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Abstract Due to rapid adoption of dynamic PET, the dual estimations of the activity
maps and kinetic parameters have been attracting a lot of attention. In this paper, we
propose a novel approach to solve this problem by using Dual-Kalman Filter (DKF)
based on state space framework. One Kalman Filter is adopted to reconstruct the
activity maps and the other is to estimate the kinetic parameters, where each filter
uses the estimation results from the other one as initialization, then the two filters
are solved iteratively until convergence. In addition, this approach combines the
compartmental model guided activity map reconstruction and the state space based
kinetic parameter estimation. The simulation experiments are presented by both
utilizing DKF and other methods based on fitting the compartmental model. The
final results show the more robust and accurate performance using proposed method.

Keywords Positron emission tomography · Parameter estimation · Dynamic
reconstruction · Compartmental model · Dual filter

1 Introduction

In nuclear medicine, PET (Positron Emission Tomography) is emerging as one of
the leading modalities in the biomedical research and clinical diagnostic procedure.
Dynamic PET imaging plays a more and more important role in research, which
reveals the dynamic metabolism of specific organs and tissues through imaging the
spatiotemporal distributions of injected radiotracers in vivo. The dynamic changes
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of these spatiotemporal distributions reflect several complex events and can be
represented by compartment models and kinetic parameters [3]. The compartmen-
tal model describes the tracer metabolism and is widely used in the dynamic PET
research. The kinetic parameters are used to quantify the distribution of the radio-
tracer throughout the tissues or the organs.

The estimation methods for activity maps include conventional ExpectationMax-
imization (EM) methods, accelerated Ordered Subset Expectation Maximization
(OSEM), Maximum A Priori (MAP) and state space framework [1]. The estima-
tion of kinetic parameters is more difficult [2, 5, 8]. Generally, the methods include
indirect and direct methods. The indirect methods first reconstruct the activity maps
and then fit the results to specific compartment models. These methods are simple
and easy to implement, because activity reconstruction and kinetic modeling are
performed in two separate steps. However, the noise distribution which should be
spatially variant and object dependent is not modeled in the kinetic analysis, this
will lead to suboptimal results. The direct methods estimate parametric images from
dynamic PET sinograms directly, and theoretically they should be more efficient,
however, the algorithms are often difficult to implement and are limited to the spe-
cific models.

In this paper, we proposed a novel method for dual estimation of activity maps and
kinetic parameters for dynamic PET imaging. Formulating the two estimations by
using DKF based on our state space frameworks which have inherent ability to deal
with noise distribution,we set oneKalmanFilter to reconstruct the activitymaps from
dynamic PET data and the other to estimate the kinetic parameters, where each filter
uses the estimation results from the other one as initialization, then the two filters are
solved iteratively until convergence. The DKF method combines the compartment
model guided activity map reconstruction [7] and state space based kinetic parameter
estimation, and the merits of this iterative estimation yield more robust and accurate
estimation of both activity maps and kinetic parameters. Data sets from computer
simulations are conducted for quantitative analysis and validation.

2 Methodology

2.1 Compartmental Model

In thePET tracer kinetic research, there aremanymodels,such as none-compartmental
model and compartmental model, proposed to describe the process of tracer distribu-
tion in the organs and tissues. Compartmental model is generally utilized to describe
movement of tracer between different physically or chemically distinct state and
compartments. In this paper, a two-tissue compartmental model, widely validated in
many radioligand tracers, is the main algorithm in dynamic PET research. The two-
tissue compartmental model use the the first-order ordinary differential equations to
depicted the exchange of tracer between the compartments illustrate in Fig. 1 and
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Fig. 1 The two-tissue
compartmental model

Eqs. (1–3):
dCFi

dt = k1i CP (t) + k4i CBi (t) − (k2i + k3i )CFi(t)
dCBi

dt = k3i CFi(t) − k4i CBi(t)

CMi(t) = CFi(t) + CBi(t)

(1)

where the CP (t), CFi(t) and CBi(t) represent the tracer concentration in the plasma,
the tracer concentration in the tissues and the metabolites of tracer concentration in
the tissues, respectively. The model depends on the kinetic parameters k1, k2, k3 and
k4, which specify tracer exchange rates between the compartments in the units of
inverse minutes (min−1), and CMi is the total tissue activity.

The other parameter Kr = k1k3/(k2+ k3) is proportional to the regional cerebral
metabolic rate for metabolized tracers and to the uptake of tracer, which is one of
the main parameters used to evaluate the accuracy of our proposed method.

2.2 Compartment Model Guided Activity Map Estimation

The activity map estimation has been specifically interpreted in the [7], which puts
forward the state space representation for the dynamic reconstruction where the
compartmental model is guided as a continuous-time system equation and the image
data is expressed in a measurement equation. The general form of the framework for
the activity map reconstruction for voxel i as follows:

ẋi (t) = ai xi (t) + bi ˜CP (t) + ν(t)
Y = DX (t) + e(t)

(2)

where X (t) = {x1(t), x2(t), . . . , xn(t)} describes all the pixels in one frame image,

and each pixel is defined as ẋi (t) =
[ ˙CFi(t)˙CBi(t)

]

, a =
[ −(k2i + k3i ) k4i

k3i −k4i

]

and

b = [

k4i 0
]

; and measurement matrix is D = CTr , where C is the image matrix
and Tr is the transformation matrix with the block diagonal; ν(t) and e(t) are the
process and measurement noise, respectively, which are Gaussian distribution with
zero mean and the covariance matrix of the process and measurement Q and R,
respectively.
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2.3 State Space Formulation of Kinetic Parameter Estimation

State Space Formulation The state equation. As discussed in the previous Sect. 2.1,
the parameters k1, k2, k3 and k4 represent tracer exchange rates between the com-
partments and the values of the parameters are assumed to be barely changed for one
tracer in the same organ or tissue. The form of state equation of parameter estimation
adopted in current study assumes a static, discrete-time linear function as follows:

[

k1 k2 k3 k4
]

(t) =
[

k1 k2 k3 k4
]

(t−1) (3)

Defining Ti = [

k1 k2 k3 k4
]T

i and also introducing a system noise term ν̃(t), the
state equation for all voxels expresses as:

T (t) = T (t − 1) + ν̃(t) (4)

The measurement equation. By applying the compartmental model to all the vox-
els, the measurement equation for any voxel i is governed from the Eqs. (1) and (2)
as:

[ ˙CFi (t)˙CBi (t)

]

=
[

CP (t) −CFi(t) −CFi(t) CBi(t)
0 0 CFi(t) −CBi(t)

]

× Ti (5)

With the subscript i denoting different voxel locations, the abovemeasurement equa-
tion can be expressed in a compact notation as:

y(t) = Di · Ti (t) + μ̃(t) (6)

where
y(t) = [

ĊFi(t) ĊBi(t)
]T

Di =
[

CP (t) −CFi(t) −CFi (t) CBi(t)
0 0 CFi(t) −CBi(t)

]

and μ̃(t) is the measurement noise.

Equations (7) and (9) have formed a standard state-space representation for esti-
mating kinetic parameters, in which the parameters serve as static variable state
equation and the reconstruction data convey the discrete sampling in the measure-
ment equation.

Kalman Filter Solution The Kalman Filter (KF) strategy, which has been applied
to solve the state space equations, estimates a process by using a form of feedback
control: the filter estimates the state at some time and then obtains feedback in the
form of measurement. Thus the equations for KF are divided into two groups: the
time update equations and the measurement update equations [6]. The KF has been
proved that can resolve the estimate problem in the state space principles for PET
image reconstruction. KF uses the feedback controlmethod to reach convergence and
obtain the optimal solution, and the detail of this algorithm explains in the [4]. The
specific equations for the time and measurement updates are presented as follows:
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Time-update equations:
x(t) = Ax(t−) + Bμ (7)

P(t) = AP(t−)AT + Q (8)

Measurement-update equations:

x(t) = x(t−) + K (y − Dx(t−)) (9)

P(t) = (I − KD)P(t−) (10)

K = PD(DPD + R)−1 (11)

where the term P(t) denotes the covariance of the estimation error and P(t−) denotes
the covariance of the estimation error of x(t−). K is called the KF gain.

The above solutions are to estimate the state of a discrete-time controlled process
that is governed by a discrete-time linear stochastic difference equation. However,
the process to be estimated is continuous-time sometimes. In this case, the time and
measurement update equations are required to do some transformations [6]:

ẋ = Ax− + Bu (12)

Ṗ = AP− + P−AT + Q (13)

K = PDT R−1 (14)

2.4 Dual Estimation Framework

The first Kalman Filter: the PET data as the observation y(t) and kinetic parameters
as the known variable, a KF estimate the activity map quantity X f , where the f
means the frame of the reconstruction images. In this process, this framework of the
state-space, as Eq. (1), is a continuous-time system, and the compartmental model is
the priori, so that the processing noise covariance matrix Q is very little.

The second Kalman Filter: estimate the kinetic parameters from the sequence of
X f . The set of Eqs. (7) and (8) defines the discrete-time state-space representation
employed to estimate the kinetic parameters k1, k2, k3 and k4.

Hence, the process of DKF algorithm is expressed in Fig. 2. the first KF is to
reconstruct the activity maps using the kinetic parameters as known parameters,
while the other is to estimate the kinetic parameters using the estimation of activity
maps as known parameter. Every iteration using the update activity maps and the
update kinetic parameters as the known condition respectively to optimize the results
until both of the estimations are convergence.
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Fig. 2 The principle of the
Dual Kalman Filter

3 Experiment and Result

3.1 Experiments with Zubal Phantom

The computer simulation experiments are used to evaluate the accuracy and robust-
ness of the proposed method. Our simulation experiments are based on a Zubal
Phamtom. Figure3a shows a schematic representation of the Zubal Phamtom with
three ROIs selected and a background, indicated ROI 1, 2, 3 respectively. The simu-
lated tracer is 11C-acetate and the phantom is digitized at 96×96 pixels and forward
parallel projection data is calculated at 96×96. Time frames of emission images are
generated using two-tissue compartmental model and the plasma function, CP (t), is
generated using the Feng Input function [1]:

Cacetate
P (t) =

[

1− 0.88

(

1− e
−

(

2ln2
15 t

))]

CFDG
P (t) (15)

CFDG
P (t) = (A1t − A2 − A3)e

−λ1t + A2e−λ2t + e−λ3t (16)

With A1 = 851.1225µCi/mL/min, A2 = 20.8113µCi/mL, A3 = 21.8798
µCi/mL, λ1 = 4.133859min−1, λ2 = 0.01043449min−1, λ3 = 0.1190996min−1.

Fig. 3 The schematic representation of the experiments, a is Zubal Phantom. b is the segmentation
of activity map
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Fig. 4 The estimated activity maps including the 3rd, 7th, 11th, 15th, 20th, 25th time frame

28 frames of dynamic acquisition are performed as 7× 0.2min, 8× 0.5min, 5×
1min, 4× 2min and 4× 5min, total scan time is 40min.

To evaluate the estimation performances, we take quantitative analysis on the
results, by defining the error between the reconstruct result and ground truth as
follow:

bias = 1

Np

Np
∑

i=1

|X Ri − XTi |
XTi

(17)

where Np is the total number of pixels, X Ri is the final estimation result of pixel
i , and XTi is the true value of corresponding pixel i . Figure4 shows the estimated
activity maps from the dynamic PET data, at frame 3, 7, 11, 15, 20 and 25, and
the Table1 summarizes the calculated bias value of the reconstructed images from
different time frames. The reconstructed images preserve the image quality at the
same level as the results in [7].

Meanwhile, the parameters estimated are summarized in the Table2. To reduce
the calculation time during the experiment, we segment the activity maps as the
Fig. 3b, and get the average value of the kinetic parameters via calculating the mean
of each ROI.

Comparative study of parameter estimationwas taken between existing techniques
and our proposed method. The technique, we apply in the comparative study, is the
LMWLS estimation algorithm from the COMKAT, which is a software package
for compartmental modeling oriented for biomedical image quantification. It should
be noted that, for fair comparison, in the fitting procedures, the activity maps from
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Table 1 Statistical studies of activity maps

frame3 frame7 frame11

bias 0.0282 0.0235 0.0124

frame15 frame20 frame25

bias 0.0160 0.0155 0.0968

Table 2 The parameters estimation using DKF and the LMWLS, compared with the true value
(TV)

ROI1 k1 k2 k3 k4 Kr

TV 0.6518 0.2276 0.0531 0.0388 0.1252

DKF 0.6484 0.2199 0.0526 0.2111 0.1233

LMWLS 0.8302 0.2705 0.0232 0.0009 0.0656

ROI2 k1 k2 k3 k4 Kr

TV 0.4504 0.2287 0.0725 0.0141 0.1085

DKF 0.4469 0.2172 0.0716 0.0200 0.1108

LMWLS 0.7491 0.3381 0.0044 0.9768 0.0096

ROI3 k1 k2 k3 k4 Kr

TV 0.7307 0.5369 0.1776 0.0143 0.1816

DKF 0.7252 0.5176 0.1672 0.0109 0.1771

LMWLS 0.9616 0.7192 0.1851 0.0789 0.1968

the our estimation framework are used as the input activity curves for the LMWLS
algorithm to estimate the kinetic parameters.

The calculated bias values of the estimated parameters from two methods are
demonstrated in the Table3. Comparing with the variance calculation, it is demon-
strate that the variance calculation has no priority to the bias calculation and at the
same time it is limited by the four pages requirement, so in this paper, we don’t dis-
play the variance calculation. The bias of k1 from our method is about 0.01, but that
from the LMWLS is more than 0.25. At the same time, k2 estimation is 0.05 in our
methodwhile around 0.35 in the LMWLS.Aswe all known, in parameter estimations
of 2 compartment model based problem, k4 is the most difficult one to estimate. By
our method, the bias of k4 is less than 4.4, however, the biggest bias of the LMWLS
reaches 66.515. Consequently, the parameter Kr is also adopted to evaluate the algo-
rithm. To some extent it shows that our method can maintain higher accuracy in dual
estimation of activity maps and kinetic parameters.
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Table 3 Statistical studies of estimated parameters

ROI1 k1 k2 k3 k4 Kr

biasDKF 0.0053 0.0341 0.0096 4.4379 0.0154

biasLMW 0.2735 0.1882 0.5632 0.9768 0.4680

ROI2 k1 k2 k3 k4 Kr

biasDKF 0.0079 0.0503 0.0128 0.4114 0.0212

biasLMW 0.6630 0.4783 0.9393 66.515 0.9115

ROI3 k1 k2 k3 k4 Kr

biasDKF 0.0076 0.0359 0.0583 0.9235 0.0248

biasLMW 0.3159 0.3394 0.0422 4.5375 0.0837

4 Conclusions

Dual estimation of the activitymaps and kinetic parameters for dynamic PET imaging
is presented in this paper. The procedure is realized by DKF, where one KF is to
reconstruct the dynamic images and the other is to estimate the kinetic parameters,
and each one uses the results from the other one as initialization, finally, the two filters
are solved iteratively until convergence.The simulated experiments indicate thatDKF
can estimate the activity maps and kinetic parameters robustly and accurately.
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