
Producing and Evaluating Crowdsourced Computer
Security Attack Trees

Dan Bogaard1, Sanjay Goel2, Shreshth Kandari1, Daryl Johnson3

George Markowsky4 , Bill Stackpole3
1Department of Information Sciences and Technology, Rochester Institute of Technology, Rochester NY

2Information Technology Department, SUNY, Albany NY
3Department of Computing Security, Rochester Institute of Technology, Rochester NY

4School of Computing and Information Science, University of Maine, Orono ME

Abstract—We describe the recent developments of an open-
source project called RATCHET that can be used by groups
of users to collectively construct attack trees. We present the
RATCHET framework as well as a model for testing and
evaluation of the produced attack trees. RATCHET has been
tested in classroom settings with positive results and this paper
presents the plans for expanding its outreach to the community
at large and building attack trees through crowdsourcing. This
paper gives an overview of RATCHET and an introduction to
its use.

Index Terms—crowdsourcing, attack tree, security, attack sur-
face, evaluation

I. INTRODUCTION

Attack trees and their analysis, as described by Bruce
Schneier in the book Secrets and Lies [1], is the process of
modeling possible attacks on systems. Attack trees encourage
users to understand possible threats against systems, visualize
those threats and assign various metrics to determine which
threats are most likely to occur. Fault tree analysis (FTA),
similar to attack tree analysis, has been used since the early
1960s to perform safety and reliability evaluations in high-
hazard industries including originally the U.S. Air Force Bal-
listic Systems Division [2], [3]. While attack tree analysis and
fault tree analysis are used primarily in information technology
and industrial engineering respectively, the two methods have
much in common. Fault tree analysis is more closely tied to
risk assessment and relies more on statistical techniques. The
dividing line between attack trees and fault trees is not very
precise.

One of the major concerns in building an attack tree is
overlooking a vulnerability in a system. Crowdsourcing the
development of attack trees will help harness the contributions
of experts who can bring a rich background of experience,
perspective, and expertise to this problem. Having a group
work together increases the likelihood that, not only, the
most likely attack scenarios will be explored, but that a more
complete attack surface will be developed.

Attack trees are useful only if they are sufficiently compre-
hensive to include most, if not all, credible threats to a com-
puter system. These may include vulnerabilities for software
and services, multi-step attacks, social engineering, physical
security, network device security, etc. The number of attack

Fig. 1. Simple Attack Tree for Compromising Passwords

vectors is too large for a typical organization to understand all
of them. Crowdsourcing can address this problem by distribut-
ing the effort required to build a complete tree and making it
easier to access the required expertise. Collaboratively built
attack trees can be more complete and accurate, increasing
potential benefits to the computing security community.

Over the past several years a team of faculty and students
have implemented a web-based system, RATCHET [4], to
allow an online community of users to create attack trees
viewable to the general public. The online community has
the ability to promote better ideas, voting down the ones per-
ceived as less valuable. RATCHET (http://ratchet.csec.rit.edu/)
permits people to visualize attack trees, share branches, and
vote on relevant information and update the descriptions of
the nodes of the attack tree.

II. RELATED WORK

Figure 1 shows a simple attack tree. References [5]–[7]
illustrate the advantages of using attack tree analysis and
fault tree analysis to model security threats. Zhang et al.
[8] show how to supplement fault tree analysis models by



adding privilege escalation metrics into the models. Edge
et al. [9] introduce the idea of expanding the attack tree
concept into a protection tree. They first create an attack
tree, calculate the appropriate metrics, and then they create
a protection tree to help planners allocate resources and add
controls to defend against specific attacks. Roy et al. [10]
take the idea of protection trees a step further, proposing
attack countermeasure trees where qualitative metrics, defense
mechanisms, and probabilistic analysis can be applied to nodes
directly within the tree. Bauer [11] discusses scenarios that
can be turned into attack trees. The open-source project called
Seamonster [12] produces attack trees. Seamonster is designed
for individual use and does not provide a crowd sourcing
capability at this time.

III. EVALUATION OF ATTACK TREES AND RATCHET

While a lot of security professionals portray themselves
as information security experts, true experts are few and
far between. With the complexity of information systems
increasing staying abreast of constantly emerging new attacks
is getting harder. Crowd sourcing is one way to obtain input
from security experts to increase the collective knowledge of
emerging threats. This research is specifically focused on cre-
ating a model of crowd sourcing for collection and validation
of threat information. Specifically, we use crowd sourcing to
generate accurate attack trees for different scenarios and to
make them publicly available both for research and use by
professionals in analyzing information security risks. There are
two fundamental problems in generating and refining attack
trees using crowd sourcing: 1) how to determine the level of
expertise of any contributor and 2) how to reconcile conflicting
contributions. We address both these two problems below
through a rating system that we have developed.

The rating system that we have adopted is based on the
convergence of opinion of experts on different elements of
the attack tree. To participate in this crowdsourcing endeavor,
contributors register to be a part of the team and then work on
specific problems. Each participant gets points based on his/her
performance; the more people that converge on a solution, the
more points the participants will get. Based on the consensus
on any element of the tree a decision is automatically made
by our algorithm for a specific node. We thus create a rational
system of sorting through multiple alternate solutions for the
problem.

To validate this approach, we plan to conduct an experiment
where we pose multiple threat scenarios and allow users to
build attack trees by adding nodes collectively. The population
will consist of users with different levels of expertise. We will
then attribute points to the users based on their contribution to
the problem. We will statistically examine whether the ratings
based on their performance matches with the expertise that
they exhibit. As an initial pilot, we will run this experiment
in a classroom setting where students will be graded based
on their performance on an exam that requires creation and
analysis of attack trees along with other information security
problems.

Fig. 2. RATCHET Homepage

Measuring accuracy of attack trees requires specialized
security knowledge and recruiting security specialists is not
easy. We will recruit security specialists from AMT and use
an assessment instrument to determine whether or not they
have deep expertise in security as described in [13]. We also
have access to security specialists through various associations
such as ISACA, New York State Information Security Officers
group, and hacking competitions. While visual appeal is one
of the attributes we want to work on, our primary focus will
be on the accuracy of the attack trees.

Once we have a validated system in place for measuring
the expertise, we will be able to make a decision engine
when deciding what changes to accept in the decision tree
in case of conflict among contributors. As a further test, we
will run several cases of development of an attack tree based
on different scenarios and compare them with ideal trees that
are developed by experts to evaluate the quality of the attack
trees produced. Our metrics would include, incorporation of
all the nodes, extraneous nodes, and logical placement of the
nodes in the tree.

IV. RATCHET

The RATCHET web application is a system that leverages
crowdsourcing for the development of attack trees. The ubiq-
uity of the web allows for a convenient way for anyone with
access to a computer to elect to view, visit or participate in
the sharing of the data. Figure 2 shows the home page of
RATCHET.

The researchers and students involved in this project all
collaborated in gathering ideas for what the system should
accomplish, how it might be used and what issues it might
face. The application was designed for a collaborative audience
of users who would have sufficient knowledge and the ability
to help the system grow. The system can handle both simple
attack trees, e.g., a password attack, and complex attack trees,
e.g., attacking an operating system.

The system can allow registered contributors to build a
new tree, node by node, or extend an existing tree. Every



Fig. 3. Simple Attack Tree in RATCHET

node in the tree has an area for comments and the capability
of allowing users to vote in favor or against it. Each node
and comment area is editable by the creator of the node
and the administrators of the system to ensure their validity.
Unregistered users will be allowed to interact with the system
and view existing trees. Some users will be allowed to add a
vote (up/down) to nodes to indicate their view of the relevancy
or usefulness of that node.

Each attack tree is displayed visually using a combination of
Scalable Vector Graphics (SVG - an HTML5 technology that
natively allows for dynamically drawing within a browser) and
D3.js (a web standards compliant JavaScript library that allows
for data driven manipulation of documents). The collapsible
tree layout gives users the ability to zoom, pan or select any
of the created nodes, view the comments, vote on a node’s
relevance, or add a new child node if they have the appropriate
authorization.

V. CLASSROOM FEEDBACK

A. Previous Classroom Testing

In the 2014 spring semester, Professors Stackpole and
Johnson tested RATCHET in a class titled “Penetration Test-
ing Methodologies.” The goal of this class was to provide
students with a realistic experience with tools, techniques, and
goals that face a typical penetration tester or ethical hacker.
Students were introduced to the offensive side with items such
as Open Source Intelligence (OSINT), scanning, penetration
testing framework and collaboration tools, stepping stones,
and password cracking. On the defensive side, items such as
firewalls, IDS/IPS, antivirus, software updates, and the like
were introduced. The need for effective and complete planning
and documentation was stressed.

Attack trees were presented as a tool for organizing a
penetration testing exercise. The concept of attack trees was
raised as the topic for an initial discussion with students.
A thirty-minute training session on how to use RATCHET
was presented. Students were broken into four teams with
six students per team. Each team was asked to prepare two
attack trees using RATCHET: one attack tree focused on
compromising an operating system, and the other focused on
the exploitation of an application. Each team was instructed
to perform a pre-event survey capturing their preconceived
notions and opinions on the use and value of attack trees.

Each team was tasked with reviewing the attack trees
created by two other teams, adding content where appropriate.
The student teams were tasked with using their attack trees in
performing an attack on a specific target in the Security Lab.
Finally, the students were asked to provide feedback on the
experience of designing their tree specific to the RATCHET
implementation through another survey instrument. This exer-
cise spanned approximately three weeks of the course.

From this exercise, several changes were made to the
RATCHET system mainly revolving around the interface de-
sign. The ability to change the focus of the tree and how to
indicate the node on the screen that commands or instructions
apply to was enhanced. It was noticed that students did not
immediately build or create the attack tree in RATCHET.
Rather they built the attack tree first on a whiteboard and then
transposed it to RATCHET.

Students ran into problems with creating trees, adding new
nodes, and voting. While these issues did not stop the exercise,
they did limit the amount of work that the students could
complete. Based on the feedback modifications were made
to RATCHET.

In fall 2014, Professor Markowsky taught a cybersecurity
course at the University of Maine that included a section
on attack trees. Students were required to create attack trees
using three different methods: drawing attack trees manually,
drawing trees using Seamonster [12] and drawing attack trees
using RATCHET. Informal feedback was solicited. As might
be expected, the manual approach was the easiest approach to
start with. It was clear that there were advantages to generating
to generating attack trees on the computer since they generally
looked better and were easier to share. Seamonster was easy to
use but did not support crowdsourcing. Some people thought
RATCHET was more complicated to use than Seamonster, but
just about everyone agreed that RATCHET produced the best-
looking trees. Many students did not like the fact that they
were unable to delete nodes once they were created.

In the original design of RATCHET, it was decided that
users could not delete nodes and that voting would be the
way nodes were promoted or demoted. We did not want a
user to be able to delete a tree or node that many other people
had worked on. It was clear that in creating attack trees, there
would be occasional false steps that users wanted to remove
from the tree. When they were unable to do so they became
frustrated. We plan to explore ways to enable users to delete
nodes in a controlled fashion through consensus building and



other situations. This might take the form of enabling deletion
just of nodes created by the user within a single editing session
or allowing users to delete nodes that they created but which
have not been used by anyone working on the attack tree.

In spring 2016 courses at both RIT and SUNY Albany will
test RATCHET to see how well it works as a software package
and how well cybersecurity expertise translates into quality of
attack trees and nodes. The testing will use the previous testing
as a starting point and seek to develop a richer evaluation
framework.

VI. CONCLUSIONS AND FUTURE WORK

Compared to other established fields of study such as
engineering and chemistry, computing security is still in its
infancy. As at the beginning of those other fields, methods,
language, and measurements had to be discovered, developed,
and generally accepted. The ability to record, exchange, and
compare the security state of an environment or situation is
necessary for the field to progress beyond an art. We believe
that attack trees can be used to document, describe, and
measure complex, multivariable, and situationally sensitive
environments such as the ones found in computing security.

We hope that the impact of attack tree software on the
field on computing security will be similar to the impact
of electronic spreadsheet programs such as Lotus 1-2-3 or
VisiCalc [14]. Just as spreadsheets permit business people to
do easily “What if?” scenarios, attack trees can provide cyber-
security people the opportunity to experiment with “What if?”
scenarios. Examples of the sort of questions people could ask
are: “What if I replaced one firewall product with another?”,
“What if the Exchange mail server is replaced by the Exim
mail server?”, “What if remote management is enabled on
a particular networking device?” In general, these and other
scenarios could be explored quickly and inexpensively.

RATCHET has already been used to a moderate extent, and
many valuable lessons have been learned through classroom
testing from the earlier work [4]. In this work, we have done
additional testing and taken the first steps to validate the results
outside the classroom. The research and development efforts
so far have demonstrated that attack trees can be constructed
through the work of a community. The ability of attack trees
to record and communicate the attack surface of an operating
system, a service, and a situation has been demonstrated. It
has also been demonstrated that attack trees can be shared
and assembled to build large and complete attack trees. We
look forward to continuing the development of RATCHET,
and we welcome feedback from the IT community.

REFERENCES

[1] Bruce Schneier, Secrets and lies: digital security in a networked world:
with new information about post-9/11 security. Indianapolis, Ind.: Wiley,
2004, https://www.schneier.com/books/secrets and lies/.

[2] Clifton A. Ericson II, “Fault Tree Analysis - A History” Proceedings
of the 17th International System Safety Conference, 1999.
https://www.relken.com/sites/default/files/Seminal%20Documents/
ericson-fta-history.pdf.

[3] Michael Stamatelatos, William Vesely, Joanne Dugan, Joseph Fragola,
Joseph Minarick, and Jan Railsback, Fault Tree Handbook with Aerospace
Applications, NASA, August 2002, http://www.hq.nasa.gov/office/codeq/
doctree/fthb.pdf.

[4] Matthew Tentilucci, Nick Roberts, Shreshth Kandari, Daryl Johnson,
Dan Bogaard, Bill Stackpole, and Georg Markowsky, “Crowdsourcing
Computer Security Attack Trees”, Proceedings of the 10th Annual
Symposium on Information Assurance (ASIA15), Albany, NY, June
2-3, 2015, pp. 19-23. http://www.albany.edu/iasymposium/proceedings/
2015/10-Tentilucci&Roberts&Kandari&Johnson&Bogard&Stackpole&
Markowsky Ratchet.pdf.

[5] Phillip J. Brooke and Richard F. Paige, “Fault trees for security system
design and analysis,” Computers and Security, vol. 22, no. 3, pp. 256-264,
2003.

[6] Jide B. Odubiyi and Casey W. OBrien, “Information security attack
tree modeling,” Practical and Experimental Approaches to Information
Security Education: Proceedings of the Seventh Workshop on Education
in Computer Security (WECS7), Naval Postgraduate School, Monterey,
CA, January 4-6, 2006, pp. 29-37, http://www.cisr.us/events/downloads/
WECS7/wecs7 proceedings.pdf.

[7] Jennifer L. Bayuk, Stepping Through the InfoSec Program, 1st edition.
Rolling Meadows, IL: Isaca, 2007.

[8] Tao Zhang, Mingzeng Hu, Xiaochun Yun, and Yongzheng Zhang, “Com-
puter vulnerability evaluation using fault tree analysis,” Information
Security Practice and Experience, Springer, 2005, pp. 302-313.

[9] Kenneth S. Edge, George C. Dalton, Richard A. Raines, and Robert
F. Mills, “Using attack and protection trees to analyze threats and
defenses to homeland security,” Military Communications Conference,
2006. MILCOM 2006. IEEE, 2006, pp. 1-7.

[10] Arpan Roy, Dong S. Kim, and Kishor S. Trivedi, “Cyber security anal-
ysis using attack countermeasure trees,” Proceedings of the Sixth Annual
Workshop on Cyber Security and Information Intelligence Research, 2010,
article no. 28, pp. 28-1-28.4.

[11] Michael D. Bauer, Linux Server Security, OReilly Media, Inc., 2005.
[12] Seamonster - Security Modeling Software, Sourceforge Project, http:

//sourceforge.net/projects/seamonster/.
[13] Justin Scott Giboney, Jeffrey Gainer Proudfoot, Snajay Goel, and Joseph

S. Valacich, “The Security Expertise Assessment Measure (SEAM):
Developing a Scale for Hacker Expertise,” to appear in Computers and
Security.

[14] Peter Cunningham and Friedrich Fröschl, Electronic Business Revolu-
tion: Opportunities and Challenges in the 21st Century. Springer Science
& Business Media, 1999.


