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Abstract—The goal of this covert channel is to prove the
feasibility of using encrypted HTTPS traffic to carry a covert
channel. The encryption key is not needed because the original
HTTPS payload is not decrypted. The covert message will be
appended to the HTTPS data field. The receiver will extract
the covert channel and restore the original HTTPS traffic for
forwarding. Only legitimate HTTPS connections will be used
as the overt channel. A Man-in-the-Middle (MITM) attack at
the sending and receiving ends will give access to modify the
traffic streams. The HTTPS return traffic from the server can
carry a covert channel. Without the original HTTPS traffic for
comparison or the original encryption keys, this covert channel
is undetectable.
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I. INTRODUCTION

Secret forms of communication have been used throughout
history. Examples such as tattooed slave scalps and wax
tablets are but a few. Covert channels are a special clas of
secret communications that seek to deny that a conversation
is even taking place.

The goal of this project was to create a covert channel that
exhibited the following characteristics:

« Routable, being able to traverse wide area networks such
as the internet without difficulty

« Difficult to detect even with existing monitoring tools
such as SNORT and BRO

« Utilizing a commonly used protocol, in this case HTTPS

o Taking advantage of encryption capabilities to further
protect the message stream, while not generating any
additional or unexpected traffic

II. BACKGROUND AND RELATED WORK

Butler W. Lampson was the first individual to give a
definition to the term "covert channel”" in 1973. He defined
covert channels as "(channels) not intended for information
transfer at all, such as the service program’s effect on system
load."[1] Since then, the definition of a covert channel has

been evolving. A current definition for covert channel is "A
mechanism for sending information without the knowledge
of the network administrator or other users." as stated by Erik
Curture in his paper Covert Channels[2].

There have been many research papers exploring the var-
ied mechanisms and implementations of covert channels[3].
HTTPS and HTTP protocols have been the vehicle for
several covert channel applications[4][5][6]. Numerous other
studies have been done using other aspects of the TCP/IP
protocol[7][8][9][10][11][12][13]. There has even been a
paper on using a covert channel to detect Man-In-The-Middle
attacks[14] The authors were unable to find any other covert
channel implementations that successfully utilized the SSL
encrypted payload of a HTTPS connection in which the
decryption key for the SSL encryption was not needed.

III. CONCEPT
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Figure 1. Concept Overview

The covert channel described in this paper (see Figure 1)
builds upon the realization that if one appends an encrypted
message to the end of the data packet that is part of
SSL encrypted traffic crossing the internet, it is virtually
impossible to detect that it has been tampered with. In other



words, as long as it looks sufficiently random. The format of
the encrypted portion of an SSL packet includes the length
of the data encapsulated as well as the length of the padding
used to obscure the message context. These length fields are
also encrypted to deny that information to an observer or
adversary. It is also then unavailable to detect any addition
to the encrypted field and cannot be viewed unless one has
the correct key.

Many IDSs have the capability to decrypt SSL traffic. This
could allow the detection of our covert channel. However, it
is unlikely that the traffic being utilized will pass through an
IDS that has the correct SSL keys. This makes the detection
of our covert channel nearly impossible.

When the intended recipient receives the modified SSL
traffic containing the covert communication, they will have
the correct SSL key. Upon decryption, the recipient will be
able to determine that the traffic has been tampered with.
This would raise a red flag. In order to prevent this there are
two approaches:

« We can own the client and prevent them from complain-

ing

« Place a system in the way that can perform a man-in-the-

middle attack against the receiver, intercept the traffic,
and remove the covert message which will restore it to
its original form.

If one owns the receiver, it is straightforward to handle the
modified traffic and prevent raising an alarm. Likewise on
the sending end of the connection, if one owns the sender,
it is easier to create the covert channel when the traffic is
originally sent. Our approach is more involved by utilizing
a man-in- the-middle attack to capture the traffic after being
sent and modify it to carry the covert channel. We then extract
the covert content before delivering it to the receiver. This
way, we can deploy our channel without owning any hosts
other than our own.

HTTPS was the encrypted protocol chosen for this project
because of it is widely used and its presence is not unexpected
anywhere.

IV. WHY USE MITM?

The use of a Man-in-the-Middle(MITM) approach does
complicate the implementation but it allows this covert
channel to piggy back on existing traffic. Thus this covert
channel does not create any potentially unexpected traffic
over the routed network. The MITM approach allows us
to utilize traffic from actual clients going to the expected
servers. the core of this covert channel is that the covert data
is piggy backed on real SSL traffic and is undetectable by a an
observer between the source and destination. An additional
benefit of the MITM on the client side is that it allows the
covert channel capture all clients on the local network and
distribute the covert channel over many conversations. Thus
an observer would have to aggregate all of the connections

to analyse the channel. This enhances the bandwidth of the
covert channel as well by aggregating the natural traffic from
multiple users.

V. ARP SPOOFING

This covert channel requires an HTTPS connection to
travel over. When an HTTPS connection is established, a
Man-In-The-Middle (MITM) attack will be performed on
both ends of the connection. The MITM attack will begin
by performing ARP spoofing. ARP spoofing is accomplished
by sending fake ARP (Address Resolution Protocol) reply
messages to the targeted host. The ARP messages "informs"
the targeted host that its default gateway is the attacker who
is performing the MITM attack. The default gateway is then
updated in the host’s ARP table with the MAC address of
the attacker and the IP address of the actual default gateway.
While it appears (at the IP level) that all of the host’s traffic
is going directly to the default gateway, in fact host’s traffic
is going to the attacker. The attacker then chooses to either
forward the traffic to the default gateway or drop the packets.
In the case or our covert channel, we modify SSL packets
and then send them to the default gateway.

The default gateway may send out its own ARP messages
to keep the host’s ARP table updated with the correct
information. This can be a problem. To prevent the host’s
ARP table from being updated by the default gateway, the
attacker will send out its own ARP reply messages either
immediately after the default gateway sends out its ARP
messages or repeat the ARP message periodically. For a brief
window of time, the host may have the correct MAC address
for the default gateway. It is possible that some packets may
be forwarded directly to the default gateway. This problem
cannot be entirely prevented but it will not stop the covert
channel from performing its purpose. The gateway is also
ARP spoofed so that it registers the attacker’s MAC address
for the client IP. This causes the gateway to send all of its
traffic for the client through the attacker.

While the client and the server can be on the same network,
this protocol is also routable. This means that the covert
channel can work across any network, including the internet
because the underlying protocol (HTTPS) is routable.

The program Ettercap was selected for implementing this
covert channel. It natively supports ARP spoofing but also
supports a plugin API that allows for the manipulation of
forwarded frames. This plugin architecture was one of the
primary reasons Ettercap was chosen. In addition, Ettercap
is one of the best known MITM platforms in existence. While
not well documented, there was a large user community to
help with development. For our test, we used 512 byte (or
fewer) covert fragments. This is just data, not including the
sequence number, CRCs or length field.



VI. SENDING A COVERT MESSAGE

When examining the HTTPS protocol process, there is an
initial flurry of messages that are exchanged to instantiate the
connection, negotiate the encryption used, and start the data
exchange process. These initial packets are not useful to the
covert channel as there is not any encrypted data content on
which to piggyback covert content. The initial exchange must
be observed, watching for the beginning of the data transfer
to start inserting the covert fragments. The SSL data packets
are identified by their SSL data type of 23 [15].

Simply appending a piece of the covert message to the end
of each encrypted HTTPS data field would create problems.
The first problem would be that any observation of the
encrypted traffic containing the covert message might reveal
clues that there had been a modification. ASCII strings or
identifiable patterns would be visible and could expose the
covert channel.

To prevent this, the appended covert message would be
encrypted using a key that has been pre-shared between the
sender and receiver. Additionally, a mechanism is necessary
for the receiver to determine if a covert message has been
appended to the HTTPS data field. The covert receiver does
not have the decryption key and thus cannot decrypt the
HTTPS data field to determine that there is a covert fragment
attached. The mechanism implemented below provides a
multi-level check to verify that a covert message fragment
exists. The data appended to the HTTPS data field will use
the format as shown in Figure 2.

The length of the appended covert message will be in the
last two bytes of the HTTPS data field. This will be a binary
value hence it will not need to be encrypted itself. The last
two bytes are used because that will always be a guaranteed
known location. The length field alone is insufficient to
guarantee the existence of a covert message. The overt
message could possibly share the same ending two bytes
as the covert message. To solve this problem, immediately
before the length field will be two bytes containing the
checksum of the encrypted covert message fragment. The
checksum will be a binary value as well and hence does
not require encryption. As a double check, since it's possible
that an overt message could end in the same four bytes as the
covert checksum and length as in Figure 2, the checksum will
be repeated in the two bytes preceding the covert message
fragment.

VII. JUSTIFICATION FOR COVERT MESSAGE
COMPLEXITY

The reason for the complexity of the appended data is
to ensure that the receiver can accurately determine if a
covert fragment exists. Without a reliable mechanism for
detection, false positive identification could occur and cause
two problems: loss of integrity of the covert message and
damage to the overt message. If a non-covert message is
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Figure 2. Format of appended data to HTTPS encrypted data

identified as containing a covert fragment, it will be decoded
and included in the covert message. This misidentification
as a covert fragment will also cause the receiver to remove
that portion identified as a covert fragment from the part
that is passed on to the overt receiver. The overt receiver
would then register an error as the SSL data packet would
not be the correct length and would not decrypt properly.
The following analysis assumes an encryption with uniform
distribution. Assume that packet damage will be detected at
a higher level first.

For this implementation, the

The Covert Fragment(CF) Length field is a 2 byte unsigned
integer. The range of legal values for the CF length value is

10 <= CF Length <= maxpacketlength( < 1450)

where 1450=1500-20-20-10 represents the max length of an
Ethernet packet less the IP and TCP header and the minimum
space needed for the covert fragment. The probability of false
identification = legitimate values/ possible values

1440/65536 = 0.0220 = 2.20%
The check sums, CRC1 & CRC?2, are unsigned integers
0 <= CRC1 <= 65536;0 <= CRC2 <= 65536

The probability of the CRCs matching and false identification
is the probability of crcl and crc2 being the same value even
if there is no covert data. If we fix the value of CRCI, the
probability of CRC1=CRC2

1/65536 = 1.52e — 5 = 0.0000152 = 0.00152%

Finally, the CRC used in our implementation is a simple 16
bit addition discarding the overflow. Calculated CRC(CF data
bytes) = CRC1 = CRC2 Probability of false identification



where the calculated CRC of the CF data equals the stored
CRCI1 or CRC2 is based on:

0 <= eachpairofCCdatabytes <= 65536

Regardless of how many CF data byte there are the result will
be some 2 byte value. Therefore the comparison is similar to
colliding two random 2 byte values.

1/65536 = 1.52e — 5 = .0000152 = 0.00152%

Overall probability of a false positive is the product of the
three cases or

0.0220 % 0.0000152 * 0.0000152 = 5.08e—12%

This likelihood is small enough to be irrelevant to the covert
channel success.

VIII. RECEIVING A COVERT MESSAGE

To verify the existence of a covert message fragment (see
Figure 3), the receiver will use several checks to validate that
the incoming HTTPS data packet contains a covert fragment
. The last two bytes of the HTTPS data field are used as
the length of the covert fragment. The HTTPS length field is
not useable because it is encrypted. The TCP frame length
cannot be used because it is a calculated value and not an
actual data field. Therefore, the length field for the IP frame
will be used instead. If the covert fragment length indicated
by the last two bytes is greater than the IP length from the
IP header, then there can be no covert fragment.

The preceding two bytes are the second covert fragment
checksum. Locate and retrieve the two bytes that are the first
covert channel checksum (end of the packet less 6 bytes for
the width of the length and both checksum fields less the
value in the CF length field). These bytes are for the first
checksum value. If these two checksums are not equal, then
there is no covert message.

Next, the covert message is retrieved from the bytes
between the first and second checksum. The checksum of the
covert message is computed and compared to the retrieved
checksum. If they don't match, then there is no covert
message. If all of these checks succeed, then we have found
the covert fragment. Remove the covert fragment from the
HTTPS data field. Subtract the length of the covert fragment
from the IP frame length. The TCP packet is ready to
forward.

To insert a covert message into the HTTPS data packet,
a TCP packet must be captured. Only HTTPS data packets
will be used to transport the covert message. Other HTTPS
traffic, such as protocol negotiation and key exchange, will
be bypassed as they do not contain an encrypted payload
to hide the covert communication. The HTTPS data field
contains both HTTPS communication and a random number
of padding bytes to make traffic analysis more difficult. This
does not affect the covert channel. It is not necessary to
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Figure 3. Structure of SSL packet with Covert Fragment

decrypt the HTTPS data field to embed our message. Once
the correct TCP/HTTPS packet is captured, the HTTPS data
field will be extracted. Next, the covert packet (consisting of
the first checksum, encrypted covert data, second checksum,
and covert length) will be appended to the end of the HTTPS
data field. The new HTTPS data field will be placed back
into the TCP packet. Even though the HTTPS data field has
increased in length with the addition of the covert packet,
the HTTPS length field is not changed for two reasons.
First, the HTTPS length field is encrypted. Without the key
or certificate, this would be all but impossible. Second, the
covert packet will be removed before it arrives at the HTTPS
client or server and then the encrypted length will be correct
again. Instead, the IP frame length will be extracted and
placed into a value. The length of the covert fragment will
be added to the length of the IP frame length. The new IP
frame length will be placed back in the TCP frame. The TCP
packet is ready to be forward to the default gateway.

IX. REASSEMBLY OF COVERT CHANNEL

The reassembly of the covert message from the piece
received over the covert channel in the HTTPS traffic must be
managed. In order to detect lost fragments and reorder the
pieces to reconstruct the original message some additional
overhead is necessary. We designed a data structure for the
message portion of the covert channel to provide the se-
quencing information needed to identify where the fragment
goes in the final message. This information also allows the
detection of missing fragments. The structure is a four byte
sequence number followed by the data. The length of the
covert fragment is known from the covet packet data and
we can calculate the data field length from that information.
Reassembly is done by allocating a buffer at the receiving
end and placing the fragments in the buffer at the indicated
offset. A second buffer would be used to mark bytes that
have been loaded thus indicating bytes that have not been
received yet.

X. TCP SEQUENCE NUMBER ADJUSTMENT

When implementing the covert channel, we needed to
adjust the TCP sequence and acknowledgement numbers.



This is because these numbers are actually byte counts of
the TCP payload [16][17]. Since adding covert data added
TCP payload bytes, if we had not adjusted these numbers,
an observer (indeed, with only a packet analyzer such as
wireshark[18]) would note the discrepancy and know that
something was awry.

To this end, once a covert flow is established, our software
keeps track of outstanding (unacknowledged) packets and
both their adjusted (because of covert content) and their orig-
inal (without covert content) sequence numbers. As replies
arrive, sequence numbers being acknowledged are removed
from this list, and adjusted sequence numbers are replaced
with original sequence numbers.

A difficult problem that arose when designing this was that
the sender of a flow might not receive an acknowledgement
before it timed out, causing a retransmission of one or more
TCP segments. Since our covert software only keeps track
of sequence numbers, and not entire packets, we could not
resend the covert packet that corresponded to the retransmis-
sion. In this rare case, we quarantine the flow, dropping all
packets from that IP address and port number. Eventually the
sender gives up on the flow and treats it as a lost connection.
Again, these events are rare, and would not likely give rise
to suspicions on the internet.

XI. THE USE OF MULTIPLE CLIENTS

Due to the design of the client end of the covert channel,
the sending Man-in-the-Middle agent can utilize any number
of clients on the local network for carrying portions of the
covert message. This increases the throughput of the covert
channel considerably.

In fact, our sender will piggyback its covert message on
any HTTPS traffic coming from any client in the client
network as long as it is destined to the target server. In
addition, replies from the server to the client may also carry
covert content from the server end of the channel. Our
implementation is an N-to-1 full duplex channel.

XII. IMPLEMENTATION AND TESTING

As is the norm with new covert channels, we have pro-
duced a proof of concept implementation and executed it on
a testbed of our design. In this section we will describe the
idea behind our implementation approach and the specifics
of the development platform we used.

Our test platform (shown in Figure 4) was implemented
on a VMWare ESXi 6.0.0 server. This platform hosts three
networks, connected in series by two routers.

The network on the left (10.1.1.0/24) is attacked by a man
in the middle (MITM) attack from the MITM Left machine.
This attack is configured to send all traffic addressed to
the router to the MITM Left machine as well as all traffic
destined to the HTTPS Client. The network on the right

(10.2.2.0/24) is similarly attacked by the MITM Right ma-
chine which captures all traffic to the router or to the HTTPS
Server.

The covert channel software runs on, and is integral with,
the MITM software on both networks. An observer on either
the left or the right network could observe that a MITM
attack is underway. Our goal is to use normal HTTPS traffic
between the client on the left, and the server on the right,
to hide covert content as it passes through the internet. The
center network (10.3.3.0/24) above simulates the internet, and
is where we attempt to observe traffic to detect the covert
channel.

The software used to promote the MITM attacks is Etter-
cap. Ettercap can be customized by writing a plugin, in the
C language, that manipulates packets in any way the pro-
grammer wishes. In our case, the plugin only captures TCP
traffic (the rest being sent on unmolested). Even most TCP
packets are sent on. We only focus on HTTPS packets coming
from anyplace on the 10.1.1.0/24 network and destined to the
HTTPS server at 10.2.2.1. In addition, we track reverse traffic
from the server to any host on the 10.1.1.0/24 network.

HTTPS traffic captured, if carrying an SSL data payload,
is modified to appear to be SSL data traffic, but with covert
content added, as described above. On the receiving end, this
SSL content is stripped off and used by the MITM machine.
The sender of the original HTTPS packet and the receiver
see only that packet. The MITM machines use these packets
to piggyback their data. An observer in the internet (the
10.3.3.0/24 net) will not be able to detect the presence of
the covert content.

10.3.3.0/24 net

10.1.1.254

10.1.1.0/24 net

ss. Client
10.1.1.1

MITM Left
10.1.1.2

MITM Right SSLserver
10.2.2.2

Figure 4. Testbed Topology

XIII. FUTURE WORK & QUESTIONS

Our proof of concept implementation does not address
packet fragmentation over the internet. If the sending end of
the channel sends a TCP packet that is larger than the MTU
of some network along the way, a router will fragment the
packet and it will arrive at the receiving end of the channel



in pieces. We are uncertain whether Ettercap will receive the
reassembled TCP packet or the individual fragments. In the
former case, all will be well. In the latter case, we would
need to add reassembly code to our implementation.

We have left exploration of the fragmentation issue to other
researchers and claim that, while important for production
use of this covert channel, it is not important to its proof of
concept.

To further conceal the covert fragment, the entire covert
fragment should be encrypted not just the data section. This
change would make the length and the two CRC fields more
difficult to detect. In the event that this covert channel is
known to an observer, without the decryption key it could
still not be detected.

XIV. CONCLUSION

The goals of the project were to demonstrate that a covert
channel could be developed that would exhibit the character-
istics of routability, stealthy-ness, utilization of a ubiquitous
protocol, and not generating any unexpected traffic across
the routed networks. The first and third goals were achieved
by employing the HTTPS protocol as the carrier. HTTPS is
built on the TCP/IP protocol which makes it routable across
a corporate network as well as the internet. This provides
the greatest reach for this covert channel. HTTPS is a very
common protocol observed on almost any network. HTTPS
is the protocol that supports encrypted web browsing[19].

The covert channel was made stealthy by two factors. The
use of MITM agents at both the sender and receiver makes
the participants unaware of the covert channel. Their activity
patterns were not affected and thus provided a legitimate and
expected cover for the covert channel.

By piggy backing on the SSL payload and encrypting the
covert fragment, the covert message was virtually impossible
to detect after leaving the local network. Detection could only
be accomplished if an observer had the decryption key or a
copy of the original overt traffic for comparison.

We ran a tcpdump[20] capture containing the covert
channel traffic through the intrusion detection programs,
SNORT[21] and BRO[22][23]. There were no alerts triggered
by the covert channel traffic using all available rulesets.

We believe that this covert channel has achieved all of the
goals set forth.
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