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ABSTRACT

This paper models the real-time adaptation of utility when individuals have a limited

capacity to make fine distinctions. A simple adaptive mechanism is proposed that ad-

apts utility to an arbitrary distribution of rewards in a way that is ultimately optimal,

in terms of minimizing the probability of errors. A modified simple mechanism is ap-

proximately optimal in terms of maximizing expected utility. The model generates the

so-called “hedonic treadmill” and induces a preference for rising consumption.
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1. INTRODUCTION

A strand of recent literature in economics has shown how adaptive decision utility

functions might arise from a limited capacity to make fine distinctions. The first

of these papers is Robson (2001) where perception is limited by a small number

of thresholds. In order for the individual to minimize the probability of error, the

thresholds should be at the quantiles of the distribution of rewards. The resulting
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utility function, adapted to the underlying distribution of rewards, is cardinal. In

particular, utility is steepest where outcomes arise most frequently.

The second directly related paper is Netzer (2009), who investigates the Robson

model using the expected fitness criterion instead of the probability of error. He

shows that, whereas the Robson approach generates a limiting density of thresholds

given by f , where f is the pdf of the distribution of rewards, the expected fitness

approach generates a limiting density of thresholds proportional to f 2/3. This

again puts fewer thresholds where f is low, but to a less dramatic extent. In-

tuitively, the expected fitness criterion is more concerned with low f than is the

probability of error criterion, since, although the probability of error is small if f is

small, the size of the error is large. Again utility must be adapted to the distribu-

tion of rewards.

Rayo and Becker (2007) address the issue of adaptation using an alternative model

of bounded rationality. Individuals cannot maximize expected utility precisely,

but all choices that come within some utility band are considered equivalent. The

problem is to construct the optimal utility function. Under simplifying and lim-

iting assumptions, optimal utility is a step function, jumping from 0 to 1 at max-

imized expected income, so concentrating all incentives at the point of greatest

interest, and adapting to the distribution. They do not, however, consider any

mechanism for rapid dynamic adaptation.

All these previous papers describe how adaptation would be advantageous and

make predictions presuming this has occurred; the key contribution of the present

paper is to suggest how—to provide an explicit real-time low-rationality adjust-

ment mechanism. This paper dynamically extends Robson (2001), and Netzer

(2009) by explicitly modelling the rapid adaptation of utility when an agent has

a limited capacity to make fine distinctions. Our main result is that that there are

simple low-information adaptive rules that are ultimately optimal when the goal

is to minimize the probability of error, and approximately optimal when the goal

is to maximize fitness.

More specifically, we consider an individual making a binary economic choice.

Two options have been drawn iid according to a cdf F. The mapping from actual



3

value of an outcome to the value used in the choice is a deterministic step func-

tion which generates adaptation by means of endogenously setting the location of

the steps, the thresholds. Our key new contribution is to model rapid automatic

adaptation, and to discuss how such adaptation is reflected in economic choices.

In particular, we show that there are simple low-information mechanisms that can

generate this adaptation.

Two cases are considered. In the first of these, the objective is simply to minim-

ize the probability of error. When an outcome arrives between two thresholds,

the thresholds move closer to each other, by a given increment. An irreducible

Markov chain with a unique invariant distribution then describes the dynamics of

the thresholds. As the increment is made smaller, the invariant distribution puts

full weight on the thresholds being at the quantiles of the distribution F. Thus, the

thresholds adapt to the distribution in fashion that is ultimately optimal.

In the second of these cases, the objective is to maximize the expected fitness of the

chosen option. Now, when an outcome arrives between two thresholds, one of the

two thresholds moves closer to the other with a probability that also depends on

the distance between the thresholds. As the grid size is shrunk, the invariant dis-

tribution puts full weight on the thresholds being such that each threshold has an

equal chance of moving to the right or to the left. It is not now possible to achieve

exact limiting optimality with a given finite number of thresholds, given compel-

ling restrictions on the information available. Nevertheless, such a configuration

is shown to be approximately optimal for a large number of thresholds.

The model generates a tradeoff between the speed of adjustment and accuracy. It

accounts immediately for the “hedonic treadmill”—that is, the reversion of aver-

age utility to its original level despite a vast shift in the distribution of rewards.

The real time adaptation of utility, as reflected in the hedonic treadmill, suggests a

reconsideration of national happiness measures. Finally, it produces a preference

for rising consumption streams.

The present model is intended to provide a biological basis for adaptive utility. The

sense in which it is “evolutionary” is worth clarifying. A fully fledged evolution-

ary approach would consider how optimal behavior could emerge as the winner
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from a field of arbitrary possibilities. This emergence might be expressed as slow

dynamic process of natural selection under which better choices generate more

offspring and so come to dominate the population. Although this is certainly of

substantial interest, this is not the approach here. Rather, the current approach cuts

to the chase and considers only the long run result of natural selection. Although

genetic evolution can be complicated and it is not guaranteed that the long run

outcome of natural selection is the type maximizing offspring, it is reasonable to

look at this case as central. Essentially, that is, we adopt the ”phenotypic gambit”

as described and advocated by Grafen (1984).

To emphasize, the dynamic process that is described explicitly here is not a fully

fledged evolutionary approach. Rather, this dynamic process is considered part of

the long run outcome of a fully fledged evolutionary approach. That is, natural

selection found that the current explicit dynamic rule was advantageous in terms

of long run genetic evolution. Such an approach does raise many issues, but most

of them cannot be adequately addressed without a much richer understanding of

the connection between genes and behavior than is currently available.

Recent neuroscience research provides a backdrop to the current investigation,

a backdrop suggesting that deeper and more precise connections to economics

will eventually be made. For example, economic decisions can be related to the

electrical activity of neurons that release dopamine, a “neurotransmitter”. (See

Stauffer et al (2014), for example.) Dopamine neuron activity does not, however,

directly reflect the actual hedonic experience of consuming a particular option.

Dopamine neurons are activated when the actual reward received exceeds the re-

ward that was anticipated, so there is a “reward prediction error”. Intriguingly,

Sharot et al. (2009) have shown that dopamine also signals an expectation of pleas-

ure from actual consumption of an option, as relevant when an economic choice

must be made.

2. THE MODEL

Consider the following model of how a choice is made. Each option has a value

y ∈ [0, 1]. The individual does not directly observe this value, but anticipates



5

the hedonic consequences, h(y), of consuming y. The function h is necessarily

inaccurate, reflecting a limited ability to make fine perceptual distinctions. This

generates a benefit from adaptation.

More specifically, utility h : [0, 1] → {0, δ, 2δ, 3δ, ..., Nδ = 1}, is a non-decreasing

step function characterized by thresholds xn, at which a jump is made from one

level (n − 1)δ to the next higher level nδ, for n = 1, ..., N. We have 0 ≤ x1 ≤

.... ≤ xN ≤ 1 where we set x0 = 0 and xN+1 = 1. Adaptation of h is captured

by shifts in the thresholds xn, n = 1, ..., N. The thresholds are a technical device to

render the adjustment process tractable, since it involves adjusting a finite number

of parameters.

For simplicity, we concentrate on the case where a binary choice is made. There

are then two options, y1 and y2, say, generating anticipated values, h(yi), i = 1, 2.

If h(yi) > h(yj), i is chosen, as is clearly optimal. If h(y1) = h(y2), each option is

chosen with probability 1/2.

It is without much loss of generality to suppose that y represents fitness. That is, if

y instead represents money, for example, which generates fitness according to an

increasing concave function, only minor notational changes need to be made. The

yi, i = 1, 2, are assumed to be independent, distributed according to the same con-

tinuous cumulative distribution function, F, with continuous probability density

function, f > 0 on [0, 1]. Although the realizations are random ex ante, they are

realized prior to choice. The distribution F nevertheless plays an important role

because the thresholds must be set in the light only of F rather than the realiza-

tions.

Errors here arise only when both yi, i = 1, 2, lie in the same interval [xn, xn+1).

Minimizing the probability of error implies that the thresholds should be equally

spaced in terms of probabilities; should be then at the quantiles of the distribution.

A preferable criterion is maximization of expected fitness. The analysis is more

complex in this case. Each threshold now ought to be at the mean of the distribu-

tion conditional on being between the two neighboring thresholds.4 It is then not

4Suppose there is only one threshold. Maximizing expected fitness is the same as minimizing the

expected fitness loss from a mistake. Intuitively, placing the threshold at the mean of the distribution
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possible to use purely qualitative observations to estimate the mean, as was true

for the median. Nevertheless, approximately optimal rules will be derived that

use the distances to the two neighboring thresholds.

Under either criterion, the thresholds should be denser where f is higher. Concen-

trating the the thresholds like this reduces the probability of error or the expected

size of the loss.

The key contribution here is then to address the question: How could the thresholds

adjust to a novel distribution, F? We respond by showing that such adjustment

can be achieved by a simple informationally undemanding mechanism. This is

a “reverse engineering” approach in that the simple rule attains the optimal con-

figuration of thresholds in the limit as the grid size shrinks, for the probability

of error case. Further, a modified simple rule attains approximate optimality, in

the expected fitness case, as the number of thresholds increases. We formulate a

model to address these questions.

In modelling how the thresholds adjust, we make the simplifying assumption that

there is a single stream of outcomes, represented as y, and abstract from the choices

made. Alternatively, we could interpret the analysis as supposing that y1 and y2

arrive in alternate periods, with the system adapting to each of them, and a choice

between them being made in every even period.

Suppose then, for simplicity, the thresholds are confined to a finite grid Gε =

{0, ϵ, 2ϵ, ..., (G − 1)ϵ, 1}, for an integer G such that Gϵ = 1. The thresholds are time

dependent, given as xt
n ∈ Gε, where 0 ≤ xt

1 ≤ .... ≤ xt
N ≤ 1, at time t = 1, 2, ....

3. PROBABILITY OF ERROR CASE

Consider the rule of thumb for adjusting the thresholds —

Definition 3.1. Rule of Thumb. Suppose the period t outcome lands in [xt
n−1, xt

n).

If xt
n − xt

n−1 = ε, then nothing happens. Otherwise, if xt
n−1 is an interior threshold,

balances the expected fitness losses on each side of the threshold. The general result, with N > 1, then

follows from considering the optimal placement of each threshold relative to its two neighbors.
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then xt+1
n−1 = xt

n−1 + ε. If xt
n is an interior threshold, then xt+1

n = xt
n − ε. No other

threshold shifts when yt lands in [xt
n−1, xt

n).

The condition that if xt
n − xt

n−1 = ε, then nothing happens, means that the process

will never superimpose one threshold on top of another, and that the order of

thresholds will never be reversed at some stage so that xt+1
n+1 < xt+1

n , for example.

The thresholds will then be governed by an invariant distribution over all set of all

configurations with xt
1 < · · · < xt

N . This condition is without loss of generality in

the limit as ε goes to zero, since in this limit the thresholds can be arbitrarily close

to one another.

For general N, we have

Theorem 3.1. In the limit as ϵ → 0, the invariant joint distribution of the thresholds,

(xt
1, . . . , xt

N), converges to a point mass at the vector (x∗1 , . . . , x∗N), where F(x∗n) =
n

N+1 ,

n = 1, ..., N.5 That is, in this limit, the thresholds are located optimally.

Proof. This is a consequence of the more general Theorem 4.1 below which is

proved in the Appendix.

The basic property implies that the placement of the thresholds maximizes the rate

of Shannon information transfer, as in Laughlin (1981). This argument, which is

for a single channel and an abstract criterion, contrasts with that for the present

binary choice and minimization of the probability of error.

The property that F(x∗n) = n/(N + 1), for n = 1, ..., N is that utility, U, say, adapts

to the distribution, F. Indeed, in the limit as N → ∞, U = F. If F has a typical

unimodal shape, utility has an S-shape similar to that in Kahneman and Tversky

(1979).

The rule of thumb illustrates that there exist low rationality mechanisms that can

generate fast complete adaptation to an arbitrary distribution. This process is in-

tended to reflect an automatic process that is readily feasible. The thresholds are

a device that renders the analysis of adaptation tractable. They still allow the step

function h to approximate an arbitrary increasing continuous function.

5For any particular ϵ > 0, the invariant distribution has full support, Gε. Only in the limit does this

invariant distribution converge to the x∗n’s.
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Although the rule of thumb described above is inevitably slower than the full

Bayesian approach it is vastly simpler. Full Bayesian adaptation would be less

demanding if the cdf were known to come from a small parametric class—normal

distributions with an unknown mean, for example. Without some such severe re-

striction, the complexity of Bayesian updating seems likely to preclude fast neural

responses.

3.1. Class of Rules. In this section, we buttress further the present class of rules.

Under some reasonable simplifying assumptions, and when there are only two

thresholds, the present rule is the only rule that generates optimal long run choices.

Consider then the following class of rules. Only the interval containing each out-

come is detected. To assume more is detected would contradict the spirit of the

problem. The rule is Markov, in that only the current configuration of thresholds

bears on the choice made next by the rule. The rule shifts any number of thresholds

one step in either direction in the grid. The most obvious consequence of this one

step assumption is to slow down adaptation, which could be offset by increasing

the arrival rate of outcomes. Finally, make the (harmless) simplification that the

rule treats thresholds symmetrically.

With two adjustable thresholds, given as x1, x2 ∈ (0, 1), the issue then is: Which

thresholds should be moved as a consequence of an outcome in each of the three

possible intervals I1 = [0, x1), I2 = [x1, x2] or I3 = (x2, 1]?

In the limit as ε → 0, but where the arrival rate of outcomes is sped up in pro-

portion to 1/ε, it can be shown that the thresholds adapt in a way described by

two linear ordinary differential equations. This is sufficient to obtain the result

concerning the limit of the invariant distribution as Theorem 3.1. Indeed, we have

the following

Proposition 3.1. Within the current simple class of rules, with two adjustable thresholds,

the adjustment rule from Definition 3.1 is the only one that generates optimal choice in the

long-run.

Proof. See the Appendix.
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If there were more than two thresholds, the current rule may not be the only such

rule. However, all rules that are optimal in the long run must share a key feature—

the interval in which an outcome is observed must shrink. Suppose this were not

the case. That is, suppose there is some j ∈ {0, 1, ..., N} such that the interval

[xj, xj+1) does not shrink when an outcome arrives in that interval. It follows that

there is a stable configuration with thresholds 0 = x1 = ... = xj and xj+1 = ... =

xN = 1, so that this rule cannot be long run optimal.

For simplicity, this discussion concerns the probability of error case. However,

similar observations apply to the more general maximizing fitness case that is

taken up next.

4. MAXIMIZING FITNESS

The most appealing general criterion is to maximize expected fitness. That is, in-

dividuals who successfully do this should outperform those who do not.6

The situation is now more complicated than it was with the criterion of minim-

izing the probability of error. There are no longer simple rules of thumb that im-

plement the optimum exactly. However, there do exist simple rules of thumb that

implement the optimum approximately, for large N. These rules of thumb involve

conditioning on the arrival of a realization in the adjacent interval, as above, but

also modify the probability of moving using the distance to the next threshold, in

a symmetric way.

Although it is possible to accurately estimate the median of a distribution from the

limited information available to such a rule of thumb, it is not possible to do this

for the mean. Hence the result for the probability of error case are sharper than

the results for the expected fitness case.

To see that simple rules of thumb like this cannot implement the optimum exactly,

consider first the case that N = 1. Suppose that F has median 1/2 but a mean

that is not 1/2. Consider a symmetric rule of thumb based on the arrival of an

outcome to the left or the right of the current position of the threshold at x, say,

6This assumes that the risk is independent across individuals. See Robson (1996) for a treatment of

this issue. Another possibility would be that fitness depends on relative payoffs.
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and the distance to the ends—x or 1− x. This will then generate a limiting position

for the threshold at 1/2, thus failing to implement the optimum. This is also an

issue for any number of thresholds, since this argument applies to the position of

any threshold relative its two neighbors.

It is important that this general rule of thumb uses only the information that is

available—the location of the neighboring thresholds and whether an outcome lies

in the subinterval just to the right or just to the left. It would contradict the inter-

pretation of the model here to use detailed information about the precise location

of the outcome within a subinterval.

At the same time, the general rule of thumb here makes greater computational

demands than does the rule of thumb for the probability of error case. The need

to utilize the position of adjacent thresholds must entail a greater complexity cost.

The general rule of thumb considered here is—

Definition 4.1. General Rule of Thumb. Suppose the period t outcome lands in

[xt
n−1, xt

n). If xt
n − xt

n−1 = ε, then nothing happens. Otherwise, if xt
n−1 is an interior

threshold, then independently of any shift in xt
n, xt+1

n−1 = xt
n−1 + ε with probability

(xt
n − xt

n−1)
β < 1, and xt+1

n−1 = xt
n−1 with probability 1 − (xt

n − xt
n−1)

β > 0. If xt
n is

an interior threshold, then independently of any shift in xt
n−1, xt+1

n = xt
n − ε with

probability (xt
n − xt

n−1)
β < 1, and xt+1

n = xt
n with probability 1− (xt

n − xt
n−1)

β > 0.

No other threshold shifts when yt lands in [xt
n−1, xt

n).

If the parameter β = 0, we have the old rule of thumb. Formally, then, Theorem

3.1 follows from Theorem 4.1 below.

The Markov chain defined here is irreducible. That is, there exists a number of re-

petitions such that, for any initial configuration, (x0
1, . . . , x0

N), say, there is positive

probability of being in any final configuration, (xT
1 , . . . , xT

N), say. There is therefore

a unique invariant distribution for this chain.

If β > 0 this will encourage the closing up of large gaps that arise where f is small,

which is useful to maximize expected fitness. Consider, for example, a threshold

situated so that the probability of an outcome in the adjacent interval to the left

equals the probability of an outcome just to the right. Suppose, however, that the
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distance to the next threshold on the right exceeds the distance to the left, because

the pdf, f is lower to the right. It will then pay to move to right, since the expected

fitness stakes on the right exceed those on the left. Indeed, if β = 1/2, the resulting

rule will be shown to be approximately optimal for large N.

We have—

Theorem 4.1. In the limit as G → ∞ so that ϵ → 0, the invariant joint distribution of

the thresholds (xt
1, . . . , xt

N) converges to one that assigns a point mass to the vector with

components x∗n, n = 1, ..., N. These are the unique solutions to

(F(x∗n+1)− F(x∗n))(x∗n+1 − x∗n)
β = (F(x∗n)− F(x∗n−1))(x∗n − x∗n−1)

β,

for n = 1, ..., N.

Proof. See the Appendix.

Theorem 4.1 straightforwardly extends Theorem 3.1. Again, the limiting position

of each threshold is such that the probability of moving to the left is equal to the

probability of moving to the right.

4.1. Approximate Optimality of the Rule of Thumb. For each N, there exists a

unique positioning of the N interior thresholds, under the rule of thumb, in the

limit as G → ∞ so that ϵ → 0. We now consider the limiting properties of the

rule of thumb. Consider the efficiency of the rule of thumb relative to the full

information ideal, for the expected fitness criterion. (The “full information ideal”

is to always choose the higher outcome.) Suppose that the expected deficit in y, for

the limiting rule of thumb relative to the full information ideal, is given by L(N).

Consider also L∗(N), the expected deficit in y, relative to the full information ideal,

when the N thresholds are placed optimally.

Theorem 4.2. Suppose f is uniformly continuous. Then, as N → ∞, the limiting effi-

ciency of the rule of thumb is characterized by

(4.1) (N + 1)2L(N) −→ 1
6

(∫
f (y)

1
1+β dy

)2 (∫
f (y)

2β
1+β dy

)
.
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Moreover, as N → ∞ the density of thresholds under the rule of thumb is

(4.2) U(x) = k ·
x∫

0

f (y)
1

1+β dy,

where k is the normalizing constant 1/
∫ 1

0 f (y)
1

1+β dy. That is, in the limit, the fraction of

thresholds in the interval [0, x] is U(x). Expression 4.1 is uniquely minimized by choice

of β = 1/2. Hence the rule of thumb with the best limiting efficiency satisfies

(N + 1)2L(N) −→ 1
6

(∫
f (y)

2
3 dy
)3

as N → ∞.

Proof. See the Appendix. The strict optimality of β = 1/2 follows from the Hölder

Inequality.

The choice of β = 1/2 gives the best limiting efficiency among the simple adjust-

ment rules considered here. The next result is that the rule of thumb with β = 1/2

gives the same limiting efficiency, moreover, as do optimally placed thresholds—

Theorem 4.3. As N → ∞ the limiting efficiency when the N thresholds are placed op-

timally is characterized by

(4.3) (N + 1)2L∗(N) −→ 1
6

(∫
f (y)

2
3 dy
)3

.

Hence the rule of thumb, when β = 1/2, is approximately optimal for large N.

This approximation is additional to those already involved in i) the convergence

of the Markov chain to an invariant distribution and ii) taking the limit of the in-

variant distribution as ϵ → 0. 7

7The density of optimally placed thresholds is proportional to f
2
3 in the limit, so the optimal utility

function is

U(x) = k
∫̇ x

0
f (y)2/3dy, for k = 1

/ ∫ 1

0
f (y)2/3dy.

as was shown by Netzer (2009).
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5. SPEED VERSUS ACCURACY

A formal but interesting property of the model is a tradeoff between the speed and

accuracy of adjustment. This is controlled by the parameter ϵ—when ϵ is large,

adaptation is rapid, but imprecise; if ϵ is small, adaptation is slow but precise.

This tradeoff between speed and accuracy seems bound to be theoretically robust.

That is, other models that differ in detail but still capture rapid adaptation seem

bound to also produce such a tradeoff.

FIGURE 1. Speed versus Accuracy

Figure 1 illustrates these observations in the probability of error case. It depicts the

evolution of the three thresholds over time, now contrasting two different values

of the grid size ϵ; namely 0.002, and 0.000125, top and bottom, respectively. It is
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evident here that a smaller value of ϵ slows down the speed of adjustment but

improves the precision of the ultimate allocation of thresholds.

This discussion could be sharpened by assuming that the underlying cdf, F, was

subject to occasional change. Suppose, to be more precise, that there is a (finite,

say) set of cdf’s {Fj}. With a Poisson arrival rate, the current cdf from this set is

switched to a new one, drawn at random from this set. It is intuitively compelling

that there should then be an optimal ϵ > 0 and that this should vary with the rate

of introduction of novelty, in particular.8

Adaptation should be slow when circumstances change infrequently; but fast when

circumstances change frequently. (This would consider the parameter ϵ as endo-

genous, tailored to the circumstances.) This is consistent with adaptation to living

in a new locale taking several years; but adaptation to playing a game of penny

ante poker being much faster.

6. HEDONIC TREADMILL

The model has immediate implications for the hedonic treadmill. Schkade and

Kahneman (1998) formulate a well-known version of this treadmill that concerned

students at the University of Michigan and at UCLA. Students in the two locations

reported similar degrees of life satisfaction, but Michigan students projected that

UCLA students would be significantly happier.

Schkade and Kahneman describe this as a conflict between “decision utility”—

which is applied when deciding whether to move from Michigan, and which

is based on an expected substantial increase in life satisfaction in California—

and “experienced utility”—which reflects the more modest increase ultimately

obtained once there. Schkade and Kahneman argue then that “decision utility”

is defective.

The model here entails the adaptation of utility, which implies such a distinc-

tion between decision and experienced utilities. There is no sense, however, in

which either decision or experienced utility is defective, in contrast to Schkade

8In a similar spirit, the number of thresholds might be allowed to vary with the problem at hand.

That is, if a problem has particularly high stakes, N might be allowed to increase, but at a cost.



15

and Kahneman.9 Either utility function is optimal for the corresponding circum-

stances, in the light of the inability to make arbitrarily fine distinctions.

Interval number
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FIGURE 2. Adaptation of the Thresholds to a Novel Distribution.

The results of simulating this version of the model are presented in Figure 2. Con-

sider the class of cdf’s given by F(x) = xγ with pdf’s f (x) = γxγ−1, with γ > 0,

for all x ∈ [0, 1]. Suppose ϵ = 0.0005. Consider the probability of error case, for

example, so that β = 0, with nine thresholds, so that these thresholds will be op-

timally positioned at the deciles of the distribution. Take 100, 000 periods, where

γ = 1 for the first 20, 000 periods and γ = 5 thereafter, so that probability mass is

shifted to the upper end of the interval [0, 1]. Suppose the thresholds are placed

initially at 0.1, 0.2,...,0.9—that is, at the deciles of the distribution for γ = 1. This

is essentially equivalent to supposing that the γ = 1 regime has been in effect for

9Robson and Samuelson (2011) addressed these issues using the Rayo and Becker (2007) model of

a limited ability to make fine distinctions. However, this model, in common with other papers in this

small literature, lacks an explicit account of real time adaptation.
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a long time. (All the simulations here were done using Excel.) The distribution of

thresholds quickly puts most mass near the deciles, as shown by the restoration of

the uniform empirical frequency of outcomes in each interval.

Figure 2 illustrates the adaptation induced by the current rule of thumb. An out-

come near 0.5, for example, once generated utility near 0.5; after the shift to a

substantially more favorable distribution, it generates a rock-bottom level of util-

ity. But the distribution of thresholds was optimal for the original distribution and

became optimal again for the new distribution.

For β = 0, as in Figure 2, average utility reverts completely to its original level,

after a shift in the cdf F. This is a pure form of the “hedonic treadmill”. For

β = 1/2, however, reversion is generally incomplete or can overshoot. Figure 3

illustrates partial reversion, presenting a rolling average of utility, where utility is

defined so that average utility for γ = 1 is normalized to 0.5.10

FIGURE 3. Rule of Thumb with β = 1/2. Modified Hedonic

Treadmill.

10Average utility needs to be smoothed to be meaningful. We use a rolling average of the last 1,000

periods.
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Indeed, long run average expected utility generally depends on the distribution,

when β > 0.11 To illustrate overshooting, consider before and after distributions F

and G, respectively, say, such that the average utility under G exceeds that under

F. Suppose now that G is scaled down, by halving all outcomes, perhaps, so that

F first-order stochastically dominates G. Such scaling ensures that average utility

will plunge with the advent of G. However, in the long run, average utility is

independent of this scaling-down, no matter how dramatic this might be, and so

average utility will eventually climb back past its old level.

Importantly, Figure 2 also serves to demonstrate the robustness of the limiting res-

ults Theorems 3.1 and 4.1 which concern limits of invariant distributions as the

grid size ϵ tends to 0. That is, these results hold approximately for finite time and

reasonable positive grid sizes. Theorems 4.2 and 4.3 rely on taking the additional

limit as N → ∞, then showing that β = 1/2 yields a rule of thumb that is approx-

imately optimal. Figure 3 then shows β = 1/2 is approximately optimal even for

small values of N. These results are also then robust. Further, although there is a

gain from β > 0, this gain is not overwhelming, relative to β = 0. The additional

complexity cost of rules of thumb with β > 0 might then outweigh the gain over

the rule with β = 0.

From a welfare point of view, not merely is average utility an unreliable guide as to

the extent of the change in the distribution, it may reverse the apparent direction.

The explanation the current model provides for the hedonic treadmill can be ap-

plied to the criterion of average national happiness, as has been recently suggested

as an alternative to GNP. Clark et al. (2018) go beyond the present positive approach

to utility to embrace a normative view. Adaptation raises various issues for the pos-

itive view that is adopted here, but it is more problematic as a normative approach.

If all monetary outcomes are doubled, for example, this causes an immediate in-

crease in average utility. Nevertheless, average utility is unaffected in the long

run. This does not seem a desirable normative property of a welfare criterion.

11Expected utility also depends on the distribution under the optimal allocation of a finite number

of thresholds.
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In the probability of error case, there is complete long run adaptation, in general, be-

cause
∫

F(x)dF(x) = 1/2 for all cdf’s F. This is because the mechanism described

here generates purely relative valuations.

The expected fitness criterion differs on this score. That is, in the limiting large N

case, if the criterion is expected fitness, it follows that U′(x) = k f (x)2/3 where k is

such that U(1) = 1 (as in Netzer, 2009). Although it is still true that
∫

U(x)dF(x)

is fully invariant in the long run to rescaling the cdf F, it now depends on the

non-scaleable properties of the distribution.12 Indeed, average utility can be made

arbitrarily close to 1—the absolute maximum value—by taking distributions con-

verging to a point mass at 1 in a particular fashion.

The problem is to maximize
∫ 1

0 U(x) f (x)dx subject to F′(x) = f (x) U′(x) =

k f (x)2/3, where F(0) = U(0) = 0 and F(1) = 1, and where k is such that U(1) = 1.

This can be translated to the equivalent problem

max
f

V(1)
W(1)

subject to

F′(x) = f (x); W ′(x) = f (x)2/3; V′(x) = W(x) f (x),

and F(0) = W(0) = V(0) = 0, and F(1) = 1. This “Problem of Mayer” is awk-

ward in the sense that, although first-order necessary conditions are straightfor-

ward, it is difficult to obtain local or global sufficient conditions. (See Hestenes,

1966, Ch. 7.) This issue can be finessed here since it can be shown directly that an

unbeatable payoff can be obtained in a limiting sense. It must be that V(1)/W(1) ≤

1, since V(1) is the expectation of W(x) which has maximum value 1. Moreover—

Lemma 6.1. For the problem described above, there is a sequence of fn, tending to a point

mass at 1, such that Vn(1)/Wn(1) → 1.

12Scale invariance in this expected fitness case holds in the following sense. Consider a reference cdf

F and pdf f with support [0, 1], where f > 0 on (0, 1). Consider now the scaled cdf Fλ(x) = F(λx) and

pdf f λ(x) = λ f (λx), with support [0, 1
λ ] for λ > 0. Scaled utility is then Uλ(x) = kλ2/3

∫ x
0 f (λx′)2/3dx′

so that Uλ( y
λ ) =

k
λ1/3

∫ y
0 f (y′)2/3dy′ where k = λ1/3∫ 1

0 f 2/3(y′)dy′
so that Uλ( 1

λ ) = 1. It follows immediately

that Uλ( y
λ ) = U(y) so that

∫ 1
λ

0 f λ(x)Uλ(x)dx =
∫ 1

0 f (y)U(y)dy.
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Proof. See Appendix.

Surveys of happiness vary to a remarkably small extent with such obvious factors

as income. Although Denmark is much richer than Bhutan, for example, it is only

somewhat happier. This approximate constancy may reflect adaptation. It would

be interesting to explain the variation that is left in terms of non-scaleable effects

of the distribution.

The discussion of happiness economics largely involves the static properties of the

model. The last application reconsiders its new explicitly dynamic properties.

7. BEHAVIORAL CONTRAST

There are a number of puzzling phenomena in economics that relate to the psycho-

logical phenomenon of behavioral contrast.13 For example, Vestergaard and Schultz

(2015) consider bidding behavior in second-price auctions. Lesser-valued options

involving the growth of value were shown to be systematically preferred to better

options with declining time profiles. Similarly, Khaw et al (2017) show that current

observed “BDM” bids in an auction are higher if the average value of recent items

is lower. Lesser-valued options arising in a context involving the growth of value

were shown to be systematically preferred to better options with declining time

profiles.

In a labor market context, Dustmann and Meghir (2005) provide related evidence

of the returns to tenure. These returns seem to represent a direct market response

to a preference by workers for rising wages. Skilled workers enjoy a substantial

initial wage gain with experience, gains from staying with the same firm, and

some gain from staying in the same sector. It is particularly relevant that unskilled

workers’ wages grow noticeably with firm tenure, but grow with experience only

for a short period, and not at all with sector tenure.

The current model generates results consistent with such observations. Consider

the probability of error case, for simplicity. Suppose rewards are from an arbitrary

13The classic experiments of Crespi (1942) concerned rats. Rats ran faster towards larger rewards

than towards smaller ones. However, rats trained on small rewards ran still faster towards large re-

wards than did rats exposed to large rewards all along.
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cdf F that shifts to the right with time in a linear fashion, at rate α. If the adaptive

rule shifts thresholds a distance ε > 0, as in Definition 3.1, then the cdf at time t

is F(x, t) = F(x − εαt). (The shift in the cdf’s is εα because otherwise the rule of

thumb, shifting thresholds by ε, could not keep up with the improving distribu-

tions.) The grid containing the xn thresholds is now Gε = {0, ε, 2ε, . . . , mε, . . . , }.

Consider then the random variables x̂n = xn − εαt, n = 1, . . . , N. In the long run

these are governed by an invariant distribution, say π̂εα. Theorem 3.1 can readily

be adapted to show—

Lemma 7.1. Suppose α < 2
N(N+1) in the modified model with growth of rewards.14 Then,

in the limit as ε −→ 0, the invariant joint distribution of the modified thresholds, π̂εα, con-

verges to a point mass at the vector (x̂∗1 , . . . x̂∗N), where the components are characterized

by

(7.1) (F(x̂∗n+1)− F(x̂∗n)) = (F(x̂∗n)− F(x̂∗n−1)) + α, n = 1, ...N.

Proof. See Appendix.

Thus, if α > 0, the long run effect of such increase in rewards is to shift all

thresholds down, with each threshold being shifted down relative to the one be-

fore. Hence average utility is unambiguously shifted up, with this effect being

more pronounced for larger α. If α < 0, the effect is reversed, with utility being

shifted down. It follows that a rising sequence of rewards may generate higher

average utility than a decreasing sequence, even if the decreasing sequence is un-

ambiguously better.

14When the condition α < 2
N(N+1) is not satisfied there will not be an interior solution for equation

(7.1).
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FIGURE 4. Behavioral Adaptation

This analysis is illustrated in Figure 4, where the cdf is the uniform distribution,

and there are three thresholds. This cdf shifts up in a linear fashion over the first

50, 000 periods. During this phase, the thresholds lag behind the quartiles of the

current cdf, as the above argument implies. This raises average utility.

At period 50, 000, there is an abrupt jump up in the cdf, which creates a spike

in average utility. After period 50, 000, the cdf declines linearly, at the same rate

that it rose before, the thresholds are above the quartiles, and average utility falls,

despite the higher average rewards in this second phase.

Consider then a choice between rising consumption—as in the first phase in Figure

4—and falling consumption—as in the second phase. After a temporal reversal,

the rewards in the second phase vector dominate those in the first, but, except

for the immediate aftermath of the jump in rewards at the midpoint, which is an

artifact of the precise sequence here, utility levels in the first phase similarly vector
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dominate those in the second. This provides a basis for predicting a preference for

the first phase.15

8. CONCLUSIONS

We present a simple model where utility shifts in real time in response to changing

circumstances. This adaptation acts to reduce the error caused by a limited ability

to make fine distinctions, and is ultimately evolutionarily optimal. This model

sheds light on the hedonic treadmill, and happiness economics and behavioral

adaptation.

There is no deep conflict with economics, in the sense that limited discrimination

is the only reason there are mistakes at all; as this ability improves, behavior con-

verges to that implied by standard economics.

9. APPENDIX: PROOFS

9.1. Proof of Proposition 3.1. Make the innocuous simplification that the cdf F is

uniform on [0, 1]. The optimal placement of the thresholds is then (1/3, 2/3). In

the limit as ε → 0, but where the arrival rate of outcomes is sped up in proportion

to 1/ε, it can be shown that the thresholds adapt in a way described by two linear

ordinary differential equations.

In general, the differential equations that hold in the limit are

ẋ1 = ∆1
1x1 + ∆1

2(x2 − x1) + ∆1
3(1 − x2),

ẋ2 = ∆2
1x1 + ∆2

2(x2 − x1) + ∆2
3(1 − x2),

where ∆n
i ∈ {0, 1,−1} represents how an outcome in Ii, i = 1, 2, 3, moves the

threshold xn, n = 1, 2. For (1/3, 2/3) to be an equilibrium of this dynamic, it must

be that ∑3
i=1 ∆n

i = 0, n = 1, 2, so that nontrivial ∆n
i are permutations of {0, 1,−1}

for n = 1, 2. Symmetry means that the process can be reversed from left to right,

15This explanation obviates the need to invoke “recency bias”, which could also predict a preference

for the first phase over the second.
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so that16

∆1
1 = −∆2

3, ∆1
2 = −∆2

2, and ∆1
3 = −∆2

1.

The current rule is that

∆1
1 = −∆2

3 = −1, ∆1
2 = −∆2

2 = 1, and ∆1
3 = −∆2

1 = 0

and the limiting differential equations for x1 and x2 are then

ẋ1 = (x2 − x1)− x1 = x2 − 2x1 and ẋ2 = (1 − x2)− (x2 − x1) = 1 − 2x2 + x1.

This linear system is globally asymptotically stable with (x1, x2) → (1/3, 2/3)

because the matrix

−2 1

1 −2

 has two strictly negative eigenvalues.

One alternative rule would simply reverse the current rule. Not surprisingly, this

rule is unstable because the relevant matrix

 2 −1

−1 2

 has two strictly positive

eigenvalues. The Markov process cannot satisfy Theorem 3.1.

The remaining rules can be sorted by choice of i = 1, 2, 3 such that ∆1
i = 0. One

possibility is

∆1
1 = −∆2

3 = −1, ∆1
2 = −∆2

2 = 0, and ∆1
3 = −∆2

1 = 1.

The problem with such a rule is evident—it pays no attention to outcomes in I2

which means it cannot adapt appropriately to the probability of I2. The differential

equations become

ẋ1 = −x1 + (1 − x2) = ẋ2,

so that x1 − x2 does not change. The relevant matrix

−1 −1

−1 −1

 has one negative

eigenvalue and one that is 0. The solution to the differential equations tends to a

limit (x∗1 , 1 − x∗1), dependent on the initial values, for x∗1 ∈ [0, 1]. This limit is gen-

erally distinct from (1/3, 2/3). The invariant distribution of the Markov process

tends to concentrate at such limits but displays no tendency to move to (1/3, 2/3)

in particular.

16Symmetry is for the sake of exposition. It can be shown that asymmetry does not generate addi-

tional viable rules.
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Another option would reverse the signs of the ∆n
i . It still follows that ẋ1 = ẋ2. The

matrix

1 1

1 1

 now has one positive eigenvalue and one that is 0, so that points of

the form (x∗1 , 1− x∗1) are not stable limits of the differential equations. The Markov

process does not satisfy Theorem 3.1.

The final pair of possibilities involve ∆1
1 = 0. The first is

∆1
1 = −∆2

3 = 0, ∆1
2 = −∆2

2 = −1, and ∆1
3 = −∆2

1 = 1.

The differential equations are then

ẋ1 = (1 − x2)− (x2 − x1) = 1 + x1 − 2x2 and ẋ2 = (x2 − x1)− x1 = x2 − 2x1.

This system is not then globally asymptotically stable because the matrix

 1 −2

−2 1


has one strictly positive eigenvalue and one strictly negative. The only remain-

ing possibility reverses the previous rule. The resulting differential equation sys-

tem is not asymptotically stable, because the relevant matrix

−1 2

2 −1

 again has

one strictly positive eigenvalue and one strictly negative. The Markov process for

either of these two rules cannot then satisfy Theorem 3.1.

Within the current simple class of Markov rules, with two adjustable thresholds,

the current rule is then the only one that generates optimal choice in the long run,

as claimed.

9.2. Proof of Theorem 4.1. Fix N, the number of interior thresholds. Consider a

sequence of distributions {Fε} converging to F, as ε tends to zero, where, further-

more, for each ε > 0, the equilibrium interior thresholds x∗ε corresponding to Fε

(as described in Theorem 4.1) all lie on the grid {Gε}N . The vector xε(t) describes

the placement of the thresholds when the distribution over outcomes is Fε and the

placement of the cutoffs evolves according to the rule of thumb from Definition

4.1.

Given the rule of thumb, to each cdf Fε there correspond transition probabilit-

ies, Pε{xε(τ) | xε(t)}—i.e., the probabilities that the state transitions from xε(τ) in

period τ to xε(t) in period t > τ. Since the Markov chain is irreducible, these one
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step transition probabilities generate πε, the unique invariant distribution of the

thresholds under Fε. In the following, Eε denotes the expectation with respect to

Pε.

Suppose π∗ is the distribution that assigns point mass to the vector of thresholds

x∗ = (x∗0 , . . . , x∗N+1), where these are as described in Theorem 4.1, for F. We prove

now that πε converges to π∗ as ε tends to zero, proving Theorem 4.1. Consider

first the following result.

Lemma 9.1. Given Fε as described above define the “Manhattan” distance of xε(t) from

x∗ε —

∆t =
N

∑
n=1

|xt
n − x∗εn|.

Then, for each t and τ ≥ t,

(9.1) Eε(∆τ | xε(t))− ∆t ≤ ε · N.

Proof of Lemma 9.1. Fix Fε throughout. In the following, we suppress the ε sub-

script on x∗εn. Consider threshold configurations in {Gε}N+2 such that at least one

interior threshold xn, n = 1, . . . , N, is at its equilibrium location. The set of these

is X∗ ⊆ {Gε}N+2, i.e.,

X∗ = {x ∈ {Gε}N+2 : min
n=1,...,N

|xn − x∗n| = 0}.

Then, let X∗
r ⊆ {Gε}N+2 denote configurations with exactly r thresholds at their

equilibrium locations. Write In(t) = [xt
n−1, xt

n], and I∗n = [x∗n−1, x∗n], for n =

1, . . . , N + 1.

Lemma 9.1 follows from Lemmas 9.2, 9.3, and 9.4, which are stated and proved

below.

Lemma 9.2. Suppose xε(t) ̸∈ X∗, then Eε(∆t+1 | xε(t))− ∆t ≤ 0.

Proof. Define, for each t, sets of threshold indices—

I (t) ⊂ {1, . . . , N + 1} is such that n ∈ I (t) if and only if In(t) ⊂ I∗n ,

O(t) ⊂ {1, . . . , N + 1} is such that n ∈ O(t) if and only if I∗n ⊂ In(t),

N (t) = {1, . . . , N + 1} \ {I (t) ∪O(t)}.
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Suppose, as in the statement of the lemma, that xε(t) ̸∈ X∗. Consider n ∈ N (t).

Given that xε(t) ̸∈ X∗ it follows that n ̸∈ {1, N + 1}. Therefore, when yt lands in

In(t), either xt
n−1 or xt

n, or both, can shift. One shift decreases ∆t by ε while the

other shift increases ∆t by ε. Since it is equally likely that either xt
n−1 or xt

n shifts,

conditional on yt ∈ In(t), it follows that n ̸∈ N (t) implies

Eε(∆t+1 | xε(t), yt ∈ In(t))− ∆t = 0.

Thus—

Eε(∆t+1 | xε(t))− ∆t = ∑
n∈I (t)

(Eε(∆t+1 | xε(t), yt ∈ In(t))− ∆t)−

∑
n∈O(t)

(Eε(∆t+1 | xε(t), yt ∈ In(t))− ∆t) .

Next consider n ∈ O(t). If the outcome yt lands in In(t), then any threshold shift

can only bring the configuration closer to x∗ε . In particular, if j ∈ {1, 2} thresholds

are moved, then ∆t+1 = ∆t − jε. It follows that n ∈ O(t) implies

Eε(∆t+1 | xε(t), yt ∈ In(t))− ∆t = −ε (ϕn−1 + ϕn) (xt
n − xt

n−1)
β,

where ϕm = 0 if m ∈ {0, N + 1}, and ϕm = 1 otherwise. Consider the last case,

n ∈ I (t). When yt lands in In(t), if j ∈ {1, 2} thresholds shift, then ∆t+1 = ∆t + jε.

Thus, n ∈ I (t) implies

Eε(∆t+1 | xε(t), yt ∈ In(t))− ∆t = ε (ϕn−1 + ϕn) (xt
n − xt

n−1)
β.

The foregoing implies

Eε(∆t+1 | xε(t))− ∆t =

∑
n∈I (t)

ε(ϕn−1 + ϕn)Hn(t) − ∑
n∈O(t)

ε(ϕn−1 + ϕn)Hn(t),

(9.2)

where

Hn(t) =
(

Fε(xt
n)− Fε(xt

n−1)
)
(xt

n − xt
n−1)

β.

By the definition of the equilibrium configuration for Fε, if n ∈ O(t), and m ∈

I (t), then Hn(t) ≥ Hm(t). Therefore, in view of Eq (9.2), to complete the proof, it
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suffices to show that

∑
n∈I (t)

(ϕn−1 + ϕn) ≤ ∑
m∈O(t)

(ϕm−1 + ϕm),(9.3)

whenever xε(t) ̸∈ X∗.

To show that Eq (9.3) is true we first show that in Eq (9.3) each ϕn, n < N + 1,

under the I (t) sum is offset by a ϕm−1, m > n, under the O(t) sum. To do this,

note that n ∈ I (t) implies xt
n < x∗n. Therefore, if n < N + 1, then n + 1 ∈

N (t) ∪O(t). That is, xt
n+1 > x∗n+1 implies n + 1 ∈ O(t), and xt

n+1 < x∗n+1 implies

N + 1 ∈ N (t), and that these cases exhaust the possibilities, since xε(t) ̸∈ X∗

implies xt
n+1 ̸= x∗n+1. Now, if n + 1 ∈ O(t), then ϕn appears under both the

I (t) and O(t) sums in Eq (9.3), and thus these terms cancel each other in that

expression. If instead n+ 1 ∈ N (t), then similarly n+ 2 ∈ N (t)∪O(t). If n+ 2 ∈

O(t) then ϕn+1 under the O(t) sum cancels ϕn under the I (t) sum. Otherwise,

proceed by induction to eventually find an m > n with m ∈ O(t) and k ∈ N (t)

for each k = n + 1, . . . , m − 1. Note that N + 1 /∈ N (t). This ϕm under the O(t)

sum then cancels ϕn under the I (t) sum. In a similar fashion it can be shown that

each ϕn−1, n > 0, under the I (t) sum is offset by a ϕm, m < n, under the O(t)

sum. Eq (9.3) thus follows. In view of Eq (9.2), this completes the proof of Lemma

9.2.

We will also need the following result to prove Lemma 9.1.

Lemma 9.3. Suppose xε(t) ∈ X∗
r . Let σ be the first date, following t, a threshold is shifted

away from its equilibrium placement. Then, for each τ > t,

(9.4) Eε(∆τ | xε(t), {τ < σ})− ∆t ≤ 0.

Proof. By the definition of σ there are r thresholds X̃ = {xt
n1

, . . . , xt
nr} where, condi-

tional on τ < σ, for each s = 1, . . . , r, xt
ns = x∗ns , in periods t, . . . , τ. The thresholds

in X̃ can then be treated as fixed endpoints of their adjacent intervals when com-

puting the expectation in Eq (9.4). The argument used in the proof of Lemma 9.2

then applies for the thresholds inside these fixed intervals.

Lemma 9.1 now follows immediately from the next result.
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Lemma 9.4. Suppose xε(t) ∈ X∗
r . Then, for each τ ≥ t, Eε(∆τ | xε(t))− ∆t ≤ rε.

Proof. Suppose xε(t) ∈ X∗
r . Consider stopping times D

j
τ = {σ : t ≤ σ ≤ τ},

j = 1, 2, where at each date in D
j
τ exactly j thresholds are shifted onto their equilib-

rium locations. Similarly, consider stopping times U
j

τ = {σ : t ≤ σ ≤ τ}, j = 1, 2,

where at each date in U
j

τ exactly j thresholds are displaced from their equilibrium

locations. Write Dτ = D1
τ ∪D2

τ , and Uτ = U 1
τ ∪U 2

τ . Now,

Eε(∆τ | xε(t))− ∆t = Eε

(
τ−1

∑
s=t

Eε(∆s+1 | xε(s))− ∆s

∣∣∣ xε(t)

)

= Eε

(
∑

s∈Uτ

Eε(∆s+1 | xε(s))− ∆s

∣∣∣ xε(t)

)

+ Eε

(
∑

s∈Dτ

Eε(∆s+1 | xε(s))− ∆s

∣∣∣ xε(t)

)

+ Eε

(
∑

s ̸∈Uτ∪Dτ

Eε(∆s+1 | xε(s))− ∆s

∣∣∣ xε(t)

)
.

Lemma 9.3 implies the sum in the last line is bounded above by zero. Therefore

Eε(∆τ | xε(t))− ∆t ≤ Eε

(
∑

s∈Uτ

Eε(∆s+1 | xε(s))− ∆s

∣∣∣ xε(t)

)

+ Eε

(
∑

s∈Dτ

Eε(∆s+1 | xε(s))− ∆s

∣∣∣ xε(t)

)

= Eε

 ∑
s∈U 1

τ

ε − ∑
s∈D1

τ

ε
∣∣∣ xε(t)

+ 2Eε

 ∑
s∈U 2

τ

ε − ∑
s∈D2

τ

ε
∣∣∣ xε(t)

 .

The lemma therefore follows if

Eε(|U 1
τ |+ 2|U 2

τ | − |D1
τ | − 2|D2

τ | | xε(t)) ≤ r.

Suppose |U 1
τ | + 2|U 2

τ | = r + k, where k > 0. Since xε(t) ∈ X∗
r , by assumption,

it follows that for each of the additional k shifts where a threshold was displaced

from its equilibrium location, there must have been an offsetting earlier shift where

a threshold landed on its equilibrium location. In particular, we must then have

|D1
τ |+ 2|D2

τ | ≥ k. This completes the proof of the lemma.
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Lemma 9.1 follows immediately from Lemmas 9.2 and 9.4. We can now prove

the following, which establishes that πε converges to π∗ as ε tends to zero, hence

proving Theorem 9.1.

Lemma 9.5. Consider the process xε(t). Suppose ∆t is the distance of xε(t) from x∗ε .

Then, there is a date t such that for all τ ≥ t,

Pε{∆τ ≥
√

εN} ≤ 2
√

εN.

Proof. Lemma 9.1 implies

sup
τ≥t

Eε(∆τ | xε(t)) ≤ ∆t + εN.

Hence,

sup
τ≥t

Eε(∆τ | xε(t), ∆t ≤ εN) ≤ 2εN.

Markov’s inequality then gives

sup
τ≥t

Pε{∆τ ≥
√

εN | ∆t ≤ εN} ≤ 2
√

εN.

The Markov chain is irreducible. Hence, with probability one, the event ∆t ≤ εN

happens infinitely often, and thus

lim sup
τ

Pε{∆τ ≥
√

εN} ≤ 2
√

εN

as claimed.

9.3. Proof of Theorem 4.2. Fix N throughout. Recall that (x∗0 , , . . . , x∗N+1) de-

scribes the equilibrium placement of thresholds, in the limit as ε → 0, for the

rule of thumb, adapted to the cdf F, when there are N interior thresholds. Each N

then defines λN , where

λN = (x∗n − x∗n−1)
β · (F(x∗n)− F(x∗n−1)), n = 1, . . . , N + 1.

Define

αn =
F(x∗n)− F(x∗n−1)

x∗n − x∗n−1
.

Then

(9.5) λN = (x∗n − x∗n−1)
1+β · αn, n = 1, ..., N + 1.
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Raising each side to the power of 1
1+β and then summing over n = 1, . . . , N + 1

gives

(9.6) λ
1

1+β
N =

1
N + 1

N+1

∑
n=1

α
1

1+β
n (x∗n − x∗n−1).

We will use, moreover, the following, which is implied by Eqs (9.5) and (9.6)—

x∗n − x∗n−1 =

(
λN

αn

) 1
1+β

=

(
1

αn

) 1
1+β 1

N + 1

N+1

∑
m=1

α
1

1+β
m (x∗m − x∗m−1), n = 1, ..., N + 1.

(9.7)

Recall that L(N) is the expected loss, relative to the full information ideal, when

the thresholds are placed according to (x∗0 , , . . . , x∗N+1). In particular,

L(N) =
N+1

∑
n=1

Ln(N)
(

F(x∗n)− F(x∗n−1)
)2 ,

where Ln(N) is the expected loss, relative to the full information ideal, conditional

on the outcomes on both arms arriving in [x∗n−1, x∗n]. More precisely,

Ln(N) =

(
1

F(x∗n)− F(x∗n−1)

)2

×

∫ x∗n

x∗n−1

∫ x∗n

x∗n−1

max{y, y′} − min{y, y′}
2

f (y) f (y′) dy dy′.

since conditional on y, y′ landing in [x∗n−1, x∗n−1] the payoff is max{y, y′} under the

full information ideal, while under limited information the payoff is max{y, y′}

with probability 1/2, and min{y, y′} with probability 1/2. Consider now an ap-

proximation of L(N), where the expected loss relative to the full information ideal

is integrated against a step function approximation of f . The steps in the approx-

imation occur at the placement of the equilibrium cutoffs for F, given that there

are N cutoffs.

Definition 9.1. For each N consider the step function fN , where fN(1) = f (1), and

fN(y) =
F(x∗n)− F(x∗n−1)

x∗n − x∗n−1
for all y ∈ [x∗n−1, x∗n), n = 1, . . . , N + 1.
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Then define

L̂n(N) =

(
1

F(x∗n)− F(x∗n−1)

)2

×

∫ x∗n

x∗n−1

∫ x∗n

x∗n−1

max{y, y′} − min{y, y′}
2

fN(y) fN(y′) dy dy′,

and

L̂(N) =
N+1

∑
n=1

L̂n(N)
(

F(x∗n)− F(x∗n−1)
)2 .

We will use Lemmas and 9.6, 9.7, and 9.8 to characterize the limiting efficiency of

the rule of thumb as in Theorem 4.2.

Lemma 9.6. Since f is uniformly continuous, and bounded away from zero, fN converges

uniformly to f as N → ∞.

Proof. Since f is uniformly continuous, it follows that for each η > 0 there is a

δ > 0 such that |y − y′| < δ implies | f (y)− f (y′)| < η. The mean value theorem

implies that for each n = 1, . . . , N + 1 there is a yn ∈ [x∗n−1, x∗n] such that

f (yn) =
F(x∗n)− F(x∗n−1)

x∗n − x∗n−1
.

Thus

max
y∈[x∗n−1,x∗n ]

∣∣∣∣∣ f (y)− F(x∗n)− F(x∗n−1)

x∗n − x∗n−1

∣∣∣∣∣ < η, n = 1, . . . , N + 1,

whenever |x∗n − x∗n−1| < δ. In order to establish the uniform convergence of fN to

f we then need only show that max
n=1,...,N

∣∣x∗n − x∗n−1

∣∣ converges to zero as N tends to

infinity. Recall, given N, the constant

λN = (x∗n − x∗n−1)
β · (F(x∗n)− F(x∗n−1)), n = 1, . . . , N + 1.

We thus have

x∗n − x∗n−1 =

(
λN

f (yn)

) 1
1+β

.

The pdf, f , is bounded away from zero, by assumption. Thus

x∗n − x∗n−1 ≤ cλ
1

1+β
N , n = 1, . . . , N + 1,
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for some constant, c, that does not depend on n = 1, . . . , N + 1, or N. From Eq

(9.6), it follows that max
n=1,...,N

∣∣x∗n − x∗n−1

∣∣ converges to zero as N tends to infinity.

This completes the proof of the lemma.

Lemma 9.7. Since f is uniformly continuous, and bounded away from zero, (N + 1)2 ×∣∣L(N)− L̂(N)
∣∣ −→ 0, as N → ∞.

Proof. We begin with

|L(N)− L̂(N)| =
∣∣∣∣∣N+1

∑
n=1

(
Ln(N)− L̂n(N)

)
(F(x∗n)− F(x∗n−1))

2

∣∣∣∣∣
≤

N+1

∑
n=1

∣∣∣(Ln(N)− L̂n(N)
)
(F(x∗n)− F(x∗n−1))

2
∣∣∣ .

Now

(
Ln(N)− L̂n(N)

)
(F(x∗n)− F(x∗n−1))

2 =∫ x∗n

x∗n−1

∫ x∗n

x∗n−1

max{y, y′} − min{y, y′}
2

(
f (y) f (y′)− fN(y) fN(y′)

)
dy dy′.

Therefore,

|
(

Ln(N)− L̂n(N)
)
(F(x∗n)− F(x∗n−1))

2| ≤

1
2

∫ x∗n

x∗n−1

∫ x∗n

x∗n−1

|max{y, y′} − min{y, y′}| · | f (y) f (y′)− fN(y) fN(y′)| dy dy′ ≤

1
2

∫ x∗n

x∗n−1

∫ x∗n

x∗n−1

(x∗n − x∗n−1)| f (y) f (y′)− fN(y) fN(y′)| dy dy′ ≤

1
2

(
max

y,y′∈[x∗n−1,x∗n ]

∣∣ f (y) f (y′)− fN(y) fN(y′)
∣∣) ∫ x∗n

x∗n−1

∫ x∗n

x∗n−1

(x∗n − x∗n−1) dy dy′ =

1
2

(
max

y,y′∈[x∗n−1,x∗n ]

∣∣ f (y) f (y′)− fN(y) fN(y′)
∣∣) (x∗n − x∗n−1)

3 ≤ ψN · (x∗n − x∗n−1)
3,

(9.8)

where

ψN = max
n

{
max

y,y′∈[x∗n−1,x∗n ]

∣∣ f (y) f (y′)− fN(y) fN(y′)
∣∣} .

The foregoing calculation shows that

|L(N)− L̂(N)| ≤ ψN

N+1

∑
n=1

(x∗n − x∗n−1)
3.
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The uniform convergence of fN to f (Lemma 9.6) implies ψN can be made arbit-

rarily small by choice of N. In order to complete the proof it therefore suffices to

show that

(N + 1)2
N+1

∑
n=1

(x∗n − x∗n−1)
3

is finite in the limit. Eq (9.7) implies

(9.9) (x∗n − x∗n−1)
2 =

(
1

αn

) 2
1+β

[
1

N + 1

N+1

∑
m=1

α
1

1+β
m (x∗m − x∗m−1)

]2

.

The term in the square brackets does not depend on n. Therefore,

N+1

∑
n=1

(x∗n − x∗n−1)
3 =

(
N+1

∑
n=1

(
1

αn

) 2
1+β

(x∗n − x∗n−1)

)
×

(
1

N + 1

N+1

∑
n=1

α
1

1+β
n (x∗n − x∗n−1)

)2

=

(
1

N + 1

)2
(∫ ( 1

fN(y)

) 2
1+β

dy

)(∫
fN(y)

1
1+β dy

)2
.

The assumption that f bounded away from zero implies 1/( f (y))
2

1+β is integrable.

Since fN converges to f uniformly, and since the domain of integration is finite,

there is clearly some integrable g such that g ≥ fN for each N. The same is true for

negative powers of f . The dominated convergence theorem thus implies

∫ ( 1
fN(y)

) 2
1+β

dy −→
∫ ( 1

f (y)

) 2
1+β

dy, and∫
fN(y)

1
1+β dy −→

∫
f (y)

1
1+β dy,

as N → ∞. Hence,

(N + 1)2
N+1

∑
n=1

(x∗n − x∗n−1)
3 −→

(∫ ( 1
f (y)

) 2
1+β

dy

)(∫
f (y)

1
1+β dy

)2
.

This completes the proof of the lemma.

Next we have—

Lemma 9.8. For each n = 1, . . . , N + 1,

L̂n(N) =
x∗n − x∗n−1

6
.
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Proof. L̂n(N) is equal to the loss, relative to the full information ideal, from choos-

ing at random when outcomes are uniformly distributed on [x∗n−1, x∗n]. Thus con-

sider a uniform distribution with pdf 1/s on the interval [0, s]. The loss from

choosing at random relative to the full information ideal is s/6. Specifically, the

expected payoff from choosing randomly between the two arms is clearly s/2. The

expected payoff from choosing the higher of the two arms, on the other hand, as

would be the full information ideal, is 2s/3. To see this, suppose

K(y) = Pr{max{y′, y′′} < y} = Pr{y′ & y′′ < y} = (y/s)2.

Hence
∫ s

0 ydK(y) = 2s/3. It follows that the expected loss from choosing at ran-

dom is s/6, proving Lemma 9.8.

Theorem 4.2 will follow from Lemmas 9.9, 9.10, and 9.11, which are given next.

The next result characterizes the limiting efficiency of the rule of thumb.

Lemma 9.9. Since f is uniformly continuous, and bounded away from zero, the limiting

efficiency of the rule of thumb is characterized by

(N + 1)2 L(N) −→ 1
6

(∫
f (y)

1
1+β dy

)2 (∫
f (y)

2·β
1+β dy

)
,

as N tends to infinity.

Proof. In view of Lemma 9.7, it suffices to show that, for the approximation, L̂(N),

(N + 1)2 L̂(N) −→ 1
6

(∫
f (y)

1
1+β dy

)2 (∫
f (y)

2·β
1+β dy

)
.

Lemma 9.8 gives

L̂(N) =
1
6

N+1

∑
n=1

(x∗n − x∗n−1)
3α2

n.(9.10)

Equation 9.7 gives

(x∗n − x∗n−1)
2 =

(
1

αn

) 2
1+β

(
1

N + 1

N+1

∑
m=1

α
1

1+β
m (x∗m − x∗m−1)

)2

.
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Therefore,

L̂(N) =
1
6

(
1

N + 1

)2
(

N+1

∑
n=1

α
1

1+β
n (x∗n − x∗n−1)

)2 (N+1

∑
n=1

α
2·β

1+β
n (x∗n − x∗n−1)

)

=
1
6

(
1

N + 1

)2 (∫
fN(y)

1
1+β dy

)2 (∫
fN(y)

2·β
1+β dy

)
.

Recall that fN converges uniformly to f . Clearly then

(N + 1)2 L̂(N) −→ 1
6

(∫
f (y)

1
1+β dy

)2 (∫
f (y)

2·β
1+β dy

)
.

This completes the proof of Lemma 9.9.

Lemma 9.10. In the limit as N tends to infinity the distribution of thresholds under the

adaptive rule of thumb is

(9.11) U(x) =

x∫
0

f (y)
1

1+β dy

1∫
0

f (y)
1

1+β dy
.

That is, in the limit under the rule of thumb the fraction of thresholds in the interval [0, x]

is U(x).

Proof. Equation 9.7 implies

α
1

1+β
n (x∗n − x∗n−1) =

1
N + 1

N+1

∑
m=1

α
1

1+β
m (x∗m − x∗m−1), n = 1, . . . , N + 1.

Therefore, for each m = 1, . . . , N + 1 we have
m
∑

n=1
α

1
1+β
n (x∗n − x∗n−1)

N+1
∑

n=1
α

1
1+β
n (x∗n − x∗n−1)

=
m

N + 1
,

which is the fraction of thresholds in [0, x∗m]. This is just

x∗m∫
0

fN(y)
1

1+β dy

1∫
0

fN(y)
1

1+β dy
=

m
N + 1

.
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Define UN(x) such that UN(1) = 1, and for each x ∈ [x∗m−1, x∗m), m = 1, . . . , N + 1,

(9.12) UN(x) =

x∗m∫
0

fN(y)
1

1+β dy

1∫
0

fN(y)
1

1+β dy
.

Notice that UN(x∗m) = m/(N + 1) for each m = 1, . . . , N + 1. Recall that fN con-

verges to f . The dominated convergence theorem gives that UN converges point-

wise to U, where U is the cdf in the statement of the lemma. This completes the

proof.

Lemma 9.11. The expression

(∫
f (y)

1
1+β dy

)2 (∫
f (y)

2·β
1+β dy

)
.

is minimized uniquely by choice of β = 1/2.

Proof. This follows from the Hölder Inequality (Royden, 1988, p. 119) since

∫
f (y)

2
3 dy =

∫
f (y)

2
3 ·

β
1+β f (y)

2
3 ·

1
1+β dy

≤
(∫

f (y)
2β

1+β dy
) 1

3
(∫

f (y)
1

1+β dy
) 2

3
.

Furthermore, equality can only hold here if f (y)2β/(1+β) = f (y)1/(1+β); that is,

only if β = 1/2.

It follows that, when β = 1/2,

(N + 1)2 L(N) −→ 1
6

(∫
f (y)

2
3 dy

)3
.

This completes the proof of Theorem 4.2.

9.4. Proof of Theorem 4.3. We now prove that the rule of thumb with β = 1/2

has the same limiting efficiency as the optimal placement of the N thresholds.

Suppose (x0, , . . . , xN+1) describes the optimal placement of thresholds for F given

that there are N interior thresholds. Let αn now be F(xn)−F(xn−1)
xn−xn−1

. Let L∗(N) denote

the expected loss in y from the optimally placed thresholds relative to the full in-

formation ideal. As in the previous section consider an approximation L̄(N) of
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L∗(N) where the loss is integrated against gN(y) where gN(1) = f (1), and for each

n = 1, . . . , N + 1, gN(y) = αn, for all y ∈ [xn−1, xn). Moreover, let L∗
n(N) denote

the expected loss from the optimally placed thresholds, relative to the full inform-

ation ideal, given that both outcomes land in [xn−1, xn], and let L̄n(N) denote the

approximation of L∗
n(N) where the loss is integrated against gN , instead of f .

Lemma 9.8 applies here, and this gives L̄n(N) = (xn − xn−1)/6. Thus

L̄(N) =
1
6

N+1

∑
n=1

(xn − xn−1)(F(xn)− F(xn−1))
2,

and hence

L∗(N) =
1
6

N+1

∑
n=1

(xn − xn−1)
3 α2

n + L∗(N)− L̄(N).

The calculations leading to Eq (9.8) in the proof of Lemma 9.7 can be repeated here

to show that

L∗(N)− L̄(N) ≥ − (ψN/6)
N+1

∑
n=1

(xn − xn−1)
3,

where

(ψN/6) = max
n

{
max

y,y′∈[xn−1,xn ]

∣∣ f (y) f (y′)− gN(y)gN(y′)
∣∣}

has been redefined for convenience. Thus

L∗(N) ≥ 1
6

N+1

∑
n=1

(xn − xn−1)
3 (α2

n − ψN).

The proof of Lemma 9.6 can be repeated here to show that gN converges uniformly

to f . (In particular, as in the proof of Lemma 9.6, maxn |xn − xn−1| → 0, as N → ∞,

yields the uniform convergence of gN to f .) Hence, ψN → 0. The term α2
n − ψN is

then positive for each sufficiently large N, since αn is bounded away from zero, by

assumption. The Hölder Inequality then gives, for sufficiently large N,

N+1

∑
n=1

(xn − xn−1) (α
2
n − ψN)

1
3 ≤

(
N+1

∑
n=1

(xn − xn−1)
3 (α2

n − ψN)

) 1
3
(

N+1

∑
n=1

(1)

) 2
3

=

(
N+1

∑
n=1

(xn − xn−1)
3 (α2

n − ψN)

) 1
3

(N + 1)
2
3 .
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Hence,

N+1

∑
n=1

(xn − xn−1)
3 (α2

n − ψN) ≥
(

1
N + 1

)2
(

N+1

∑
n=1

(xn − xn−1) (α
2
n − ψN)

1
3

)3

=

(
1

N + 1

)2 (∫ (
gN(y)2 − ψN

) 1
3 dy

)3

.

It then follows that

(9.13) L∗(N) ≥ 1
6

(
1

N + 1

)2 (∫ (
gN(y)2 − ψN

) 1
3 dy

)3

.

Since gN(y)2 − ψN ≤ f̄ 2 converges pointwise to f (y)2,

lim inf{(N + 1)2 L∗(N)} ≥ 1
6

(∫
f (y)

2
3 dy

)3
.

The rule of thumb with β = 1/2 has limiting efficiency that is exactly equal to
1
6

(∫
f (y)

2
3 dy

)3
. It then follows from the assumed optimally of the configurations

(x0, . . . , xN+1) that

lim{(N + 1)2 L∗(N)} =
1
6

(∫
f (y)

2
3 dy

)3
,

as well, since otherwise the rule of thumb with β = 1/2 would be better. This

completes the proof of Theorem 4.3.

9.5. Proof of Lemma 6.1. Choose any strictly increasing and continuous f : [0, 1] →

(0, ∞) where f (x) → ∞ as x → 1 and
∫ 1

0 f (x)dx = 1 − m for m ∈ (0, 1). Define

h(δ) as the unique strictly decreasing solution of
∫ 1−δ

0 f (x)dx + h(δ)δ = 1, and

consider the pdf given by f on [0, 1 − δ) and the constant h(δ) on [1 − δ, 1]. It

follows that W(x) = W(1 − δ) + h2/3(x − 1 + δ) if x > 1 − δ so that V(1) =∫ 1−δ
0 W(x) f (x)dx + h

∫ 1
1−δ W(x)dx. After some algebra, it follows that V(1) =

V(1 − δ) + hδW(1 − δ) + h2/3δ2

2 . As δ → 0, have hδ → m so that h2/3δ → 0. It

follows that W(1 − δ) → W(1). Hence V(1)
W(1) ≥ hδ

W(1−δ)
W(1) → m, as δ → 0. For any

sequence of fn → 0 such that mn → 1, it follows that the associated Vn and Wn

satisfy
Vn(1)
Wn(1)

→ 1,
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since Vn(1)
Wn(1)

≤ 1.17

Proof of Lemma 7.1.

As in Section 9.2 consider distributions Fε converging to F as ε tends to zero.

For each ε, let x∗ε = (x∗ε1, . . . , x∗εN) denote the equilibrium vector of the modi-

fied thresholds from Lemma 7.1, but for the cdf Fε. Consider the process x̂ε(t) =

xε(t)− ε · α · t, where xε(t) describes the placement of thresholds evolving accord-

ing to the basic rule of thumb, given Fε.

We give a direct proof of the result for the case N = 1. For general N the proof is

more involved but proceeds along similar lines. To ease the notation we drop the

n = 1 and ε subscripts in the remainder when referring to the one threshold, xt,

and the modified threshold, x̂t. Notice first that x̂t must visit the interval [0, 1] in-

finitely often in the limit. This follows because α < 1 and hence while the threshold

xt lies outside the support of the improving distribution of outcomes, it is drawn

toward the support at a rate greater than εα. In the remainder then consider a sub

sequence x̂tr , r = 1, 2, . . . where each term of the sequence lies in [0, 1]. The proof

of Lemma 7.1 follows upon showing that Lemma 9.1 holds for this sub-sequence,

with a suitable adjustment to the right hand side of equation (9.1) there. (For terms

not in the sequence, Lemma 9.1 holds trivially since the modified threshold cannot

be drawn farther away from its equilibrium placement when it lies outside [0, 1].)

With this in mind, notice that the equilibrium threshold x̂∗ in this case is such that

17The necessary conditions for the problem of Mayer described before Lemma 6.1 are as follows

(Hestenes , 1966, Theorem 4.1, p. 315). It is necessary to impose a finite upper bound, f̄ , say, on the

density f , since otherwise existence may not hold. Define then the Hamiltonian

H = ψVW f + ψF f + ψ̄W f 2/3,

where ψV , ψF and ψW are the costate variables corresponding to the state variables V, F and W, respect-

ively. Hence ψ
′
V = ψ

′
F = 0 and ψ̄

′
W = − ∂H

∂W = −ψV f , so that ψ̄W = ψW − ψV F, for a constant ψW . The

objective is to minimize − V(1)
W(1) . It is necessary that H is minimized over f ∈ [0, f̄ ] with transversality

conditions ψV(1) =
ψ0

W(1) and ψ̄W(1) = ψW −ψV = − ψ0V(1)
W(1)2 , for some constant ψ0 ≥ 0. It can be shown

(eventually) that these necessary conditions admit a unique closed form solution on [0, 1]. This solution

involves a strictly increasing f ∈ (0, f̄ ) initially but then a second and final phase where f = f̄ . If a

well-behaved solution exists, this must be it. As the upper bound f̄ → ∞, it follows that f → 0 on the

initial phase and V(1)
W(1) → 1. The essential features of this construction are used in the argument given

above. But that argument is direct, and finesses issues of existence or sufficiency.
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Fε(x̂∗) = 1 − Fε(x̂∗) − α, that is, such that 1 − 2 · Fε(x̂∗) = α. Now, suppose the

threshold, x̂t, is such that x̂t ≥ x̂∗ + ε. Recall that, by assumption, α ≤ 1, then

E(|x̂t+1 − x̂∗| |x̂t) = |x̂t − x̂∗| − α · ε + ε ·
(
1 − 2 · F(x̂t)

)
.

It follows that E(|x̂t+1 − x̂∗| |x̂t) < |x̂t − x̂∗|, since x̂t > x̂∗ by assumption, and

hence −α · ε + ε ·
(
1 − 2 · F(x̂t)

)
< 0. Now suppose x̂t ≤ x̂∗ − ε. Then,

E(|x̂t+1 − x̂∗| |x̂t) = |x̂t − x̂∗|+ α · ε − ε ·
(
1 − 2 · F(x̂t)

)
.

Again, clearly E(|x̂t+1 − x̂∗| |x̂t) < |x̂t − x̂∗|. Next suppose x̂t ∈ (x̂∗ − ε, x̂∗ + ε). In

this case, clearly |x̂t+1 − x̂∗| ≤ |x̂t − x̂∗|+ ε · (1 + α). We have then

E(|x̂t+1 − x̂∗| |x̂t)− |x̂t − x̂∗| ≤ ε · (1 + α).

This completes the proof that Lemma 9.1 holds for x̂t, when the constant on the

right hand side of equation (9.1) is multiplied by 1 + α. This factor makes no

difference when using Lemma 9.1 in Lemma 9.5 to verify the limiting invariant

distribution of Theorem 4.1. Hence Lemma 7.1 now follows immediately.

REFERENCES
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