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Abstract: Tracking land surface dynamics over cloud prone areas with complex mountainous 

terrain is an important challenge facing the Earth Science community. One such region is 

the Lake Kivu region in Central Africa. We developed a processing chain to systematically 

monitor the spatio-temporal land use/land cover dynamics of this region over the years 1988, 

2001, and 2011 using Landsat data, complemented by ancillary data. Topographic compensation 

was performed on Landsat reflectances to avoid the strong illumination angle impacts and 

image compositing was used to compensate for frequent cloud cover and thus incomplete 

annual data availability in the archive. A systematic supervised classification was applied to 

the composite Landsat imagery to obtain land cover thematic maps with overall accuracies 

of 90% and higher. Subsequent change analysis between these years found extensive 

conversions of the natural environment as a result of human related activities. The gross 

forest cover loss for 1988–2001 and 2001–2011 period was 216.4 and 130.5 thousand hectares, 

respectively, signifying significant deforestation in the period of civil war and a relatively 

stable and lower deforestation rate later, possibly due to conservation and reforestation 

efforts in the region. The other dominant land cover changes in the region were aggressive 

subsistence farming and urban expansion displacing natural vegetation and arable lands. 

Despite limited data availability, this study fills the gap of much needed detailed and updated 

land cover change information for this biologically important region of Central Africa. These 

multi-temporal datasets will be a valuable baseline for land use managers in the region 
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interested in developing ecologically sustainable land management strategies and measuring 

the impacts of biodiversity conservation efforts. 

Keywords: Landsat; land cover; Central Africa; cloud prone region; change detection; 

topographic correction, random forest classifier 

 

1. Introduction 

Human-induced land cover change is increasingly affecting the biophysics, biogeochemistry and 

biogeography of the Earth’s surface and the atmosphere [1]. These changes are occurring at a range of 

spatial scales from local to global and at temporal frequencies of days to millennia [2]. Land-cover 

changes play a significant role in the global carbon cycle, both as a source and a sink [3]. The need for 

understanding the distribution and dynamics of land cover can never be underestimated due to its huge 

implications to human well-being. Hansen and Loveland (2012) [4] emphasizes the need for timely, 

accurate observations documenting land cover change to be more pressing than ever given the changing 

state of global climate. Accurate and up-to-date information on land cover and land cover change is 

therefore required for applications like managing natural resources and monitoring environmental 

changes. However, there have been relatively few efforts to identify the spatial and temporal patterns of 

land cover change in the Lake Kivu region, the focus of this study. 

Situated at the high point of the western branch of the East African Rift valley, the Lake Kivu region 

is densely populated with intensive agriculture on steep slopes, yet remains a biodiversity hotspot 

consisting of remnant and protected montane forests with endemic wildlife, birds and fish species [5,6]. 

Land cover mapping of the Lake Kivu region has previously been carried out by United Nations Food 

and Agriculture Organization (FAO) in its Africover project by producing single time frame 

multipurpose land cover maps of DRC, Rwanda, Burundi, and Uganda using Landsat imagery acquired 

around 1999–2001 [7]. On the other hand, the priority of a number of researchers has been forest cover 

change in the Congo Basin. For example, Potapov et al. (2012) [8] quantified forest cover loss in the 

DRC region of the study area from 2001 to 2010 using Landsat imagery. However, that important work 

is solely focused on forest change. No detailed land cover change analysis of the Lake Kivu region has 

been accomplished. 

Remote sensing satellite imagery provides an efficient and cost effective means of obtaining 

information on temporal trends and spatial distribution of land cover [9]. Remote sensing has been used 

successfully in mapping a range of land covers at a variety of spatial and temporal scales [10].  

Satellite-based monitoring has one additional advantage; independence from official national agencies 

allowing open publication of monitoring results [8]. Landsat data constitutes the longest record of  

global-scale medium spatial resolution earth observation data available freely in the web since 2008 [4,11]. 

Landsat provides substantial insight into how the Earth has changed as far as back as 1972 when Landsat 1 

was launched [12]. Due to its finer spatial resolution than many other global satellite imagers, Landsat 

imagery has been the data source of choice for many land cover and land use change studies [13–18]. 

Landsat has been widely used to study the dynamics of various earth surfaces like forest cover [19,20], 

grassland [21], delta [22], takir [23], urban areas [24,25], pampas [26], rangelands [27], and arid regions [18]. 
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Landsat data are used to monitor the complex landscape in Lake Kivu region in this study. However, 

data gaps and a very complex landscape make this region a very challenging site to perform land cover 

analysis. Persistent cloud is one major limiting factor for land surface observation in humid tropical 

regions [28,29] like the Lake Kivu region. The region also suffers from low Landsat acquisition 

frequency for the early Landsat sensors because of lack of ground station coverage in central Africa and 

limited onboard image storage capacity, reducing temporal coverage for the application of land change 

methods [30–32]. Furthermore, the Landsat ETM+ SLC-off acquisitions suffer from wedge shape gaps 

reducing 22% of the usable data after 2003 [28,33,34]. 

The objectives of this study are to provide a recent perspective for land use/land cover types found in 

the dynamic and complex Lake Kivu region, to monitor the spatio-temporal dynamics of land cover 

change in the region over three periods (1988, 2001 and 2011), and analyze the driving forces behind 

the dynamics of these changes in the region. 

2. Study Area 

The Lake Kivu region is located in central Africa on the border between Democratic Republic of 

Congo, Uganda, Burundi and Rwanda. It is defined by two adjacent Landsat Worldwide Reference 

System (WRS-2) path/rows (173/61 and 173/62) as shown (Figure 1) and extends over 64,238 km2.  

The region has highly diverse topography, measuring 900 m above sea level at the plains in the Rift 

Valley to the north to the highest peak of 4507 m at Mount Karisimbi, the largest of the eight volcanoes 

situated in the Virunga Mountains [35]. A typical example of the complex rural landscape in western 

Rwanda is shown in Figure 2. These highlands east of Lake Kivu are dominated by plateau between 

1400 m and 2200 m altitude with many hills and depressions [36]. This equatorial study region, due to 

its high elevation, is characterized by a temperate sub-equatorial climate as the mean temperature ranges 

from 15 °C to 25 °C depending upon the altitude [37]. Rainfall is bimodal in distribution and occurs 

primarily during September–November and March–May [38]. Between these rainfalls are two dry 

periods, a short one between December and February and a long one from June to August [39]. The long 

dry season overlaps with planting season of rice, maize and beans, while the end of shorter dry season 

overlaps with beginning of second planting season. The average rainfall in the highland areas is greater 

than 2000 mm, whereas in the lowlands it reaches below 1000 mm. 

One of the reasons this area has such dynamics in land use and land cover change is social upheaval 

due to a massive refugee crisis, civil war [40] and genocide [41] during the nineties [42]. The long-term 

conflict severely stressed the natural environment and subsistence agricultural system, with ongoing 

pressure on the highland forests for fuel use and clearing for farming [36]. Recent political stabilization 

has enabled a renewed focus on conservation and environmental recovery. Other land use and land cover 

change dynamics arise from natural forces. This region is vulnerable to natural disasters emanating from 

climatic and seismic disturbances causing economic damage and loss of lives, problems that are often 

exacerbated by the intensive land use. The major climatic disasters include drought, floods and landslides, 

while major seismic disturbances include earthquakes and volcanic eruptions [39,43]. In many settled 

areas the population density is exceptionally high (150–800 people/km2) due to its favorable climate to 

cultivation [44]. Currently, nearly 90 percent of the population in the region is dependent on subsistence 
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farming for their livelihood [45,46]. However, intensive agriculture practices in the areas have led to 

extensive problems of soil runoff and erosion [38]. 

 

Figure 1. Location of the study area covered by two Landsat scenes: south and north  

(the red rectangle).  

 

Figure 2. South facing image of a rural landscape showing steep-sided hills and small 

fragmented agricultural plots at approximately lat., −2.53, lon., 29.67. 
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3. Data 

3.1. Landsat Reflectance Data 

This study employed the available Landsat TM/ETM+ data of the Lake Kivu region from the Landsat 

archive. The growing season is generally more useful for mapping vegetation than dormant periods [47]. 

The primary planting season in the region is during the March–May wet season. Thus the primary 

Landsat data were those obtained in June–August as the crops matured. When scenes were not available 

during the primary growing period, data with minimal cloud cover were obtained from the second dry 

season. The available Landsat scenes in the United State Geological Survey (USGS) archive for our 

region of interest were processed using the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) located at the USGS Earth Resources Observation and Science (EROS) Center. USGS 

recently implemented LEDAPS to produce the Landsat Surface Reflectance Climate Data Record (CDR) 

product, which was downloaded from USGS (http://earthexplorer.usgs.gov/). LEDAPS software was 

originally developed by the National Aeronautics and Space Administration–Goddard Space Flight 

Center and the University of Maryland [48]. LEDAPS produces top-of-atmosphere (TOA) reflectance 

from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) Level 1 digital 

numbers (DN) and applies atmospheric compensation to generate a surface-reflectance product [49]. 

The atmospheric compensations are based on the second simulation of a satellite signal in the solar 

spectrum (6S) radiative transfer code [50] used by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) Land Science Team. Detailed discussion and comparison of LEDAPS products with other 

processing streams are given by Ju et al. (2012) [51]. The Landsat surface reflectance CDR was delivered 

from EROS in Hierarchical Data Format for Earth Observing Systems (HDF-EOS) in the Universal 

Transverse Mercator (UTM) map projection with a World Geodetic System (WGS) 84 datum. In this 

paper, all analyses were performed on the six non-thermal bands of TM/ETM+, which consists of three 

visible and three infrared bands with spatial resolution of 30 m. 

3.2. Digital Elevation Model 

At the time of this study, the LEDAPS processing of Landsat imagery does not include terrain 

correction [49]. Thus a topographic correction was needed to compensate for the very significant terrain 

illumination effects for the study region. The Digital Elevation Model (DEM) used in this study is the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation 

Model (GDEM) version 2. The ASTER DEM was downloaded from NASA’s Earth Observing System Data 

and Information System using the Reverb tool (http://reverb.echo.nasa.gov/). The ASTER DEM is available 

in WGS84 Geoid reference datum, geographic coordinates and one arc-second elevation grid [52]. The 

ASTER GDEM was chosen over the SRTM GDEM (Shuttle Radar Topography Mission) due to its finer 

spatial resolution that closely matches that of the geo-referenced Landsat images and at comparable 

accuracies [53]. The ASTER GDEM has global vertical precision of ±20 m at 95% confidence interval 

and horizontal precision of ±35 m at 95% confidence interval [54], which was sufficient for this study. 

However, the ASTER DEM spatial resolution is not identical to Landsat, so resampling is necessary. 

Using the nearest-neighbor method, the DEM was resampled to spatial resolution of 30 × 30 m and UTM 

zone 35 South using ENVI 4.7 (Exelis Visual Information Solutions, Boulder, CO, USA). Terrain 
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attributes of slope angle and slope aspect were derived from the DEM, which were used later for terrain 

illumination correction (see Methods). 

3.3. Ground Reference Data 

Land cover mapping of the Lake Kivu region has previously been carried out by United Nations Food 

and Agriculture Organization (FAO) in its Africover project by producing multipurpose land cover maps 

of the DRC, Rwanda, Burundi, and Uganda using Landsat imagery acquired around 1999–2001. These 

land cover map were obtained from the Africover project and used as a reference for 2001. A similar 

ground reference source was the FACET forest cover [8] dataset of the DRC (http://carpe.umd.edu/ 

forest_monitoring/monitoring.php), where forest cover loss in the DRC region of the study area was 

quantified for the period 2001 to 2011. This dataset was used as reference for the corresponding years. 

Visual interpretation of available high resolution Google Earth screenshots served as supplementary 

geoinformation for deriving land cover features in the study area. Finally, visual interpretation of  

high-resolution imagery from Quickbird and Worldview 2 were also used for ground land cover 

identification. For the 1988 Landsat data visual interpretation was used for determining the ground truth 

since no reference data are available. In this case, different three band composites, based on the available 

bands from band 1 to band 7 for TM, were used to better distinguish the land cover classes visually. 

4. Methods 

The complete workflow, which describes how the research data, methods and analysis were  

performed, is shown in Figure 3. This flowchart includes data acquisition (Sections 3.1–3.3), preprocessing 

(Sections 4.1–4.3), image classification (Section 4.4), accuracy analysis, and change detection  

(Section 4.5) steps. 

4.1. Terrain Illumination Correction 

Since LEDAPS processing of Landsat imagery does not include terrain correction, topographic 

correction was needed to compensate for the very significant terrain illumination effects for the study 

region. Steep hill and mountain slopes severely affect remote sensing of vegetation. Topography results 

in shadowed slopes facing away from the sun and brighter slopes facing towards the sun [55,56].  

This variation in illumination due to the position of the sun at the time of image acquisition and angle of 

the terrain is identified as the topographic illumination effect. These topographic illumination effects 

results in significant variation in the observed spectral characteristics of land cover for similar terrain 

features [57]. Therefore, topographic correction has become one of the important image preprocessing 

steps in the application of remote sensing data for land cover change studies in mountainous areas [58]. 

Many methods exist to reduce topographic illumination effects for Landsat images [56,58–61]. 

Vanonckelen et al. (2013) [62] achieved high land cover classification accuracy with the combination 

of a pixel-based Minnaert topographic compensation with an atmospheric correction. Pixel based 

Minnaert (PBM) correction is chosen over other topographic correction methods in this study due to its 

higher accuracy [60]. The slope and aspect angle of the Lake Kivu region terrain were computed from 

the ASTER DEM as input to the terrain illumination correction for reflectance. 
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𝜌𝐻,𝜆 = 𝜌𝑇,𝜆

cos 𝜃𝑛

(cos 𝛽 cos 𝜃𝑛)𝐾𝜆
 (1) 

𝑐𝑜𝑠𝛽 = cos 𝜃𝑠 cos 𝜃𝑛 + sin 𝜃𝑠 sin 𝜃𝑛 (Ø𝑡 − Ø𝑎) (2) 

Here, 𝐾𝜆 is the slope of regression between x = log (cosβ cos 𝜃𝑛) and y = log (𝜌𝑇,𝜆 cos 𝜃𝑛). 𝜌𝐻,𝜆 is the 

normalized reflectance of a horizontal surface; 𝜌𝑇,𝜆 is the observed reflectance on an inclined terrain; β 

is the incident solar angle; 𝜃𝑠 is the solar zenith angle in degrees; 𝜃𝑛 is the slope angle of the terrain; Ø𝑡 

is the aspect angle of the terrain; and Ø𝑎 is the azimuth angle in degrees. 

 

Figure 3. Flowchart for the procedures performed in the study. 

The topographic compensation was performed for all reference years (1988, 2001 and 2011).  

An example of the results of topographic compensation is shown in Figure 4. The shadowed slopes 

prominent in Figure 4a are greatly minimized in Figure 4b. This topographic compensation was an 

important step to minimize misclassification errors later in the process. 
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Figure 4. Landsat color composite (2001) of a hilly region in Rwanda (lat −1.81,  

lon 29.76; RGB = TM bands 7,4,2) (a) before illumination compensation; and (b) after 

illumination compensation. 

4.2. Image Compositing 

To overcome the cloud cover limitations, cloud-free image composites were generated from  

multi-temporal image scenes covering the region [28,63–65]. A per-pixel based composite method was 

applied to remove cloud cover. The first step in the formation of a cloud-free composite was removal of 

cloud and cloud shadows in the Landsat scenes. A cloud-shadow mask was formed using the surface 

reflectance-based cloud mask, cloud shadow mask, and adjacent cloud mask provided as additional 

bands in the Landsat Surface Reflectance CDR product for each Landsat image. The mask was applied 

to the Landsat scenes to remove cloud and shadow from the scene and minimize their contamination. 

Since the study area is rarely cloud-free, the most cloud-free image available throughout the year was 

selected as the primary image for the composite. Next, imagery within ±1 year of the acquisition date of 

the primary image was selected to form the image composite. Finally, other image data were added to 

the composite until the final composite with few or no data gaps was formed. A minimum of four to a 

maximum of six acquisitions per target year were necessary for the composite generation. Care was 

given to use same season Landsat imagery, where possible, during the composite forming process.  

The Landsat acquisitions for each target year had an average time gap of 3 years. The list of primary 

Landsat acquisitions used in the study are given in Table 1. 
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Table 1. Primary Landsat images acquired for land cover classification in Lake Kivu region. 

Landsat Sensor Path Row 
Acquisition Date  

(mm/dd/yyyy) 

Area Covered  

(km2) 

Proportion in  

Final Composite (%) 

5 TM 173 61 08/07/1987 31,756 93.79 

4 TM 173 62 08/04/1989 29,761 87.98 

7 ETM+ 173 61 12/11/2001 29,333 85.58 

7 ETM+ 173 62 06/05/2002 29,183 85.16 

7 ETM+ 173 61 10/01/2010 24,504 69.37 

5 TM 173 62 07/08/2011 18,904 53.97 

An example of the image compositing results is shown in Figure 5. Figure 5a is the primary image 

from 2001, with clouds at the bottom of the image and in the upper right quadrant. Figure 5b shows in 

black the clouds and cloud shadow mask applied in the image. Figure 5c shows the composite image 

where data from the other images close in time (±1 year) are used to fill the mask areas. Some areas in 

the region were cloudy in all images and no replacement for cloudy pixels could be done. Those regions 

were left with zero values (no data) for further processing. Cloud compositing was completed for all 

three target years 1988, 2001, and 2011. 

 

Figure 5. Results of Landsat (RGB = TM bands 7,4,2) time composite formation for the north 

region (Path/Row 173/61) of the study area. (a) Primary Landsat image collected 11 December 

2001; (b) after cloud and shadow removal; and (c) Landsat time composite image. 

4.3. Vegetation Indices and Textural Images 

Selection of suitable features like vegetation indices (VI) and textural images is an important step for 

successful land cover classification. Textural metrics provide spatial structural information in the input 

data, while a vegetation index provides information to segregate vegetation from other land cover classes 

during classification. Rogan and Chen (2004) [66] states “To be effective, change detection approaches 

must maximize inter-date variance in both spectral and spatial domains (i.e., using vegetation indices 

and texture variables)”. Based on the work by Lu et al. (2011) [67], we used two vegetation indices, TC2 

and ND42-57 (Table 2) and two textural images TM2-DIS and TM4-DIS (dissimilarity based on 

Thematic Mapper (TM) bands 2 and 4). Lu et al. (2011) [67] found these to be the best performers 

(a) (b) (c)
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among other vegetation indices and textural images through extensive study of separability. They also 

found the combination of these VIs and texture bands with six Landsat TM bands produced the best 

overall land cover classification accuracy. 

Table 2. Vegetation indices explained. 

Vegetation Index Equation 

TC2 −0.285TM1 − 0.244TM2 − 0.544TM3 + 0.704TM4 + 0.084TM5 − 0.180TM7 

ND42_57 (TM4 + TM2 − TM5 − TM7)/(TM4 + TM2 + TM5 + TM7) 

Note: TC = tasseled cap transform; ND = Normalized difference. The ND number represents the TM 

spectral band. 

4.4. Image Classification 

The initial step in the image classification process was to decide on the classes to be examined.  

Since our goal is to assess land cover change relevant to environmental processes, we implemented a 

categorical land cover classification system similar to the Africover land cover classes [7] with the 

addition of forest cover classes used by Potapov et al. (2012) [8]. Table 3 lists the eight broad land cover 

classes that were assessed: forest, open/degraded forest, agriculture, urban, shrubland, water, grassland, 

and marshland. 

Table 3. Description of the land cover classes for this study. 

Class Description (Land Use Type) 

Forest 
Closed forest with 65% or greater canopy and height >5 m;  

Deciduous, evergreen and mixed forest types. 

Open/degraded forest 
Open forest (canopy cover from 10% to 65%) with open to close shrubs;  

degraded forest. 

Agriculture 
Areas cultivated with crops such as beans, sorghum, banana, tea, rice, maize,  

and other seasonal plantations; Pasturelands. 

Urban 
Residential, commercial services, industrial, transportation, roads, built-up land  

and settlement in villages. 

Grassland Areas with annual and perennial grasses. 

Water Permanent open water (100% cover), natural lakes, reservoirs and streams 

Shrubland Open general shrubs (height 0.5–5 m) with scattered herbaceous and sparse trees in between. 

Marshland Mix of water, herbaceous plants and vegetation; Swamps. 

The next step in the process was to choose a suitable image classification method. We used the Random 

Forests (RF) classification in this study, which has demonstrated excellent performance for the analysis of 

different remote sensing datasets [68–70]. Random Forest, first developed by Breiman (2001) [71], is an 

ensemble method for supervised classification and regression based on classification and regression trees 

(CART). Its main advantage is the non-parametric nature, which does not require data to follow a particular 

distribution like normal as in case of maximum likelihood classification. Waske et al. (2009) [72] found 

Random Forest classifier outperforming traditional classifiers, namely single decision tree and 

Maximum Likelihood Classification by improved accuracy of more than 10%. RF works on the robust 

idea of combining outputs from more than one classifier to improve its accuracy. RF does not overfit, is 
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less sensitive to noise, relatively quick compared to other classification methods like boosting [71] and 

better adapted for large datasets [73]. Compared to larger number of parameters required for other 

machine learning methods, the RF classifier has only two parameters: the number of trees (T) to grow 

the whole forest and the number of randomly selected variables (M) chosen as each split. Two methods 

are used to calculate M in Random Forest, one-third or square root of the number of input variables [70]. 

Only two-third of random samples were chosen as training set and remaining one-third samples, called 

Out-of-Bag (OOB) samples, are used as test samples to compute classification accuracy [69]. This OOB 

accuracy is generally plotted against the increment of number of trees to determine appropriate number 

of trees. Random Forest can also measure the importance of each input variable, which indicates the 

contribution to classification accuracy. The RF classifier was implemented using ENVI/IDL and the 

EnMAP-Box software [74]. 

Since RF is a supervised classification method, it needs training samples for land cover classification and 

validation samples for accuracy assessment. Even small amounts of error in the selection of ground selection 

data can introduce large errors in the land cover change study [75]. Stehman and Wickham (2011) [76] argue 

although a universally best spatial assessment does not exist, the choice of spatial unit has broad 

implications on the accuracy assessment result. We used the polygon-based training data method 

suggested by Chen and Stow (2002) [77] for regions with heterogeneous land cover. An extensive 

ground reference sample set with each sample size of 7 × 7 pixels was manually selected for all land 

cover classes separately for each target year 1988, 2001, and 2011 by careful visual inspection of 

available ground reference data. The reference samples were randomly selected to avoid over- or 

underestimation of the spectral signature of the land cover [78]. Visual interpretation of composite 

Landsat imagery was required for regions where reference data of fine resolution images were not 

available for that time, namely 1988. Classes covering large regions of the test area were represented by 

approximately 261 observations (261 7 × 7 samples), while classes covering small regions were 

represented by a minimum of 30 observations (30 7 × 7 samples) [78,79]. The reference sample was 

then randomly divided in two: one for classification training and other for validation. This was done to 

make sure training data were spatially independent from the test data. RF was implemented using the 

reference training sample set in ENVI 4.7. Landsat TM Bands (1–5 and 7), two vegetation indices (TC2 

and ND42-57) and two textural images (TM2-DIS and TM4-DIS) were used as input data during the 

classification process. As a post-classification operation, a 3 × 3 majority filter was applied to the 

classified maps [80] to smooth the classified images and only show the dominant classes. This process 

helped to reduce salt-and-pepper effects in final classification maps due to complexity of the land cover. 

The output of the RF classifier exhibited significant confusion between marshland and open/degraded 

forest, with some of the marshland class occurring on upland sites. To compensate for this, a slope 

gradient map was created from the ASTER DEM and used as a mask. Marshland class pixels occurring 

at less than 5 degrees slope were retained while marshland class pixels at sites with greater than 5 degrees 

slope were converted to open/degraded forest. 

4.5. Classification Accuracy and Land Cover Change Assessment 

Next, the final results of land cover classification were used for accuracy assessment. Accuracy refers 

to degree of ‘correctness’ of a thematic map or classification [10]. Accuracy assessment refers to the 
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extent of correspondence between remote sensing data and reference information and is based on 

confusion matrices using producer’s accuracy, user’s accuracy for each class, overall accuracy and the 

Kappa statistic for each classification scenario [81,82]. The user’s accuracy is the probability of any 

classified pixel to represent the correct class and the producer’s accuracy is the probability that a pixel 

of a known class is classified into a correct class [81]. Kappa coefficient measures the overall agreement 

between reference data and the classified thematic map and is considered to be a better indicator of 

accuracy [58,83]. The previously described validation data set was used for the accuracy assessment. 

Change detection is the process of identifying differences in the state of an object or phenomenon by 

observing it at different times [84]. The post classification change detection method produces not only 

change maps as do pre-classification methods, but it also identifies the nature (from-to) of change of 

land cover [14,85]. These methods use separate classification of images acquired at different times and 

quantifies the different types of change between those intervals [15]. Land cover change assessment was 

performed using pixel based post-classification change detection algorithm. The most popular approach 

of post-classification change detection is bi-temporal change analysis of classified maps [86]. This technique 

was used to determine land cover change in the region for three intervals, 1988–2001, 2001–2011  

and 1988–2011. ENVI 4.7 software was used to obtain the change detection results. 

5. Results and Discussions 

5.1. Classification Performance 

To determine appropriate number of trees for RF classifier, the OOB accuracy was plotted against 

the increment of number of trees for 2001 image as shown in Figure 6. The RF achieved its maximum 

accuracy only after approximately 100 iterations and additional trees addition did not further improved 

the accuracy. Similar plots were obtained for other target year images, too. Thus, the number of trees (T) 

was selected to 100. M was chosen to be square root of the number of input variables [69]. 

 

Figure 6. Learning curve (out-of-bag-accuracy) for 2001 image. 
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Random Forest classification performed well in the complex landscape of Lake Kivu region with its 

heterogeneous environment. The addition of vegetation indices and textural images derived from 

Landsat, as described in Section 4, were important to the overall classification accuracy. The final overall 

classification accuracy ranged between 90.9% and 94.5% for the three target dates (Table 4).  

The Kappa coefficients ranged from 0.88 to 0.92. Thus, the overall classification accuracies were higher 

than the 85% minimum threshold, set by Anderson et al. [87,88] and per-class accuracy were greater 

than 70% [88]. Among class specific accuracies, forest, which is an important class for environmental 

monitoring, had producer’s and user’s accuracy better than 97% and 90%, respectively. Water class had 

the highest accuracy, averaging 98% due to its distinct spectral signature. The urban region (71.28%) 

and agriculture (73.9%) had the lowest user’s accuracy and producer’s accuracy, respectively, for 1988 

map mainly due to confusion among each other. Similarly in 2001, agriculture had the lowest user’s 

accuracy (80%) among the classes and most errors had the shrubland misclassified as agriculture. One 

important factor is that agricultural plots are intimately mixed with shrubland in the hilly areas of the 

region causing misclassification among each other through inevitable mixed pixels. This is exacerbated 

by the very small farm plot sizes existing throughout this region (see Figure 2). Shrubland had the least 

user’s accuracy (72.2%) in the 2001 map mainly due to confusion with agriculture. Shrubland has similar 

spectral response with some shrub-like crops like tea and banana commonly grown in region. Grassland 

was the most difficult class among all to classify (average user’s accuracy 79.8% and average producer’s 

accuracy 90.0%) and was mostly confused with agriculture in all three target year maps. 

Since agriculture and grassland with herbaceous cover have similar spectral characteristics, they were 

confused with each other. Further, many grasslands in this region are also used as pasturelands for 

agriculture, complicating the distinction among these land covers. The urban class had the average 

producer’s accuracy and user’s accuracy of 90% and 79%, respectively. Urban regions were mostly 

misclassified with agriculture during all target years in the region. 

Table 4. Confusion matrices for land cover maps (in Hectares) for years 1988, 2001,  

and 2011. 

(a) Confusion Matrix for 1988 Land Cover Map 

1988 1 2 3 4 5 6 7 8 ∑ UA (%) 

1. Forest 926.55 32.76 0.09 0 0 0 0 0 959.4 96.58 

2. Open/degraded F 20.43 348.21 65.79 0 0.18 0 2.88 10.8 448.29 77.68 

3. Agriculture 0 8.73 329.49 0.09 4.32 0.27 0.54 0.81 344.25 95.71 

4. Urban  0 0 9.45 61.65 7.47 0 5.76 2.16 86.49 71.28 

5. Grassland 0 0 24.57 0.36 95.67 0 0.72 1.17 122.49 78.10 

6. Water 0 0 0 0 0 356.85 0.27 0 357.12 99.92 

7. Shrubland 0 0 1.71 1.98 5.49 0 96.03 4.32 109.53 87.67 

8. Marshland 0.99 0.09 14.76 0 0.45 0 2.25 102.78 121.32 84.72 

∑ 947.97 389.79 445.86 64.08 113.58 357.12 108.45 122.04   

PA (%) 97.74 89.33 73.90 96.21 84.23 99.92 88.55 84.22   

OA (%) 90.91          

Kappa 0.8839          
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Table 4. Cont. 

(b) Confusion Matrix for 2001 Land Cover Map 

2001 1 2 3 4 5 6 7 8 ∑ UA (%) 

1. Forest 1361.52 107.28 5.04 0.09 2.61 0 24.48 4.5 1505.52 90.44 

2. Open/degraded F 0.18 853.65 1.62 0 1.71 0 18.72 1.62 877.5 97.28 

3. Agriculture 0.09 34.11 1350.09 26.37 64.08 31.77 141.21 29.97 1677.69 80.47 

4. Urban  0 0.09 0.45 421.2 1.71 0 0.18 0.9 424.53 99.22 

5. Grassland 0 0.9 0.81 0.27 584.37 0 14.94 0.81 602.1 97.06 

6. Water 0 0.09 0 0.18 0.9 608.94 0.36 1.08 611.55 99.57 

7. Shrubland 0 13.59 1.17 0.54 10.17 0 540.63 10.08 576.18 93.83 

8. Marshland 0 2.25 0.18 0.45 3.33 0.09 7.74 422.91 436.95 96.79 

∑ 1361.79 1011.96 1359.36 449.1 668.88 640.8 748.26 471.87    

PA (%) 99.98 84.36 99.32 93.79 87.37 95.03 72.25 89.62     

OA (%) 91.53           

Kappa 0.9001          

(c) Confusion Matrix for 2011 Land Cover Map 

2011 1 2 3 4 5 6 7 8 ∑ UA (%) 

1. Forest 1124.8 10.17 6.48 0 0 0 0.54 0.09 1142.1 98.49 

2. Open/degraded F 26.1 578.4 25.0 0 12.15 0 0 1.53 643.23 89.93 

3. Agriculture 3.51 52.29 1666.3 21.42 52.65 18.36 5.4 13.41 1833.39 90.89 

4. Urban  0 0 0.18 148.59 0 0 0 0 148.77 99.88 

5. Grassland 0 0.09 7.02 0.27 139.9 0 0 0.09 147.42 94.93 

6. Water 0 0 0 0 0 458.37 0 0.18 458.55 99.96 

7. Shrubland 0 0 0 0.27 0.54 0 260.37 4.68 265.86 97.94 

8. Marshland 0 0 0.63 1.17 0.27 0.09 0 187.02 189.18 98.86 

∑ 1154.43 640.98 1705.68 171.72 205.56 476.82 266.31 207    

PA (%) 97.44 90.24 97.69 86.53 68.08 96.13 97.77 90.35     

OA (%) 94.52          

Kappa 92.93          

To compare the effect of compositing data on our classification accuracy, we closely examined the 

classification accuracies of the Landsat composite image for 2011. This image had the lowest percentage 

of primary image in the final composite (see Table 1). The classification accuracy was calculated 

separately for the primary image and the filled areas of the composite image. The overall classification 

accuracy for the primary portion of the image was 94.3%, while the overall accuracy for the filled areas 

of the composite image was 93.3%. These similar results suggest that our image compositing from 

different dates did not impact the overall classification accuracy. 

5.2. Land Cover Change Assessment 

5.2.1. Areas and Rates of Change 

The final results of Random Forest classification for the three target years are shown in Figure 7 and 

the resultant land cover data are shown in Table 5. Annual change statistics for land cover in the region 

were also computed (Table 6). Forest in the region covered 1674 kha in 1988, 1458 kha in 2001 and 
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1327 kha in 2011, confirming deforestation. The annual deforestation rate for 1988–2001 period was 

16.6 kha per year. This time period includes civil war (1990–1994) in Rwanda when thousands of 

displaced people used protected forest as sanctuaries, which is the likely cause of the greatly increased 

the rate of deforestation [36,42]. The end of the civil war allowed the refugees to return home through 

large resettlement programs reducing stress in the natural forests. The deforestation rate, as a result 

slowed down to 13 kha per year after 2001. The reforestation efforts in the region such as national tree 

planting week (implemented by Government of Rwanda) since 2001 and other environmental awareness 

campaigns may also have contributed to the slowdown of overall trend of deforestation, at least in 

Rwanda [46]. 

Table 5. Area and proportion of each major class during various periods in the study area 

(Area: kha, proportion %). 

Land  

Cover  

Class 

1988 2001 
Area Change,  

1988–2001 (kha) 

2011 Area Change,  

2001–2011  

(kha) 

Area Change,  

1988–2011  

(kha) 

Area  

(kha) 
% 

Area  

(kha) 
% 

Area  

(kha) 
% 

Forest 1674.7 26.81 1458.3 23.35 −216.41 1327.74 21.26 −130.58 −346.99 

Open/degraded F 967.2 15.48 855.7 13.70 −111.55 771.93 12.36 −83.75 −195.30 

Agriculture 2873.0 45.99 3052.8 48.87 179.81 3463.17 55.44 410.40 590.21 

Urban 11.6 0.19 28.6 0.46 16.96 31.49 0.50 2.93 19.89 

Grassland 93.7 1.50 177.3 2.84 83.54 62.28 1.00 −114.97 −31.44 

Water 360.8 5.78 362.0 5.80 1.19 358.97 5.75 −3.05 −1.86 

Shrubland 207.7 3.33 256.2 4.10 48.53 178.34 2.86 −77.87 −29.35 

Marshland 57.5 0.92 55.4 0.89 −2.06 52.45 0.84 −2.99 −5.06 

Table 6. Annual change rate of each class during various periods in the study area  

(positive = increase; negative = decrease; unit: kha per year). 

Period Forest 
Open/Degraded 

Forest 
Agriculture Urban Grassland Water Shrubland Marshland 

1988–2001 −16.65 −8.58 13.83 1.30 6.43 0.09 3.73 −0.16 

2001–2011 −13.06 −8.38 41.04 0.29 −11.50 −0.31 −7.79 −0.30 

1988–2011 −15.09 −8.49 25.66 0.86 −1.37 −0.08 −1.28 −0.22 

Open/degraded forest also depleted at a small rate (8.58 kha per year) during the period 1988–2001, 

and began depleting at increased rate of 8.3 kha per year after 2001. The later depletion rate coincides 

with increase in agriculture class during the same time period at the rate of 41.04 kha per year. This 

suggests open/degraded forests, the degraded version of primary forests, were mostly converted to 

agriculture for subsistence farming and fuel wood collection during this time. The combined forest and 

open/degraded forest depletion rate for 2001–2011 was 21.43 kha per year, which closely matches the 

rate of total forest loss found by Potapov et al., (2012) of 23.99 kha between 2001 and 2010 in combined 

region of Nord Kivu and Sud Kivu regions of DRC. Agriculture was the largest land cover in the region 

covering 2873 kha (45.9%) in 1988. Agriculture coverage increased to 48.8% in 2001 with an increase 

of 13.8 kha per year and later to 3463.1 kha (55%) in 2011. 
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Figure 7. Time series of land cover maps of the study area for 1988, 2001 and 2011. 

The urban class was the smallest land cover in the region covering 11.6 kha (0.19%) of land area in 

1988. The urban region increased by average rate of 1.3 kha per year during 1988–2001 and 0.29 kha 

per year after 2001. The urban region increase after 2001 may be in part due to replacement of rooftops 
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made of natural materials with brightly reflecting metal roofs now common in the area. The areas of 

water in the region did not change much in the region as compared to other land cover types. The small 

fluctuation in water is mainly due to seasonal change in level of water in Lake Edward at the north end 

of the study area. The change in water may also be related to recent government programs that are in 

addition to the increasing fish production behind small dams and rice production. For example, rice paddy 

fields may be misclassified as water region during flooding season. The shrubland increased by  

3.73 kha per year from 1988 to 2001, but later decreased by 7.79 kha per year from 2001 to 2011. 

Grassland increased during 1988–2001 period, while opposite trend happened during the 2001–2011 

period. Marshland continued to decrease during the both periods. Overall both grassland and marshland 

decreased by average rate of 1.37 kha and 0.22 kha during the entire study period. 

5.2.2. Class Change Matrices 

Pixel-based post classification change detection matrices for the periods 1988–2001 and 2001–2011 

are given in Tables 7 and 8, respectively. These change matrices highlight the land cover class specific 

change information from one to other during the defined time frames. The individual overall classification 

accuracies from Table 4 were multiplied to obtain expected overall change detection accuracies of 83.2% 

for 1988–2001 and 86.51% for 2001–2011 [14]. From 1988 to 2001, 258.9 and 106.6 kha of forest were 

converted to open/degraded forest and agriculture, respectively, and 108.7 and 392.4 kha of open/degraded 

forest changed to forest and agriculture, respectively. Thus, the majority of forest loss was due to 

standing forest converting to open/degraded forest and agriculture lands. During the same time, 160.2 kha 

of agriculture converted to open/degraded forest, respectively. The agriculture lands during the time still 

increased mainly due to larger area conversion from open/degraded forest, shrubland and forest to 

agriculture. As a result, open/degraded forest and forest areas diminished from 1988 to 2001, as earlier 

reported. The urban region increased in 17 kha with major part contributed by conversion from 

agriculture lands (5.4 kha) while shrubland and grassland were the secondary contributors for the 

increase in the urban area. Construction of houses occurred in open agriculture lands to meet the demands 

of increasing population. It should be noted that some of the small change in areas between the land 

cover classes were not significant and related to classification errors. 

Table 7. Matrices for land cover changes (kha) from 1988 to 2001. 

2001 Area (kha) 
1988 

Forest Open/D F Agriculture Urban Grassland Water Shrubland Marshland 

forest 1260.9 108.7 75.6 0.3 1.0 1.0 6.5 4.1 

Open/D F 258.9 428.2 160.2 0.2 1.3 0.4 4.6 1.8 

agriculture 106.6 392.4 2362.9 5.4 44.8 1.6 115.4 23.4 

urban 0.4 1.2 13.7 4.1 1.1 0.1 7.0 0.8 

grassland 0.7 3.2 132.3 0.6 34.4 0.1 4.9 1.0 

water 1.3 0.6 1.5 0.1 0.3 356.4 0.3 1.5 

shrubland 41.7 29.8 111.3 0.8 5.8 0.3 61.6 4.9 

marshland 3.6 3.1 15.4 0.2 5.0 0.8 7.3 19.9 
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Table 8. Matrices for land cover changes (kha) from 2001 to 2011. 

2011 Area (kha) 
2001 

Forest Open/D F Agriculture Urban Grassland Water Shrubland Marshland 

forest 1138.6 106.0 62.5 0.2 0.8 0.7 16.3 2.6 

Open/D F 186.9 414.1 142.7 0.7 2.1 0.6 22.2 2.7 

agriculture 112.6 328.0 2718.0 11.8 140.2 1.8 126.3 24.3 

urban 0.3 0.4 14.4 13.4 0.5 0.1 1.1 1.2 

grassland 0.5 0.7 25.8 0.6 29.4 0.4 1.8 3.0 

water 0.6 0.3 0.8 0.0 0.1 356.4 0.2 0.5 

shrubland 15.1 5.3 67.3 1.2 2.8 0.1 83.9 2.6 

marshland 3.8 0.8 21.2 0.7 1.4 1.9 4.2 18.4 

From 2001 to 2011, 186.9 and 112.6 kha of forest were converted to open/degraded forest and 

agriculture, respectively, and 106.8 and 328 kha of open/degraded forest were converted to forest and 

agriculture, respectively. At the same time, 62.5 and 142.7 kha of agriculture converted to forest and 

open/degraded forests, confirming the reforestation efforts in the region. However, the reforestation area 

is still smaller than the total deforestation area in the region, suggesting more reforestation efforts are 

needed to completely reverse the trend. Agriculture continued to increase in the region at the expense of 

open/degraded forest, shrubland, forest, and marshland areas. A total of 11.8 and 1.2 kha of urban areas 

were converted to agriculture and shrubland, respectively. In Rwanda, this may be due to the settlement 

programs after the civil war, where scattered populations were encouraged to live close together by 

forming villages under a program called ‘imidugudu’. The new urban areas were built in 14.4 and 1.1 kha 

of agriculture and shrubland areas, respectively. There was a small decrease of Marshland during this 

period mainly due to conversion to agriculture. 

5.2.3. Spatial Distribution of Class Change 

The spatial distribution of land cover change as dynamic change maps are shown (Figure 8) for  

1988–2001 and 2001–2011. Three types of change in the region were investigated: conversion to forest 

areas (reforestation); conversion to urban; and conversion of forest or open/degraded forest to agriculture 

signifying deforestation. In the 1988–2001 period, deforested areas were mostly distributed in the DRC, 

Gishwati Forest (Rwanda), and near Nyungwe Forest. The deforestation is mostly occurring at border 

areas of forest in the DRC region, which are near to human settlements. New urban regions were 

concentrated near the cities. Reforested areas were smaller than deforested areas. 

From 2001 to 2011, reforested areas increased throughout the region as compared to earlier period. 

Conversion to forest can be seen in the forest in the DRC side, protected forests in Rwanda like Gishwati, 

Nyungwe, and Volcano National Park located north of Lake Kivu. Conversion of open/degraded forest 

and forests to agriculture is also prevalent in areas of high population density in the DRC region and 

near Nyungwe forest in Burundi. As expected, there is also an increase in urban areas near cities or towns. 
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Figure 8. Spatial distribution of land cover change for time period 1988–2001 and  

2001–2011. 

5.3. Change Factors 

Forests were depleted in the region since the start of the monitoring period in 1988. This is a great 

concern in the region for environment and wildlife conservation. Expansion of subsistence activities 

(agriculture and fuel wood collection) is the most commonly cited cause of deforestation in the Congo 

Basin [89]. The persistent armed conflict and genocide in 1994 [41] also caused large number of refugees 

migrate to forest areas and start degrading those natural resources. The civil war and refugee crisis led 

to great amount of forest cover loss in Gishwati Forest and Mukura Forest located in Rwanda as 

previously reported by Plumptre et al. (2001) [90] as shown in Figure 9. The central high region of Idjwi 

Island, DRC in the center of Lake Kivu is another specific region where forest was lost. Open/degraded 

forests depleted at the rate of 8.38 kha per year from 2001 to 2011. Similar deforestation trend in the 

DRC part of study region were found earlier [8]. Thus deforestation remains the major pressing change 

factor in the Lake Kivu region. 

Forest conservation through national parks and reforestation drives are being implemented throughout 

the region [39]. Some of the effects are clearly visible as supported by the statistics: the rate of forest 

loss decreased by nearly 3 kha per year after 2001. However, open/degraded forests continue to deplete 

with increased rate at the same time offsetting the improvement. The region consists of developing 
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countries and strict enforcement of conservation rules is very difficult to be implemented at ground level 

due to economic and political factors. Still, some progress in conservation of protected area like national 

parks is apparently seen in the spatial data of the region. 

 

Figure 9. Time series of detailed land-cover maps in the study area near Goma city in 

Rwanda for 1988, 2001 and 2011, respectively. This mapped region is outlined in blue  

in Figure 1. 

Agriculture has continued to expand since 1988 at the average rate of 25 kha per year. The main driving 

force for agriculture expansion would appear to be the population increase in the region. The population 

in Rwanda, Burundi and Uganda increased by 58%, 80% and 115%, respectively, during the study period, 

based on the census data from World Bank [91]. Since most of the population in the region is dependent 

on subsistence farming for their livelihood, the increase in population required creation of more agriculture 

lands. This in turn created stress to natural resources like forest and open/degraded forest resulting in 

deforestation. Currently in Rwanda, over 90 percent of the population relies on subsistence agriculture to 

meet their needs putting great pressure on the country’s remaining natural ecosystems. This pattern is 
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similar to other countries of the region. The increase of agriculture lands can be good for the economy in 

the short-term due to increase in agriculture output, but cannot be sustained the long-term due to limited 

land area. Since subsistence agriculture practices in the region are mainly dependent on climatic conditions, 

making them vulnerable to climate change in future, the success of conservation efforts may rely in part 

on increases in the crop productivity and sustainable land use planning [37]. 

Built-up expansion in the region increased rapidly at rate of 1.3 kha per year from 1988 to 2001, 

which is consistent with the trend of urbanization [24] around the world. Major factor in urbanization 

was also the increase in population in the region and these population using forests and open/degraded 

forests resources to meet their livelihood causing in deforestation. Urban population in Rwanda, Burundi 

and Uganda were increased by 647%, 238% and 210%, respectively, during the study time based on the 

World Bank census data. The nature of built-up expansion in the region is also related to other factors 

like accessible topography and transportation. 

6. Conclusions 

Using multi-temporal Landsat data, we identified, quantified and analyzed decadal scale land cover 

change in the Lake Kivu region from 1988 to 2011. Frequent cloud coverage is a major hindrance to 

monitoring a tropical zone like the Lake Kivu region. Our approach employed a multi-year compositing 

methodology for Landsat imagery to compensate for incomplete annual data availability in the Landsat 

archive due to the cloud cover and other data gaps. The dominant land cover changes that took place in 

the study area during the study period (1988–2011) were massive deforestation, aggressive subsistence 

farming expansion and urban expansion. The post classification change analysis of two time intervals 

(1988–2001 and 2001–2011) allowed us to describe the spatial-temporal dynamics of land cover change 

in more detail. The change analysis found severe conversions of the natural environment as a result of 

human related activities. The gross forest cover loss for 1988–2001 and 2001–2011 period was 216.4 

and 130.5 thousand hectares, respectively, signifying significant deforestation in the period of civil war 

and a relatively stable and lower deforestation rate later, due to increase in conservation and reforestation 

efforts in the region. Open/degraded forests were also depleted at the high rate of 8.4 kha per year over 

the entire period and is attributed to intensified subsistence farming. 

This study demonstrates that Landsat data can provide immense insights into land cover changes over 

time in Central Africa despite limited data availability. However, there are limitations to the accuracy of 

monitoring change using Landsat data, largely due to the lack of high quality ground truth for training. 

However, we believe that this work will provide useful information to local land use managers in the 

region interested in developing ecologically sustainable land management strategies and biodiversity 

conservation efforts. 

The land cover classification maps shown in Figure 7 are available for download as GeoTIFF images 

at http://www.cis.rit.edu/faculty-and-staff/profile/axvpci. 
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