S‖1 + μΨ(Y |X) s.t. L + S = X (8)

where ‖L‖∗ :=
∑

j σj (L) denotes the nuclear norm of matrix
L, i.e., the sum of singular values of L, and ‖S‖1 =

∑
jm |Sjm |

denotes the �1-norm of S seen as a long vector in RJ ·M , λ

is weighting parameter of sparsity. The optimum solution of
(8) would give us the low-rank induced background L and the
sparse matrix S that consists of the heterogeneous tissues that
vary with respect to the background.

C. VTV Norm

The above low-rank/sparse decomposition model in
Section II-B implicitly assumes the image matrix X , recon-
structed by likelihood function Ψ(Y |X), is free of noise for
decomposition, which is not the case in practice. In fact, such
maximum likelihood based estimate of X are ill-conditioning
and noisy, i.e., the “checkerboard” effect known for ML-EM [2].
Based on our heuristic experiments, both L and S components
suffer from noises.

Dynamic PET are used to capture temporal information of
the biological processes in living tissues, i.e., the intensity vari-
ations for each pixel. Therefore, frames in the dynamic image se-
quence share similar image structures and voxels in neighboring
frames have close values. Many spatial smoothing techniques
like Huber function and total variation norms have been proven
effective for static PET reconstruction. For kinetic parameter
estimation in dynamic PET, several spatiotemporal smoothing
models have also been proposed based on wavelet and spline
[10]. Here we adopt the simple and efficient VTV norm. VTV
norm is an extension of scalar TV to vector-valued image [38]. It
keeps the piecewise smoothing property of scalar TV norm but
also introduces coupling between frames that interpolates and
smooths data in different frames throughout the image sequence.
Therefore, we propose to regularize both low-rank matrix L and
sparse matrix S with VTV norms [37].

Let U = [u1 , . . . ,um , . . . ,uM ] denote a M -frames image
sequence, where um ∈ RJ is the mth frame image vector. The
definition of VTV norm is as follows [39]:
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Rvtv(∇U) =
J∑

j

√√√√
M∑

m

‖(∇um )j‖2
2 (9)

<?vsp -3pt?>where ∇ is the gradient operator on vectorized
image um , and (∇um )j denotes the gradient vector at jth pixel
of the mth frame. Incorporating VTV norms of L and S into
(8), we propose to minimize the following objective function.

min
L,S,X

‖L‖∗ + λ‖S‖1 + μΨ(Y |X) + νLRvtv(∇L)

+νS Rvtv(∇S)

s.t. L + S = X (10)

where νL , νS are weighting parameters of VTV norms.

D. Optimization Algorithm

To optimize problem (10), we first introduce two auxiliary
variables U,Q to split the minimization problem (10) into the
equivalent constrained optimization problem

min
L,S,X

‖L‖∗ + λ‖S‖1 + μΨ(Y |X) + νLRvtv(∇U)

+νS Rvtv(∇Q)

s.t. L + S = X, L = U, S = Q. (11)

We then define the augmented Lagrangian function for (11) [42]

L(L, S, U,Q,X) = ‖L‖∗ + λ‖S‖1 − 〈Z,X − (L + S)〉

+
β

2
‖X − (L + S)‖2

F + μΨ(Y |X)

+ νLRvtv(∇U) − 〈ZL,L − U〉

+
βL

2
‖L − U‖2

F + νS Rvtv(∇Q)

− 〈ZS , S − Q〉 +
βS

2
‖S − Q‖2

F (12)

where Z,ZL , ZS are Lagrangian multipliers and β, βL , βS are
penalty parameters. The definition of matrix inner product and
Frobenius norm can be found in [40]. Because it is difficult to
solve problem (12) exactly, we divide it into five subproblems,
each of which minimizes the above objective function w.r.t.
each variable with others fixed. Some of them have exact one-
step solution, some do not. Based on the characteristic of each
subproblem, we group them into three categories including:

(1) L, Ssubproblems
(2) X subproblem
(3) U,Q subproblems

and derive the solution for each of them in the following sections.
1) L, S Subproblem: Given other variables fixed, we have

the following L subproblem:

min
L

‖L‖∗ +
β

2
‖X − (L + S) − Z/β‖2

F +
βL

2
‖L

− U − ZL/βL‖2
F . (13)

By completing the squares, the minimization problem (13) is
equivalent to

min
L

‖L‖∗ +
(

β + βL

2

)
‖L

−
β

(
X − S − Z

β

)
+ βL

(
U + ZL

βL

)

β + βL
‖2

F . (14)

This form can be solved directly with singular value threshold-
ing (SVT) [43]. Providing soft shrinkage defined as Sδ (x) =
sgn(x)max(|x| − δ, 0), SVT is Dδ (Ω) = USδ (Σ)V T , where
UΣV T = Ω is singular value decomposition of Ω. The solution
of (14) is

Lk+1 = D1/(β+βL )(ΩL )

s.t. ΩL =
β(X − S − Z/β) + βL (U + ZL/βL )

β + βL
. (15)

S subproblem has a similar form

min
S

λ‖S‖1 +
β

2
‖S − (X − L − Z/β)‖2

F

+
βS

2
‖S − (Q + ZS /βS )‖2

F (16)

whose solution can be directly obtained by soft shrinkage [36]

Sk+1 = Sλ/(β+βS )(ΩS )

s.t. ΩS =
β(X − L − Z/β) + βS (Q + ZS /βS )

β + βS
. (17)

2) X Subproblem: To compute Xk+1 , we first rewrite the
negative log-likelihood function Ψ(Y |X) with respect to hidden

variable ω =
{
{{ωm

ij }J
j }I

i

}M

m
, where ωm

ij denotes the emissions
from voxel j detected at LOR i in the mth frame [2].

Ψ(ω|X) =
M∑

m=1

⎛

⎝
J∑

j=1

[
I∑

i=1

(
gijxjm − ωm

ij log(gijxjm )
)]⎞

⎠ .

(18)
Replacing the likelihood function Ψ(Y |X) in (12) with
Ψ(ω|X), we find that X subproblem consists of minimizing a
combination of Ψ(ω|X) and a quadratic term. Such form arises
in PET reconstruction community as MAP reconstruction [3].
It does not has an exact solution, and we use expectation max-
imization (EM)-based algorithm to iteratively optimize it. The
two steps of our EM-based algorithm are:

1) E-Step: Take conditional expectation of ω, ω̂ =
E(ω|Y ;Xk ), and plug it into function Ψ(ω|X). Then
we have the following surrogate function φ(X;Xk ) of X
subproblem:

φ(X;Xk ) = Ψ(ω̂|X) = μ

M∑

m=1

( J∑

j=1

[ I∑

i=1

(gijxjm

− ω̂m
ij log(gijxjm ))

])

+
β

2
‖X − (L + S) − Z/β‖2

F

s.t. ω̂m
ij =

gij yim(∑J
l=1 gilx

(k)
lm + rim + sim

)xk
jm .

(19)
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2) M-Step: Minimize φ(X;Xk ) by zeroing its derivative
with respect to xjm

∂φ(X;Xk )
∂xjm

= 0 = μ
I∑

i=1

gij −
μ

xjm

I∑

i=1

ω̂m
ij + βxjm

−β[L + S + Z/β]jm (20)

where [·]jm denote the jmth entry of the matrix. The
solution of xjm is then the root of the following second
order polynomial equation:

βx2
jm + (μ

I∑

i=1

gij − β[L + S + Z/β]jm )xjm

− μ

I∑

i=1

ω̂m
ij = 0. (21)

Noting that objective function in (19) is strictly convex,
whose minimum upon the positive cone is unique, we
update xjm by choosing the larger root of (21) [3]

xk+1
jm =

−bjm +
√

b2
jm − 4ajm cjm

2ajm

s.t. ajm = β, bjm =

(
μ

I∑

i=1

gij −β[L + S + Z/β]jm

)
,

cjm = −μ
I∑

i=1

ω̂m
ij . (22)

The EM algorithm is guaranteed to converge monotonically
to the minimum. Hence, we optimize X subproblem by alter-
natively taking E-step and M-step until inner convergence. In
fact, the augmented Lagrangian function (12) is expected to
be minimized by solving each subproblem alternately. There-
fore, such inner converged solution at each iteration is sufficient
for achieving the minimum of augmented Lagrangian function
in (12).

3) U,Q Subproblem: Before deriving the solution of U,Q
subproblem, we first give some basic notations related to vec-
torial TV norm. Recall the matrix U = [u1 , . . . , um , . . . ,
uM ], U ∈ RJ×M , each column of U is the vectorized image.
We transform each column um ∈ RJ into its matrix form
ũ ∈ RB×D , where B · D = J . The transformed Ũ = [ũ1 , . . . ,
ũm , . . . , ũM ] is now in the space of RB×D×M and let Λ denote
this new space. The vectorial TV term of U defined in (9) can
then be equivalently reformulated for Ũ as

Rvtv(∇Ũ) =
B,D∑

b,d

√√√√
M∑

m

‖(∇ũm )b,d‖2
2 (23)

where ∇ is now the ordinary gradient operator of ũm in matrix
domain. Operator ∇ maps Ũ to ∇Ũ = [∇ũ1 , . . . ,∇ũm , . . . ,

∇ũM ], and we denote the space of ∇Ũ as Γ here. The usual
inner product and induced norm of Λ and Γ are defined as
follows [39]:

〈T̃ , P̃ 〉Λ =
M∑

m

trace(t̃m p̃∗
m )

‖T̃‖Λ =
√
〈T̃ , T̃ 〉Λ =

√√√√
M∑

m

‖t̃m‖2
F (24)

〈∇T̃ ,∇P̃ 〉Γ = 〈∇1T̃,∇1P̃〉Λ + 〈∇2T̃,∇2P̂〉Λ

‖∇T̃‖Γ =
√
〈∇T̃ ,∇T̃ 〉Γ (25)

where p̃∗
m denotes the conjugate transpose of p̃m , ∇1 T̃ and

∇2 T̃ denote the gradient image of T̃ along horizontal and ver-
tical directions, respectively. For an element Ũ ∈ RB×D×M in
Λ and its corresponding point U in space RJ×M , we show that
‖U‖2

F is equivalent to ‖Ũ‖2
Λ defined above.

‖U‖2
F =

M∑

m

J∑

j

|ujm |2 =
M∑

m

B∑

b

D∑

d

|ũbd,m |2

=
M∑

m

‖ũm‖2
F = ‖Ũ‖2

Λ . (26)

With the notations defined above, we are able to demonstrate
the solution of U,Q subproblem now. Noting that U and Q
subproblems are almost identical, we first demonstrate how to
solve the U problem and then the solution of Q could be obtained
in the same way.

The objective function for U subproblem has the following
form:

min
U

νLRvtv(∇U) +
βL

2
‖U − H‖2

F

s.t. H = L − ZL/βL . (27)

To keep notations clear, we denote H = L − ZL/βL as an inter-
mediate variable representing L − ZL/βL . Such vectorial TV
model in (27) has been extensively studied in the literature [38].
We use the augmented Lagrangian multiplier (ALM) scheme to
solve (27), which has been shown one of the fastest methods for
such objectives [39]. We next explain in detail the ALM scheme
that we use for the VTV subproblem.

Given the equivalence relationship between Frobenius norm
in RJ×M and the usual norm ‖ · ‖Λ in Λ, we rewrite the objec-
tive function of (27) with transformed Ũ , H̃ .

min
U

νLRvtv(∇Ũ) +
βL

2
‖Ũ − H̃‖2

Λ

s.t. H̃ = L̃ − Z̃L/βL . (28)

By introducing an auxiliary variable Ê ∈ Γ, the minimization
problem of (28) is equivalent to the following constrained opti-
mization problem:

min
U

νLRvtv (Ê) +
βL

2
‖Ũ − H̃‖2

Λ

s.t. Ê = ∇Ũ , H̃ = L̃ − Z̃L/βL . (29)
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We then define the augmented Lagrangian function of (29)

Lvtv (Ũ , Ê) = νLRvtv(Ê) +
βL

2
‖Ũ − H̃‖2

Λ

−〈Zvtv , Ê −∇Ũ〉Γ +
βvtv

2
‖Ê −∇Ũ‖2

Γ

(30)

where Zvtv ∈ Γ is Lagrangian multiplier, 〈·〉Γ and ‖ · ‖Γ

are inner product and norm in Γ defined in (25). The
ALM scheme iteratively minimizes (30) with respect to each
variable Ũ , Ê

Ũ k+1 = min
Ũ

βL

2
‖Ũ − H̃‖2

Λ − 〈Zvtv , Ê −∇Ũ〉Γ

+
βvtv

2
‖Ê −∇Ũ‖2

Γ (31)

Êk+1 = min
Ê

νLRvtv(Ê) − 〈Zvtv , Ê −∇Ũ〉Γ

+
βvtv

2
‖Ê −∇Ũ‖2

Γ (32)

Zk+1
vtv = Zvtv − βvtv (Ê −∇Ũ). (33)

Given periodic boundary condition, we can use Fourier trans-
form on the optimal condition of (31) to transform ∇T ∇ into
diagonal matrix. While such feasibility is not available for the
vectorized image U , which is the reason we transform vector-
ized image U into its matrix form Ũ . The solution of Ũ k+1 is
[39]

Ũ k+1 = F−1

{
F{βLĤ −∇T Zvtv + βvtv∇T Ê}

βL Î + βvtvF{∇T ∇}

}
(34)

where Î is the identity element of Λ. Here, applying
Fourier transform to an element Ũ = [ũ1 , . . . , ũm , . . . , ũM ]
in Λ means applying Fourier transform to each ũm∀m,m =
1, . . . ,M . Êk+1 in (32) has closed form solution by soft shrink-
age. Let êbd denote the vector (êbd,1 , . . . , êbd,m , . . . , êBD,M ),
where êbd,m denotes the bdth entry of the mth frame im-
age in Ê. Updating Ê is accomplished by updating each
êbd as

for ∀(b, d) êbd = max

{
1 − νL

βvtv
/

√√√√
M∑

m

‖ŵbd,m‖2
2 , 0

}
· ŵbd

s.t. Ŵ = ∇Ũ + Zvtv /βvtv . (35)

We then have an inner iterative procedure to alternatively update
Ũ and Ê according to (34) and (35).

Subproblem of Q can be solved in the same way since they
share the same form. The Lagrangian multipliers Z,ZL , ZS

are updated as usual. By now, we have the update rules for
all variables in our objective function (12). To wrap up the
optimization algorithm, we summarize the iterative procedure
in Algorithm 1.

Algorithm 1 Iteration Procedure of Optimization Algorithm
Require: Sinogram Y and System matrix G, weighting

parameters λ, μ, νL , νS .
1: Initialize L0 = S0 = 0, U 0 = Q0 = 0, Z = ZL =

ZS = 0, X = FBP(Y ).
2: repeat
3: Compute Lk+1 and Sk+1 using (15) and (17).

� Solving L, S subproblem
4: repeat � Solving X subproblem
5: Take E-step using (19).
6: Take M-step using (22).
7: until Relative change of X < 10−3

8: Uk+1 ← VTVUk , Qk+1 ← VTVQk . �Solving
U,Q subproblem

9: Update multipliers Z,ZL , ZS .
10: k ← k + 1
11: until Relative change of L, S,X < 10−4 .
12: Return Lk , Sk ,Xk

13:
14: function VTVU
15: repeat
16: Compute Û using (34).
17: Update Ê using (35).
18: Update multipliers Zvtv .
19: until Relative change of Û , Ê < 10−3

20: Return Uk

21: end function

Fig. 1. (a) Zubal thorax phantom with three ROIs indicated by different colors.
(b) TAC for three ROIs respectively.

E. Parameter Setting
During experiments, μ, νL and νS , these three regulariza-

tion parameters are selected by evaluating reconstruction per-
formance from a range of values. Specifically, μ is the weight-
ing parameter of the likelihood function Ψ(Y |X). It depends
on noise level, and it should be strengthened when SNR in-
creases. In the following experiments, it ranges from 0.001 to
0.005. νL and νS are coefficients before VTV norms. Since
both of them serve as piecewise smoothers, we set the two vari-
ables with the same value, which lies in [1 × 10−4 , 1 × 10−3 ]
in the experiments. Other parameters are fixed thorough out
this paper, λ follows the rule from robust PCA theory [36],
i.e., λ = 1/

√
max(J,M). All the Lagrangian penalty param-

eters β, βS , βL , βvtv are fixed at 0.1. As to the parameters of
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Fig. 2. Reconstructed activity images for Monte Carlo simulated Zubal phantom. From top row to bottom row: fifth, eighth and 17th frame.

Fig. 3. Segmentation on the fifth frame of Monte Carlo simulated Zubal thorax phantom. (a) RD-based level-set on ML-EM and SPS-OS reconstructed image.
(b) KSC on ML-EM reconstructed images. (c) KSC on SPS-OS reconstructed images. (d) Sparse component in the proposed model.

TABLE I
STATISTICAL STUDIES OF RECONSTRUCTED ZUBAL PHANTOM

Method Bias Variance RMSE

ML-EM 0.0645 0.0206 0.1431
SPS-OS 0.0521 0.0189 0.1276
Ours 0.0338 0.0074 0.0844

compared algorithms in the following experiments, we tried
our best to manually tune them regarding to reconstruction and
segmentation accuracy statistics.

III. RESULTS

In this section, we validate the proposed model on both sim-
ulated phantom data and real patient data. The reconstructed
images were compared to the classical ML-EM [2] and sep-
arable paraboloidal surrogates with ordered-subsets (SPS-OS)

TABLE II
JACCARD INDEX OF SEGMENTATION FOR THE FIFTH FRAME

OF ZUBAL PHANTOM

Method RD on
ML-EM

RD on
SPS-OS

KSC on
ML-EM

KSC on
SPS-OS

Ours

Jaccard index 0.6832 0.7476 0.7863 0.7211 0.9373

[28], [29]. The regularization term for SPS-OS method is the
Huber potential function. On the other hand, two different meth-
ods for segmenting PET image sequence were examined along
with the proposed model. One is the reaction diffusion (RD)
model based on level-set with its initialization curve set man-
ually as a rectangle surrounding the target [30]. Another is the
kinetic spectral clustering (KSC) method [27], which views the
TAC as data points and segment dynamic PET image sequence
by clustering TACs using spectral clustering.



CHEN et al.: SIMULTANEOUS RECONSTRUCTION AND SEGMENTATION OF DYNAMIC PET 1791

Fig. 4. (a) Brain phantom with two ROIs indicated by different colors.
(b) TAC for two ROIs.

In simulation studies, we are able to evaluate the algo-
rithms by ground truth value. Quantitative results of recon-
struction are given by relative bias, relative variance, and rel-
ative root mean square error (RMSE). They are calculated by
bias = 1

n

∑n
j |xj − x̂j |/x̂j , variance = 1

n−1

∑n
j (xj −x̂j

x̂j
)2 and

RMSE = ( 1
n

∑n
j (xj −x̂j

x̂j
)2)

1
2 , where xj denotes the recon-

structed value at voxel j and x̂j denotes the true value at voxel
j. The bias, variance and RMSE presented in the following are
averaged over all the frames of image sequence, whose intensity
value have been normalized into [0,1]. We adopt the Jaccard in-
dex to measure the overlapping of the segmented region A and
the true region B

Jaccard index =
(A ∩ B)
(A ∪ B)

. (36)

Jaccard index ranges from 0, indicating no spatial overlap, to 1,
indicating complete overlap.

The organization of this section is as follows: We first demon-
strate the results of Monte Carlo simulated datasets based
on Zubal phantom. In Monte Carlo simulated brain phantom,
three datasets with different counting rates, i.e., the number
of coincidence events, are examined to test the robustness of
algorithms. At last, we show the results of the real patient
data.

A. Monte Carlo Simulations

Monte Carlo simulation procedure is able to produce realis-
tic sinogram data for PET by simulating the physical imaging
process. More importantly, given ground truth, it enables us to
evaluate the reconstruction algorithms quantitatively via bias-
variance analysis. In this section, we present the results based on
Monte Carlo simulation datasets including Zubal thorax phan-
tom and brain phantom.

1) Zubal Thorax Phantom: The first experiment was con-
ducted on Monte Carlo simulated data based on Zubal phan-
tom, as shown in Fig. 1(a). TAC for three ROIs are shown in
Fig. 1(b). The dynamic PET image sequence (64 × 64 × 18)
was generated by two-compartment-model. The simulated
tracer was 18F-FDG and kinetic parameters were based on pre-
vious studies [13]. The PET scanner in simulation procedure is
the Hamamatsu SHR74000. The final generated sinogram has
64 × 64 projections for every slice.

Fig. 2 shows the results of Monte Carlo simulated Zubal tho-
rax phantom. Without spatial regularization, ML-EM method
reconstructs noisy and blur images. As you can see in the first
two rows of Fig. 2, SPS-OS method produces slight staircase
effects. The proposed model successfully reconstructs the im-
ages and decomposes the sequence into low-rank and sparse
components, as presented in Fig. 2(d)–(f). As we explained in
previous sections, the low-rank constraint naturally enforce re-
gional smoothness and vectorial TV norms also spatially smooth
the TACs to achieve better reconstructions. Rank of the recov-
ered low-rank matrix is one here that activity time curves for
each region share the same curve in the low-rank matrix. The
statistical analysis of reconstruction in Table I shows that our
method gives the best results.

Before discussing the results of segmentation, we first give
some details of presented algorithms and data postprocessing
procedures. The initialization curves for level set-based RD
method are manually set based on visual inspection. The KSC
method operates on the whole image sequence. As a result, we
show different clusters of voxels by different colors. For ease
of quantitative comparison, we first threshold the sparse com-
ponent in the proposed model by 0.05∗ maximal pixel value
through out this experiment and the following to eliminate the
random noise and binarize the resulting image.

Fig. 3 shows the results of three segmentation algorithms,
the RD method and our sparse component of the fifth frame,
and the results of KSC method for the whole image sequence.
We can find that, due to low spatial resolution and noise, RD
method does not describe the boundaries of objects well. The
KSC method does a much better job. But both KSC and proposed
method fail to identify the second ROI, as indicated with cyan
color in Fig. 1(a). Fig. 3(d) is the binarized sparse component of
proposed model of the fifth frame. The quantitative comparison
of segmentation is given by the Jaccard index in Table II.

2) Brain Phantom: We next validate the proposed model on
the Monte Carlo simulated brain phantom. The template of brain
phantom and the corresponding TACs are shown in Fig. 4. A
primary tumor is inserted into the phantom indicated as ROI1.
We think the proposed model would be helpful in extracting
tumors if the metabolism rate of tumor has significant difference
from other normal tissues.

The dynamic image sequence is generated by the two-
compartment-model. The simulated tracer is 18F-FDG, and
the corresponding kinetic parameters are based on previous
work [41]. The raw sinogram data are produced by the Monte
Carlo simulation procedure with the same settings as in last
experiment. To validate the robustness of reconstruction algo-
rithms, three groups of datasets with different counting rates
(104 , 105 , 106 ) are tested.

Fig. 5 shows the 17th reconstructed frame of brain image se-
quence for three level of counting rates. Three rows correspond
to 104 , 105 , 106 counting rates. SPS-OS method could preserve
image structure well in 105 , 106 cases. When it comes to 104 ,
both ML-EM and SPS-OS reconstructed images are severely
corrupted that the tumor region becomes hard to visually iden-
tify. While the proposed method is able to produce more accurate
and stable results. The quantitative evidence is in Table III. Our
method has much better bias and variance performance.
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Fig. 5. 17th frame of reconstructed activity images for Monte Carlo simulated brain phantom. From top row to bottom row: 104 , 105 , 106 counting rates.

TABLE III
STATISTICAL RESULTS OF RECONSTRUCTED BRAIN PHANTOM IMAGES

Method 104 counts 105 counts 106 counts

Bias Variance RMSE Bias Variance RMSE Bias Variance RMSE

ML-EM 0.1199 0.0738 0.2611 0.0716 0.0350 0.1649 0.0650 0.0308 0.1519
SPS-OS 0.1039 0.0662 0.2446 0.1011 0.0679 0.2394 0.0758 0.0421 0.1830
Ours 0.0530 0.0250 0.1264 0.0409 0.0117 0.1027 0.0363 0.0100 0.0930

As for segmenting the brain phantom, we are interested in
accurately extracting the tumor regions. The results of the 17th
frame for three counting rates are demonstrated in Fig. 6 along
with Jaccard index of segmented tumors in Table IV. For the
level-set-based RD method, we find it does no converge in low
counting rates data. In such cases, we have to manually set the
maximum iteration number to early stop the algorithm. Any-
way, such gradient and regional homogeneity-based method is
challenged on such low resolution and noisy images. We can
also find that the KSC method is sensitive to the increasing
noise in dynamic PET images. On the other hand, using tempo-
ral change and the coupling between frames by VTV norm, the
proposed method gives accurate and stable results, as indicated
in Table IV. In 104 counting case that KSC method failed to
identify the tumor and background, we use ∞ to denote failure.

B. Real Patient Data

The real data in this study is a dynamic PET scan ac-
quired from a cardiac patient at a local hospital. The scanner is
Hamamatsu SHR-22000 whole body PET scanner. It has 32

Fig. 6. Segmentation on the 17th frame of Monte Carlo simulated brain phan-
tom. First row: RD-based level-set on ML-EM and SPS-OS reconstructed im-
ages. Second row: KSC on ML-EM reconstructed image sequence. Third row:
KSC on SPS-OS reconstructed image sequence. Fourth row: sparse component
of the proposed model.
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Fig. 7. Results for the fourth frame reconstructions and segmentation of the real cardiac patient data. (a) RD om ML-EM, (b) KSC on ML-EM, (c) RD on
SPS-OS, (d) KSC on SPS-OS, (e) Sparse + Low-rank, (f) Low-rank, (g) Sparse.

TABLE IV
JACCARD INDEX OF SEGMENTED 17th FRAME FOR MONTE CARLO SIMULATED

BRAIN PHANTOM DATA

Method RD on
ML-EM

RD on
SPS-OS

KSC on
ML-EM

KSC on
SPS-OS

Ours

104 counts 0.6667 0.6401 ∞ ∞ 0.7105
105 counts 0.5278 0.5128 0.6401 0.1636 0.7750
106 counts 0.4444 0.3056 0.6481 0.5373 0.8293

crystal rings and is operated in 2-D acquisition mode during the
scan process. The transaxial resolution of the central FOV is
3.7 mm/pixel. A 10-min transmission scan using rotating 68Ge
line sources was performed then 10mCi 18F-FDG was injected
to test metabolism of patient. A dynamic scan was performed
consisting of 19 frames with variable frame length for a total
duration of 60 min.

The reconstruction and segmentation results are presented to-
gether in Fig. 7. The endocardial boundary was not detected by
RD method on the ML-EM and SPS-OS reconstructed results.
KSC on ML-EM reconstructed image successfully identifies the
myocardium region. While KSC on SPS-OS fails to segment the
endocardial boundary, as indicated in Fig. 7(d). In this exper-
iment, we observed that both the reconstructed image quality
and the segmentation result have been improved through using
our proposed method.

C. Implementation Analysis

1) Computation Time: We summarize the computation time
of each experiment in Table V. All algorithms are implemented
in the Matlab environment (Version 2009a) on 3.40-GHz CPU,
16 RAM personal computer. For reconstruction and segmenta-
tion that are obtained by separate algorithms, like ML-EM and

RD method, we provide the the overall computation time along
with the time consumption of each individual procedure. For
instance, the computation time for ML-EM + RD method is
represented as 14.7 s (6.7 + 8.0). It means the ML-EM recon-
struction takes 6.7 s and RD segmentation takes 8.0 s. So the
sum of the two procedures is 14.7 s.

In Table V, the proposed method is slower compared to other
algorithms. However, RD method can only delineate one object
in a single frame after manual initialization. As indicated in the
previous experiments, the proposed method obtains more accu-
rate reconstruction and segmentation since these two procedures
are tackled coherently. The computation time of proposed algo-
rithm is currently limited by the singular value decomposition
procedure and the subproblem of vectorial TV norm. We will
explore the possibility of SVD-free method to accelerate the
algorithms in the future [44].

2) Parameter Analysis: To examine the robustness of the
tuning parameters within the given range, we calculate the rel-
ative bias and Jaccard index based on different choices of μ, νL

and νS . The definition of Jaccard index is the same as (36). μ
is tested within [0.001, 0.01], while νL and νS share the same
value, which is examined between 1 × 10−4 and 1.5 × 10−3 .
The sinogram data in this study is the Monte Carlo simulated
Zubal phantom in Section III-A1. When different values of μ is
tested, νL and νS are fixed at 5 × 10−4 . μ is set 0.003 for the
experiments in terms of different choices of νL and νS .

Fig. 8(a) and (b) shows that bias is less than 0.04 with
μ ∈ [0.001, 0.01] and the segmentation accuracy is relatively
stable when μ > 0.003. The reconstruction accuracy of the pro-
posed method is sensitive to νL , νS when they are less than
4 × 10−4 as shown in Fig. 8(c). Moreover, the proposed method
may produce relatively stable segmentation results in terms of
the Jaccard index even using different νL and νS as seen in
Fig. 8(d).
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TABLE V
COMPUTATION TIME OF PRESENTED ALGORITHMS

Method Zubal Brain 104 Brain 105 Brain 106 Patient

ML-EM + RD 14.7 s (6.7 + 8.0) 9.7 s (6.5 + 3.2) 9.6 s (6.5 + 3.1) 9.7 s (6.5 + 3.2) 9.0 s (5.6 + 3.4)
ML-EM + KSC 32.1 s (6.7 + 25.4) 30.3 s (6.5 + 23.8) 29.5 s (6.5 + 23.0) 31.2 s (6.5 + 24.7) 51.7 s (5.6 + 46.1)
SPS-OS + RD 26.4 s (18.6 + 8.4) 19.6 s (16.6 + 3.0) 20.8 s (17.8 + 3.0) 20.8 s (17.7 + 3.1) 18.6 s (15.1 + 3.5)
SPS-OS + KSC 42.7 s (18.6 + 24.1) 42.6 s (16.6 + 26.0) 42.8 s (17.8 + 25.0) 41.5 s (17.7 + 23.8) 38.6 s (15.1 + 23.8)
Ours 38.3 s 92.8 s 90.4 s 106.3 s 65.7 s

Fig. 8. Relative bias and Jaccard index under different choices of μ and
νL , νS . μ ∈ [0.001, 0.01] and νL , νS ∈ [1 × 10−4 , 1.5 × 10−3 ]. (a) Bias for
μ, (b) Jaccard index for μ, (c) Bias for vL , vS , (d) Jaccard index for vL , vS .

IV. CONCLUSION

We have developed a low-rank and sparse decomposition
framework that dynamic PET reconstruction and tissue segmen-
tation can be achieved simultaneously. To suppress the noises
in the measurement, we incorporate Poisson likelihood func-
tion for data fidelity and vectorial TV norm into the objective
function. Since segmentation is often posed as a piecewise con-
stant approximation while low-rank matrix is also composed
of several homogeneous regions. The vectorial TV norm is ap-
plied to both low-rank and sparse matrices. Both experiments
on realistic simulation data and real patient data show that the
proposed model gives competitive results. We believe the re-
ported promising results on reconstruction and segmentation
could be of help for parametric image calculation and ROI-based
quantification.
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