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Abstract

The Ramsey number R(C4,Km) is the smallest n such that any
graph on n vertices contains a cycle of length four or an indepen-
dent set of order m. With the help of computer algorithms we ob-
tain the exact values of the Ramsey numbers R(C4,K9) = 30 and
R(C4,K10) = 36. New bounds for the next two open cases are also
presented.

1 Introduction

Let G and H be simple graphs. An n-vertex graph F is a (G,H;n)-graph
if it contains no subgraph isomorphic to G and F contains no subgraph
isomorphic to H. Define R(G,H;n) to be the set of all such graphs.
The Ramsey number R(G,H) is the smallest n such that for every two-
coloring of the edges of Kn, a monochromatic copy of G or H exists in the
first or second color, respectively. Clearly, if a (G,H;n)-graph exists, then
R(G,H) > n. It is known that Ramsey numbers exist [20] for all G and
H. The values and bounds for various types of such numbers are collected
and regularly updated by the third author [18].

The cycle-complete Ramsey numbers R(Cn,Km) have received much
attention, both theoretically and computationally. For fixed n = 3, the
problem becomes that of R(3, k), which has been widely studied (see for
example [24]), including the exact determination of its asymptotics [14].
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Since 1976, it has been conjectured that R(Cn,Km) = (n− 1)(m− 1) + 1
for all n ≥ m ≥ 3, except n = m = 3 [10, 8]. Note that the lower
bound is easy: (m − 1) vertex-disjoint copies of Kn−1 provides a witness
for R(Cn,Km) > (n − 1)(m − 1). For over 35 years, much work has been
done to verify the upper bound, with m = 8 being the current smallest
open case.

This work involves fixed n = 4, that is, the case of avoiding the quadri-
lateral C4 in the first color. The currently best known asymptotic bounds
for R(C4,Km) are stated as Theorem 1.

Theorem 1 ([23, 2]). There exist positive constants c1 and c2 such that

c1

(
m

logm

) 3
2

≤ R(C4,Km) ≤ c2
(

m

logm

)2

.

The lower bound was obtained by Spencer in 1977 [23] using the proba-
bilistic method. The upper bound was published by Caro, Li, Rousseau,
and Zhang in 2000 [2], who in turn gave credit to an unpublished work by
Szemerédi. The main challenge is determining whether R(C4,Kn) < n2−ε

for some ε > 0, a question posed by Erdős in 1981 [7].
Prior to this work, the exact values for R(C4,Km) were known for 3 ≤

m ≤ 8. Here, we present a computational proof that R(C4,K9) = 30 and
R(C4,K10) = 36. The known values and bounds, including our new results,
are gathered in Table 1.

m R(C4,Km) Year References
3 7 1971 [3]
4 10 1972 [4]
5 14 1977 [5]
6 18 1987/1977 [9]/[21]
7 22 2002/1997 [19]/[12]
8 26 2002 [19]
9 30

this work
10 36
11 39–44
12 42–52

Table 1: Known values and bounds for R(C4,Km).
Double references correspond to lower/upper bounds.

The value of R(C4,K6) and bounds 21 ≤ R(C4,K7) ≤ 22 were pre-
sented by Jayawardene and Rousseau in [12, 13]. The numbers R(C4,K7),
R(C4,K8) and the bounds 30 ≤ R(C4,K9) ≤ 33, 34 ≤ R(C4,K10) ≤ 40
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n 3 4 5 6 7 8 9 10 11 12
ex(n,C4) 3 4 6 7 9 11 13 16 18 21

n 13 14 15 16 17 18 19 20 21 22
ex(n,C4) 24 27 30 33 36 39 42 46 50 52

n 23 24 25 26 27 28 29 30 31 32
ex(n,C4) 56 59 63 67 71 76 80 85 90 92

Table 2: Known values for ex(n,C4) [6, 27, 22].

were given by Radziszowski and Tse in [19]. Further upper bound im-
provements to 32 and 39 for R(C4,K9) and R(C4,K10), respectively, were
presented in [26].

For a graph G, V (G) is the vertex set; E(G) is the edge set; NG(v) is
the neighborhood of v ∈ V (G); degG(v) is |NG(v)|; δ(G) is the minimum
degree; and α(G) is the independence number.

2 Algorithms and Computations

2.1 Higher Level

The computations and algorithms used in this work are similar to those de-
scribed in [19]. Comparable methods have been used to find other Ramsey
numbers, such as in [17, 11].

The main idea behind the computations is to enumerate the setsR(C4,Km).
If R(C4,Km;n) 6= ∅, then R(C4,Km) > n, and if R(C4,Km;n + 1) = ∅,
then R(C4,Km) ≤ n+ 1. The latter is usually accomplished by extending
R(C4,Km; t) to graphs in sets with higher m and/or t. Two methods used
to achieve this are described in the next section.

Some special properties of C4-free graphs proved useful during our com-
putations. One such property involves an extremal Turán-type problem
involving C4-free graphs. Let ex(n,C4) be the maximum number of edges
of an n-vertex C4-free graph. These numbers have been studied extensively
both theoretically and computationally (cf. [1]). The values of ex(n,C4)
for 1 ≤ n ≤ 32 are known [6, 27, 22] and they are displayed in Table 2.
Two more useful properties are presented in Lemma 1.

Lemma 1 ([4, 1]). If a C4-free graph has n vertices, e edges, and minimum
degree δ, then δ2 − δ + 1 ≤ n and e < 1

4 n (1 +
√

4n− 3).
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2.2 Methods

Our enumeration of various classes of (C4,Km)-graphs uses two computa-
tional methods, VertexExtend and Glue, described below.

VertexExtend

This algorithm extends a (C4,Km;n)-graphG to all possible (C4,Km;n+
1)-graphs G′ containing G by attaching a new vertex v to all feasible neigh-
borhoods in G. By feasible, we mean that the additional edges do not create
a C4, while also preserving α(G′) < m. If complexity of computations is
ignored, then full enumeration of R(C4,Km;n+ 1) can clearly be obtained
from R(C4,Km;n) using this method.

Glue

The second method, called the Glue algorithm, constructsR(C4,Km;n+
δ + 1) from R(C4,Km−1;n), where δ is the minimum degree of the new
graphs. For a (C4,Km;n + δ + 1)-graph G, let v be a vertex of G such
that degG(v) = δ(G), and let X be the subgraph induced by NG(v); X
must be a (P3,Km; δ)-graph. Note that such a graph must be of the form
sK2 ∪ tK1, where 2s + t = δ and s + t < m. Let Y be the induced sub-
graph of V (G) \ (X ∪ {v}); Y must be a (C4,Km−1;n)-graph. If we know
R(C4,Km−1;n), we can find all graphs in R(C4,Km;n+ δ + 1) by consid-
ering how each vertex x ∈ X can be connected to the vertices of Y . We
call each neighborhood N(x) ∩ V (Y ) the cone of x, denoted c(x). We say
that the cone c(x) is feasible if:

1. c(x) does not contain two endpoints of any P3 in Y .

2. For distinct x1, x2 ∈ V (X), c(x1) ∩ c(x2) = ∅.

3. For each edge {x1, x2} ∈ E(X), there is no y1 ∈ c(x1) and y2 ∈ c(x2)
such that {y1, y2} ∈ E(Y ).

4. For each subgraph induced by X ′ ⊆ X and Y ′ induced by V (Y ) \⋃
x∈X′ c(x), α(X ′) + α(Y ′) < m.

Conditions 1, 2, and 3 prevent C4 subgraphs, while condition 4 prevents
independent sets of order m. Figure 1 presents the main idea of Glue,
while Figure 2 gives an explicit example of gluing a (C4,K4; 9)-graph to a
(C4,K5; 13)-graph using δ = 3.

2.3 Implementation and Optimization

Two separate implementations of VertexExtend and Glue were used in
order to corroborate the correctness of the results. In all cases where both
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δ

(P3,Km; δ)-graph (C4,Km−1; t)-graph

Figure 1: Gluing to a (C4,Km; δ + t+ 1)-graph.

Figure 2: Gluing a (C4,K4; 9)-graph to a (C4,K5; 13)-graph.
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implementations were used, the results agreed. We list the details of this
agreement in the Appendix.

The rules for gluing (C4,Km)-graphs described in Section 2.2 allowed for
a much needed speedup in computations. In most cases, it was beneficial
to preprocess the Y graphs before gluing, storing information about the
feasibility of the cones. For example, all subsets of vertices containing
endpoints of a P3 were removed from the list of feasible cones. Speed
was greatly increased by precomputing the independence number α(Y ′) of
each subgraph, which was critical for efficient testing of condition 4. This
proved to be a bottleneck of the computations, and multiple strategies and
implementations were tested. The most efficient algorithm implemented
was based on Algorithm 1: Precomputing independence number of [11]. All
data was stored in arrays of size 2n, where the integer index of the array
represented the bit-set of the vertices of the subgraph.

Two isomorphism testing tools were used in our implementations. The
first implemented an algorithm described by William Kocay [15]. The other
made use of the well-known software nauty by Brendan McKay [16].

3 Results

First, we obtained a full enumeration of R(C4,K7). This was significant, as
the same enumeration was computationally infeasible when these methods
were attempted in 2002 [19]. R(C4,K7) was first enumerated using Ver-
texExtend. The same results were verified by gluing from R(C4,K6).
For more information on these and similar consistency checks, see the Ap-
pendix. The statistics ofR(C4,K7) by vertex and edge counts are displayed
in Tables 3 and 4. The cases of counts found in [19] agree with ours.
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n 7 8 9 10 11 12 13 14 15
e

1 1
2 2 1
3 5 4 1
4 9 9 4 1
5 18 20 14 4 1
6 29 42 40 16 3 1
7 30 71 91 57 13 2
8 17 88 178 172 56 9 1
9 5 72 274 422 221 41 4

10 31 289 805 737 183 19 1
11 5 197 1135 1947 779 94 5
12 74 1097 3861 2912 469 28 1
13 10 670 5405 8660 2221 151 5
14 222 5046 18943 9455 826 29
15 34 2965 28496 32805 4367 163
16 2 971 27902 84467 21211 920
17 146 16897 148686 87187 5218
18 11 5831 168441 277608 27740
19 1013 116266 622072 130043
20 82 45788 904916 507036
21 3 9434 801944 1513611
22 916 406222 3119854
23 39 108749 4033237
24 2 14039 3021620
25 818 1215627
26 24 241075
27 1 21639
28 851
29 22
30 2

Total 116 343 1172 4637 21383 111754 619107 3250169 13838693

Table 3: Statistics for R(C4,K7;n), 7 ≤ n ≤ 15.
Note that for n < 7 the counts are for all C4-free graphs.

7



n 16 17 18 19 20 21
e

14 1
15 5
16 23 1
17 116 3
18 644 11 1
19 3602 51 1
20 19588 251 3
21 97521 1311 12
22 423964 6805 45
23 1543985 33476 198
24 4434855 149441 908
25 9068568 585687 4045
26 11612126 1964782 16971
27 8299450 5448131 64462
28 3016205 11583843 219831
29 511367 16465694 672324 1
30 37318 13277929 1813931 18
31 1167 5287770 4096321 233
32 26 938464 6953952 2399
33 2 68369 7533349 17474
34 2018 4275886 83786
35 35 1064229 261093
36 1 102512 520551
37 3512 605219 1
38 53 328849 12
39 1 64919 126
40 4132 999
41 107 3611
42 4 3762
43 897
44 53
45 2 1
46 2

Total 39070533 55814073 26822547 1888785 9463 3

Table 4: Statistics for R(C4,K7;n), 16 ≤ n ≤ 21.
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δ 1 2 3 4 Total
e

40 1 1
41 13 13
42 201 201
43 3055 108 3163
44 36884 8517 45401
45 302179 260678 562857
46 1 1449548 3502385 83 4952017
47 6 3662039 23059729 35368 26757142
48 29 4576213 75076644 1563123 81216009
49 53 2716695 110589375 11348103 124654226
50 27 744258 66302337 19535975 86582597
51 3 95358 15327155 9727032 25149548
52 5827 1352590 1588719 2947136
53 164 47152 94684 142000
54 6 732 2404 3142
55 4 37 41
56 1 1
Total 119 13592441 295527406 43895529 353015495

Table 5: Size vs minimum degree of graphs in R(C4,K8; 23).
All such graphs with δ = 4 were used with Glue to find

(C4,K9; 29)-graphs.

OnceR(C4,K7) was enumerated, we were able to constructR(C4,K8;n)
for n equal to 23, 24, and 25. The gluing of R(C4,K8; 23) turned out to be
the most computationally expensive, as there are 353015495 such graphs,
but this was needed in order to extend them further to R(C4,K9; 29). The
counts for R(C4,K8; 23) are displayed by size and minimum degree in Ta-
ble 5. Statistics for R(C4,K8; 24) and R(C4,K8; 25) are gathered in Table
6. Our computations found that no (C4,K8)-graph exists with minimum
degree 5.

3.1 R(C4, K9)

We constructed the sets R(C4,K9; 29) and R(C4,K9; 30) with the Glue
algorithm. Since R(C4,K8) = 26, any (C4,K9; 29)-graph has minimum
degree 3, 4, or 5 and can be obtained from R(C4,K8;n) for n = 25, 24, 23
by Glue. Note that the minimum degree of a (C4,K8; 23)-graph must be 4
in order to glue to a graph of minimum degree 5. This restriction improved
the speed of computation, as there is a large number of (C4,K8; 23)-graphs
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n 24 25
e

48 1
49 6
50 48
51 394
52 3133
53 21116
54 60646
55 57944
56 18863
57 2102
58 96 2
59 4 10
60 15
61 9
Total 164353 36

Table 6: Statistics for R(C4,K8;n), n = 24, 25.
These graphs were used to find (C4,K9;m)-graphs for m ≥ 29.

δ 3 4 5 Total
e

70 1 1 2
71 8 5 13
72 12 11 23
73 18 33 1 52
74 10 64 7 81
75 49 9 58
76 19 7 26
77 6 4 10
78 2 2
Total 49 188 30 267

Table 7: Size vs minimum degree of graphs in R(C4,K9; 29).
These graphs were used to show that no (C4,K10; 36)-graph exists.
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to consider. Statistics for R(C4,K9; 29) are found in Table 7.
Similarly, any (C4,K9; 30)-graph has minimum degree 4 or 5, and can

be obtained from R(C4,K8; 25) or R(C4,K8; 24), respectively, via Glue .
No (C4,K9; 30)-graphs were found, resulting in the following theorem.

Theorem 2. R(C4,K9) = 30.

3.2 R(C4, K10)

Theorem 3. R(C4,K10) = 36.

Proof. We have found two 6-regular (C4,K10; 35)-graphs H1 and H2, es-
tablishing the lower bound. The orbits of H1 are depicted in Figure 3 and
its adjacency matrix is presented in Figure 4.

In order to prove R(C4,K10) ≤ 36, it is necessary to show that no
(C4,K10; 36)-graph exists. As R(C4,K9) = 30, from Lemma 1, we know
that a (C4,K10; 36)-graph has minimum degree at most 6 and can be ob-
tained from gluing a (C4,K9; 29)-graph. Gluing all of R(C4,K9; 29) re-
sulted in finding no such graphs.

The automorphism group Aut(H1) has order 24 and its action on V (H1)
has four orbits of 24, 6, 4, and 1 vertices, respectively. The automorphism
group Aut(H2) has order 40 and its action on V (H2) has three orbits of 20,
10, and 5 vertices. Both graphs H1 and H2 have 105 edges and 35 triangles.
Each vertex is on three triangles, that is, each neighborhood is the union
of three K2 graphs. Both graphs are also bicritical: removing any edge
produces an independent set of order 10, and adding any edge produces a
C4.

Interestingly, no (C4,K10;n)-graphs for n = 34, 35 were found by gluing
from R(C4,K9; 29).

3.3 Higher Parameters

Theorem 4. 39 ≤ R(C4,K11) ≤ 44.

Proof. The lower bound is obtained by construction. A (C4,K11; 38)-graph
can easily be obtained by adding a triangle to H1 or H2.

If a (C4,K11; 44)-graph G exists, then from Lemma 1 it follows that G
must have minimum degree at most 7. Such a graph can be obtained by
applying Glue to a (C4,K10; 36)-graph. However, since R(C4,K10) = 36,
no such graph exists, and therefore G does not exist as well.

Theorem 5. 42 ≤ R(C4,K12) ≤ 52.
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(a) (b) (c) (d)

Figure 3: The four orbits of Aut(H1). Parts (b) and (c) are connected
by 24 edges, as well as (c) and (d).

Proof. The lower bound is obtained similarly as before: by adding a triangle
to the (C4,K11; 38)-graphs of Theorem 4.

As R(C4,K11) ≤ 44, any (C4,K12)-graph can be obtained by applying
Glue to a (C4,K11)-graph with order at most 43. From Lemma 1, such a
graph must have a minimum degree of at most 7, and therefore an order of
at most 51. Thus, R(C4,K12) ≤ 52.
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a b c d
a 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b

1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

c

0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 0 0

d

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0

Figure 4: Adjacency matrix of H1,
separated by the orbits of Aut(H1).
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Appendix: Correctness of Computations

As our main results relied on the use of algorithms, it was important to take
extra steps to verify the correctness of our implementations. Tests similar
to those described in [17, 11] and others were, which are listed as follows:

1. Two independent implementations of Glue and VertexExtend
were developed by the authors. The data was generated indepen-
dently by both implementations, and all results agreed. The only
data that was not produced by both was the full enumeration of
R(C4,K8; 23) and R(C4,K9; 29), as this required the most compu-
tational resources. However, a partial set of R(C4,K8; 23), namely
when δ = 1, 2, was verified.

2. Both implementations were used to generate all graphs in R(C4,Kt)
for 4 ≤ t ≤ 7. The results agreed, and gave the same counts as those
found in [19].

3. For every (C4,K8; 23)-graph, we removed an edge if it did not in-
crease the independence number to 8, therefore producing a different
(C4,K8; 23)-graph. Every graph found this way was already included
in the original set. For example, when going from size 51 to 50,
65059062 of the 86582597 graphs (≈ 75%) were produced, none of
which were new.

4. For every (C4,K8)-graph with 24 and 25 vertices, every vertex was
removed, creating a (C4,K8)-graph with 23 and 24 vertices, respec-
tively. Every graph produced was already included in the set obtained
earlier.

5. Tests 3 and 4 were performed on other sets of graphs, including
R(C4,K9; 29). Like before, all graphs obtained this way had already
been found.

6. We extended R(C4,K9; 29) to R(C4,K9; 30) via VertexExtend
and also obtained R(C4,K9; 30) = ∅. Likewise, we extended the
(C4,K10; 35)-graphs H1 and H2 from Theorem 3 and no (C4,K10; 36)-
graphs were found.

7. All (C4,Km)-graphs were independently verified to not contain a C4

or independent set of order m using the software sage [25].

Most of the large-scale computations were performed on the Open Science
Grid. Over 175000 CPU hours (20 years) were used for these computations.
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