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Abstract Molecular imaging is a new research discipline enabling the
visualization, characterization and quantification of biologic processes taking place
at the cellular and subcellular levels within intact living subjects. Applications of
molecular imaging techniques will benefit various clinical practices including clas-
sification and tracking of chemotherapy and treatment planning of radiotherapy, as
well as drug discovery and development. Molecular imaging typically includes two
or three dimensional imaging with quantification over time, and is often applied on
molecular imaging modalities, such as Positron Emission Tomography (PET), and
Single Photon Emission Computed Tomography (SPECT). Computational methods
serve as an essential part in molecular imaging. Various computational methods are
developed to accelerate image processing, identify underlying diseases hidden in
the image volumes, evaluate the effectiveness of drug and radiotherapy etc. Com-
putational methods for molecular imaging are in a fast growing field and full of
potentials and challenges, and related topics have attracted many researchers from
both academia and industry. This book covers the selected topics in computational
methods for molecular imaging. As the start, this review provides a brief introduc-
tion to the current status of computational methods for molecular imaging and their
applications.

Keywords Computational methods · Molecular imaging · Positron emission
tomography (PET) · Clinical applications

1 Introduction to Molecular Imaging

Molecular imaging provides the images of molecular and cellular level activi-
ties inside the body. Molecular imaging enables doctors to measure the biological
processes quantitatively and reflects the functionality of organs and tissues inside

F. Gao · P. Shi (B)

Rochester Institute of Technology, 102 Lomb Memorial Drive,
Rochester, NY 14623-5608, USA
e-mail: pengcheng.shi@rit.edu

© Springer International Publishing Switzerland 2015
F. Gao et al. (eds.), Computational Methods for Molecular Imaging,
Lecture Notes in Computational Vision and Biomechanics 22,
DOI 10.1007/978-3-319-18431-9_1

3



4 F. Gao and P. Shi

patients. According to the definition from the Society of Nuclear Medicine and
Molecular Imaging (SNMMI), molecular imaging is the visualization, characteriza-
tion, and measurement of biological processes at the molecular and cellular levels
in humans and other living systems [52]. Molecular imaging is a noninvasive pro-
cedure and can be used to study and diagnose cancer, brain diseases and disorders,
cardiology, and various disorders in different organs and tissues. Major molecu-
lar imaging modalities are Positron Emission Tomography (PET) and Single Pho-
ton Emission Computed Tomography (SPECT), furthermore, hybrid modalities, i.e.
hybrid PET/CT [73], PET/MRI [64], PET/SPECT/CT [50] significantly enrich the
ability of molecular imaging.

PET as a biomedical research technique and clinical diagnostic procedure is one of
themost important part in nuclearmedical imaging devices. In the past three decades,
there have been significant advancements in PET scanners and image processing
methods [4, 75, 77]. Currently, PET scans are most commonly used to detect cancer,
heart problems, brain disorders and other central nervous system disorders. PET
scan can be used to track the spread of disease inside body and patient response to
drugs and therapies, which help to determine the more effective treatment plans for
individual patient. PET scans can also be used to follow-up and manage ongoing
cares. Quantitative dynamic PET imaging also offers good promise for personalized
drug treatment by accurate pharmacokinetic analysis and will enable medicine to be
tailored to each person’s needs, and improve the safety, quality and effectiveness of
healthcare for every patient.

PET scans rely on the injected radiotracers which circulate inside the body. Dif-
ferent radiotracers will reveal different diseases. Besides 18F-FDG, which is widely
used for cancer diagnosis, cardiology, neurology, there are many other radiotrac-
ers used in research and clinical applications, for example, 18F-FLT (3′-fluoro-3′-
deoxy-l-thymidine) is developed to image tumor cell proliferation [12], 11C-acetate
is developed to localize prostate cancer [57], 13N-ammonia is developed to quan-
tify the myocardial blood flow [46], 11C-dihydrotetrabenazine (DTBZ) is developed
for brain imaging, which can be used for differentiating Alzheimer’s disease from
dementia and Parkinson’s disease [45]. Labeling drugs with various biomarkers is
always a hot topic for pharmaceutical studies, where critical quantitative information
can be generated by using dynamic PET imaging.

SPECT scan uses a gamma camera that rotates around the patient to detect the
radiotracer inside body. SPECT will also produce a set of 3D images but generally
have a lower resolution. The radiotracers commonly used for SPECT scan include
99m T c [54], 188Re [39], 68Ga [84], 82Rb [24], etc. Electrocardiography (ECG)-
Gated 82Rb can also be used for myocardial perfusion PET [6]. Hybrid SPECT/CT
is also designed to providemore accurate anatomical and functional information [71].
SPECT scan differs from PET scan in that the tracer stays in your blood stream rather
than being absorbed by surrounding tissues, therefore, SPECT scan can show how
bloodflows to the heart andbrain are effective or not. SPECTscan is cheaper andmore
readily available than higher resolution PET scan. Tests have shown that SPECT scan
might bemore sensitive to brain injury than eitherMRI or CT scanning because it can
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detect reduced blood flow to injured sites. SPECT scan is also useful for presurgical
evaluation of medically uncontrolled seizures and diagnosing stress fractures in the
spine (spondylolysis), blood deprived (ischemic) areas of brain following a stroke,
and tumors [5, 9].

2 Computational Methods for Molecular Imaging

Computational methods play a critical role in the development of molecular imaging,
from image synthesis to data analysis and from clinical diagnosis to therapy individ-
ualization. They continuously deepen the visualization depth, enhance the imaging
resolution, extend themolecular scope and improve the precision. The applications of
computational methods can be in both generating images and understanding images,
with the aim to improve the accuracy and efficiency. This section will provide a
brief introduction to computational methods for molecular imaging within our topic
coverage.

2.1 Data Correction and Image Reconstruction

The first step of all processing is to generate the image from raw data, which includes
but not limit to data correction, system modeling and image reconstruction. The
computational methods are designed to either improve the quantification accuracy or
accelerate the processing. The challenges in PET data analysis come from the change
of statistical properties of measurement data after various data corrections. The qual-
ity of results from all image reconstruction algorithms depends on the accuracy of
statistical models in each data correction and image reconstruction. However, due
to the complexity of PET scan, it is nearly impossible to propose a perfect model.
Furthermore, a complicatedmodelwill apparently slowdown thewhole image recon-
struction process. The modeling and processing in data correction includes scatter
correction [37, 43, 80], attenuation correction [38, 68], partial volume effect correc-
tion [23, 67], etc. The image reconstruction includes analytical reconstruction and
model-based reconstruction [2, 26]. In the studies involving a large amount of images
from different patients, normalizing these images is also critical to the quantification
of the studies [28].

2.2 Dynamic PET Imaging and Pharmacokinetic Analysis

Dynamic PET imaging is a combination of short interval PET scans and reflects the
dynamic metabolism of injected radiotracers. Dynamic PET brings more challenges
to PET imaging due to the poorer statistical property and lowSNR from the low count
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PET data. The series of acquisitions can be used to estimate the kinetic parameters
which represent the metabolism of radiotracers in vivo.

In order to obtain the kinetic parameters, a traditional approach is first to recon-
struct the activity distributions from the dynamic PET data, and then to fit the calcu-
lated time activity curve (TAC) to a predefined kinetic model. The accuracy of this
kind of approaches relies on the reconstructed activity distributions. The complicated
statistical noise properties, especially in the low-count dynamic PET imaging, and
the uncertainties introduced by various PET data corrections will affect the activity
reconstruction and lead to a suboptimal estimation of kinetic parameters [31]. There
are also many efforts that try to estimate the kinetic parameters from PET projection
data directly and achieve better bias and variance including both linear and nonlinear
models [56, 74, 83]. The optimization algorithms are generally very complicated.
Kamasak et al. applied the coordinate descent algorithm for optimization but it is still
limited to specific kinetic models [41]. Wang et al. applied a generalized algorithm
for reconstruction of parametric images [79], however, estimating individual kinetic
parameter is still a challenging issue, which will be critical to clinical research, drug
discovery and drug development [14, 27, 75].

In drug discovery and development, quantitative pharmacokinetic analysis with
dynamic PET imaging now plays a promising role as determinants of in vivo drug
action to help select drug candidate. Fast and accurate pharmacokinetic analysis with
rapid information feedback in the early stage of drug discovery and development is
critical to obtain the in vitro and in vivo drug properties [13, 81].

2.3 Mathematical and Statistical Modeling

Mathematical and statistical models have long been used in molecular imaging [47].
For static reconstruction, researchers unitized various system probability models
[3], statistical models for data acquisition [86] and prior models [1]. For dynamic
studies, compartment models are used in many fields including pharmacokinetics,
biology, engineering etc. Compartment models are the type of mathematical models
to describe the way materials (radiotracers and their metabolite in PET and SPECT
scan) are transmitted among the compartments (different organs and tissues). Inside
each compartment, the concentration of radiotracers is assumed to be uniformly
equal. Due to their simplicity and plausibility, compartment models are widely used
in the dynamic PET scans to describe the tracer/drug kinetics. Drug kinetic models
include simple drug transport model, which generally contains equal or less than
three compartments and can be solved directly, and complicated biological models,
which can contain up to twenty compartments and generally require prior knowl-
edge to solve [32, 33]. Most of the complicated models with many compartments
can usually be decomposed into a combination of simple models with less than four
compartments. Themost basic compartment models include two compartment blood
flowmodel, standard two tissue three compartment Phelps 4Kmodel with reversible
target tissue and Sokoloff 3K model with irreversible target tissue, three tissue five
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parameter bertoldo model, standard three tissue four compartment model. More
complicatedmodels withmore compartments and parallel model withmultiple injec-
tion can be extended from aforementioned standard models [25, 42].

2.4 Feature Selection

Feature selection is widely used in computer aided diagnosis. Correctly selected
features from a large set of clinical data can be used to improve the diagnosis accu-
racy of various diseases and provide a guidance for future clinical trials. The most
commonly used method is Principal Component Analysis (PCA), which is a sta-
tistical procedure to convert a set of observation of possibly correlated variables
to a set of linearly uncorrelated variables, i.e. principal components. These princi-
ple components can then be used as the feature for following studies, for example,
comparing the functional connectivities in human brain studies [62, 70]. Machine
learning and data mining techniques have also been applied to molecular imaging
by various researchers. Researchers extract features to analyze cancer treatment out-
come [20], utilize FDG-PET scan in lymphoma byWHO classification [21], classify
the tissue in PET/MR scan with the potential for attenuation correction [53]. For
clinical applications, support vector machine can also be used to identify imaging
biomarkers of neurological and psychiatric diseases [59], and in therapy decision
[58]. The application of machine learning is also very active in cancer prediction and
prognosis [16].

2.5 Disease Specific Analysis and Image Quantification

In molecular imaging, the high activity concentrations (hot spots) are identified and
analyzed as Region of Interest (ROI). In some clinical studies, different diseases
may show similar activity concentrations inside the same organ tissue, then disease
specific dynamic analysis become a superior tool to differentiate these different dis-
eases [18, 27]. Disease specific dynamic analysis utilizes predefined disease models
and the time activity curves from molecular imaging to classify the studies into
proper disease categories. However, the accuracy of quantitative dynamic PET stud-
ies depends on various factors including kinetic models, quantitative methods and
the approximation of arterial input function from blood sampling. The most general
kinetic models used are compartment model with assumptions that physiological
process and molecular interactions are not influenced by injected radioligand. Cur-
rent clinical adopted quantitative methods are actually semi-quantitative methods,
which includemethods using reference regions or calculating Standard Uptake Value
(SUV) [8]. Methods using reference regions are easy to implement but have several
drawbacks, e.g. the reference tissue is hard to define and has low SNR due to the
low resolution of PET and SPECT scans, and the uptake of the reference tissue may
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change after the radiotherapy. SUV now is included in every clinical study, which is
calculated as a ratio of tissue radioactivity concentration and injected dose divided by
body weight, the advantage of SUV in clinical study is that the blood sampling is not
required. However, the full quantitative analysis requires both dynamic PET scans
and tracer concentration in the arterial blood plasma. The gold standard of blood
sampling is serial arterial sampling of a superficial artery, and clinical alternative
methods include venous blood sampling, image derived input function and popula-
tion based input function [34, 48]. The drawback of the full quantitative method is
only one FOV/bed position can be taken into consideration at one time. For metas-
tasized disease, not all lesions can be quantified simultaneously [69, 76].

2.6 Other Conventional Image Processing Applications

1. Image Segmentation. Image segmentation is the process of partitioning an image
into multiple different segments (group of pixels). Especially in molecular imag-
ing, the image segmentation is used to simplify the representation of an image and
extract Region of Interest (ROI) that is more meaningful and followed by image
analysis. Image segmentation is also important to find the boundaries of different
regions and organs by applying different labels. Image segmentation can also be
applied to 3D image stacks to help 3D image reconstruction [17, 87]. Compu-
tational methods for image segmentation including basic thresholding methods
[19, 22, 40], cluster based methods, which are multivariate data analysis meth-
ods using predefined criteria to partition a large number of objects into a smaller
number of clusters [82], gradient based methods, which are to find the boundary
of an object of interest with the gradient intensity observed in the images [29],
level set based methods [51, 60], 3D level set methods [85], and kinetic model
guided segmentation methods, which assume different ROIs have different tracer
kinetic properties to separate different functional regions [11].

2. Image Registration. Image registration is the process to transform different sets
of data into one coordinate system. Image registration is widely used in mole-
cular imaging, e.g. patient radiotherapy follow-up by transforming PET images
from a series of studies, diagnosis by images from multiple imaging modalities
[15, 35, 36, 65]. Major computational methods include intense based methods,
which compare intensity patterns in multiple images and register the reference
image and target image by defining correlation metrics [44], feature-based image
registration, which extract common features from the anatomical information of
organs and tissues as references [63], this method can also be used for multiple
imaging modalities [30, 49, 55]. The image registration can be improved by dif-
ferent patient preparation and pre-positioning [7], respiratory gating [10], various
tracking devices, etc. [66].
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3. Image Fusion. Image fusion is the combination of relevant information from
two or more images into one single image. The fused image will provide more
information than any single input image. Accurate image fusion from combined
PET, CT, MRI scans can significantly improve the diagnosis and provide better
understandings of diseases. Image fusion generally works together and shares
similar technologies with image registration [61, 72, 78].

3 Future Directions

Molecular imaging is a relatively new but fast-growing area for both research and
clinical applications. Although with some technical limitations, molecular imaging
modalities show the superior ability to quantitatively measure the biologic processes
in a functional way at the cellular and subcellular level within living subjects, and this
significantly improved our understanding of various diseases and greatly benefited
the clinical diagnosis. The emerging new scanner systems with new detectors will
further enhance their abilities, and bring new challenges in data correction and image
analysis at the same time.

Computational methods play a critical role in processing the images, from data
processing based on the physical natures of the molecular imaging modalities to
image reconstruction, analysis and understanding. The data processing algorithms
need to be adjusted with the properties of new system design, and new features in
detector system correspondingly. Monte Carlo simulation is a faithful way to study
the new design and provide references for validation of new methods. Application-
specific statistical models will greatly improve the image qualities of certain dis-
ease compared with generic models, and new techniques like machine learning have
shown promising prospects in classifying diseases, generating atlas based models
etc. The image post-processing including image analysis and understanding must
also adopt related changes. Researchers are actively using computing methods to
guide applicable pathological studies from a series of patient studies using dynamic
analysis, this has the great potential to apply to personalized treatment. Pharma-
ceutical companies are also interested in the accurate quantitative pharmacokinetic
analysis using PET to study the metabolism of new drugs, which has the potentials
to shorten the drug development cycle and save tons of money for the industry and
patients. With the evolution of both image pre-processing and post-processing meth-
ods, molecular imaging is believed to be able to study more complicated diseases
currently in the unknown area, and computational methods for molecular imaging
will help us to mine the potentials buried in the data and images.
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