
Recommending Relevant Classes for Bug Reports using
Multi-objective Search

Rafi Almhana∗, Wiem Mkaouer∗, Marouane Kessentini∗, Ali Ouni‡

∗Computer and Information Science Department
University of Michigan, Dearborn, MI, USA

‡Graduate School of Information Science and Technology
Osaka University, Osaka, Japan

firstname@umich.edu ali@ist.osaka-u.ac.jp

ABSTRACT
Developers may follow a tedious process to find the cause
of a bug based on code reviews and reproducing the ab-
normal behavior. In this paper, we propose an automated
approach to finding and ranking potential classes with the
respect to the probability of containing a bug based on a bug
report description. Our approach finds a good balance be-
tween minimizing the number of recommended classes and
maximizing the relevance of the proposed solution using a
multi-objective optimization algorithm. The relevance of the
recommended classes (solution) is estimated based on the
use of the history of changes and bug-fixing, and the lexical
similarity between the bug report description and the API
documentation. We evaluated our system on 6 open source
Java projects, using the version of the project before fix-
ing the bug of many bug reports. The experimental results
show that the search-based approach significantly outper-
forms three state-of-the-art methods in recommending rele-
vant files for bug reports. In particular, our multi-objective
approach is able to successfully locate the true buggy meth-
ods within the top 10 recommendations for over 87% of the
bug reports.

CCS Concepts
•Software and its engineering → Search-based soft-
ware engineering;

Keywords
Search-based software engineering; bug reports; multi-objective
optimization; software maintenance.

1. INTRODUCTION
A software bug is a coding error that may cause abnormal

behaviors and incorrect results when executing the system
[6]. After identifying an unexpected behavior of the soft-
ware project, a user or developer will report it in a docu-
ment, called a bug report [3]. Thus, a bug report should

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE ’16 Singapore, Singapore
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

provide useful information to identify and fix the bug. The
number of these bug reports can be large. For example,
MOZILLA had received more than 420,000 bug reports [4].
These reports are important for managers and developers
during their daily development and maintenance activities
[11].

A developer always uses a bug report to reproduce the
abnormal behavior to find the origin of the bug. However,
the poor quality of bug reports can make this process te-
dious and time-consuming due to missing information. To
find the cause of a bug, developers are not only using their
domain knowledge to investigate the bug report, but inter-
act with peer developers to collect additional information.
An efficient automated approach for locating and ranking
important code fragments for a specific bug report may lead
to improving the productivity of developers by reducing the
time to find the cause of a bug [11]. Most of the existing
studies are mainly based on lexical matching scores between
the statements of bug reports and the name of code elements
in software systems [23]. However, there is a significant dif-
ference between the natural language used in bug reports
and the programming language which limits the efficiency
of existing approaches.

In this work, we start from the following observations.
First, API documentation of the classes and methods can
be more useful than the name of code elements or comments
to estimate the similarity between code fragments and bug
reports. Second, classes associated to previously fixed bug
reports may be relevant also to the current report if these
previously bug reports are similar to a current bug report.
Third, a code fragment that was fixed recently is more likely
to still contain bugs than another class that was last fixed
long time ago. Fourth, a class that has been frequently fixed,
tend to be fault-prone and may cause more than one abnor-
mal behavior in the future. Finally, the recommendation of
a large number of classes to inspect may make the process
of finding the cause of a bug time-consuming.

To consider the above observations, we propose a compre-
hensive approach for bugs localization based on bug reports
description. To this end, we propose, for the first time, to
use a multi-objective optimization algorithm [7] to find a
balance between maximizing lexical and history-based simi-
larity, and minimizing the number of recommended classes.
The problem is formulated as a search for the best combina-
tion and sequence of classes from all the classes of the system
that optimize as much as possible the above two conflicting
objectives.

We have executed an extensive empirical evaluation of 6

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970344

286

https://www.researchgate.net/publication/220691686_Object-oriented_software_engineering_-_using_UML_patterns_and_Java_2_ed?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/235704145_What_Makes_a_Good_Bug_Report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/4068916_Analyzing_and_Relating_Bug_Report_Data_for_Feature_Tracking?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/4068916_Analyzing_and_Relating_Bug_Report_Data_for_Feature_Tracking?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224343297_Duplicate_Bug_Reports_Considered_Harmful_Really?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221554436_A_discriminative_model_approach_for_accurate_duplicate_bug_report_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/3418687_A_fast_and_elitist_multiobjective_genetic_algorithm_NSGA-II?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==

large open-source software projects with more than 22,000
bug reports in total based on an existing benchmark [26].
The results on the before-fix versions show that our system
outperforms, on average, three state-of-the-art approaches
not based on search techniques [26, 16, 28]. In particular,
our search-based approach is able to successfully locate the
true buggy methods within the top 10 recommendations for
over 87% of the bug reports.

The primary contributions of this paper can be summa-
rized as follows:

• To the best of our knowledge and based on recent sur-
veys [14], the paper proposes the first search-based
software engineering approach to address the problem
of finding relevant code fragments for bug reports. The
approach combines the use of lexical and history based
similarity measures to locate and rank relevant code
fragments for bug reports while minimizing the num-
ber of recommended classes.

• The paper reports the results of an empirical study
with an implementation of our multi-objective approach.
The obtained results provide evidence to support the
claim that our proposal is more efficient, on average,
than existing techniques [16, 26, 28] based on a bench-
mark of 6 open source systems. We also compared the
results of our multi-objective approach with a mono-
objective formulation to make sure that our objectives
are conflicting.

The remainder of this paper is as follows: Section 2 is
dedicated for the related work. Section 3 describes the pro-
posed approach and the search algorithm. An evaluation of
the approach and its results are explained in Section 4 while
Section 5 further discusses the obtained results. Section 6
describes the threats to validity related to our experiments.
Finally, concluding remarks and future work are provided in
Section 7.

2. RELATED WORK
In this section, we survey different studies related to the

areas of bug localization and search-based software engineer-
ing.

2.1 Bug Localization
The problem of bug localization can be considered as search-

ing the source of a bug given its description. To address this
problem, the majority of existing studies is based on the use
Information-Retrieval (IR) techniques through the detection
of textual and semantic similarities between a newly given
report and source code entities [23]. Several IR techniques
have been investigated, namely the Latent Semantic Index-
ing (LSI) [9], Latent Dirichlet Allocation (LDA) [5] and the
Vector Space Model (VSM) [21]. In addition, hybrid models
extracted from these IRs techniques to tackle the problem
of bug localization were proposed [26].

We summarize, in the following, the different tools and
approaches proposed in the literature based on the above
IR techniques. BugScout [16] is a topic-based approach us-
ing LDA to analyze the bug related information (descrip-
tion, comments, external links, etc.) to detect the source of
a bug and duplicated bug reports. The main limitation of
BugScout is the dependency of the results on the keywords

entered by the user. DebugAdvisor’s [2] is a bug investiga-
tion system that takes as input a bug report in terms of text
queries then uses them to mine existing fixed bug repos-
itory and generate a graph of possible reports. However,
DebugAdvisor accuracy depends on the accuracy of the re-
port’s description and its accuracy when describing the bug
and its related code entities.

BugLocator [28] combines several similarity scores from
previous bug reports for bug localization. It generates a
VSM model to extract suspect source files for a given bug
report. Then, BugLocator mines previously fixed bug re-
ports along with related files involved to rank suspect code
fragments. The main issue raised in this work is the prone-
ness of the weight density to the noise in the large files. To
overcome this limitation, [25] added segmentation and stack-
trace analysis to improve the performance of the BugLocator
approach. The limitation of this extension is that execution
traces are not necessarily available in bug repositories.

BLUiR [20] has been proposed also to compare a bug
report to the structure of source files. It decomposes re-
ports into summaries and then uses the structural retrieval
to calculate similarities between these tokenized elements
and source code ones to rank source code files. Saha et
al. [19] extended BLUiR to consider similar reports infor-
mation, similarly to BugLocator as an additional similarity
score. DHbPd [18] incorporated code change information
for bug localization. The main idea is to consider recently
changed source code elements as potential candidates for
hosting a bug.

Ye et al. [26] has modeled the similarity between bug re-
ports and source code through several characteristics that
are captured through the use of 6 similarity features that
describe the projects domain knowledge. The combination
of these measures is fed to a ranking heuristic called learning-
to-rank. The ranking model returns the top candidate source
files to investigate for a given bug report. The main original-
ity of their work is the use of projects API description and
auto-generated documentation as one of the features to uti-
lize to reduce the lexical gap between the human description
and the source code.

In [27], Ye et al. extended their previous work by ex-
tending their ranking features utilized by learning-to-rank
from 6 to 19. Besides the existing surface lexical similarity,
API-based lexical similarity, collaborative filtering, code ele-
ments naming similarity, fixed bugs frequency, they included
other source code characteristics that can be extracted from
the projects such as summaries, naming conventions, inter-
class dependencies etc. Although taking these features into
account has given better results in terms of better files rank-
ing, such information may not be available in all projects and
sometimes it may be outdated and that may deteriorate the
localizations accuracy.

We propose, in this paper, a more comprehensive ap-
proach to address the problem of bugs localization from dif-
ferent perspectives as detailed in the next sections.

2.2 Search-Based Software Engineering
Search-Based Software Engineering (SBSE) uses a compu-

tational search approach to solve optimization problems in
software engineering [13]. Once a software engineering task
is framed as a search problem, by defining it in terms of so-
lution representation, fitness function, and solution change
operators, there is a multitude of search algorithms that can

287

https://www.researchgate.net/publication/221656940_Retrieval_from_software_libraries_for_bug_localization_A_comparative_study_of_generic_and_composite_text_models?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221620547_Latent_Dirichlet_Allocation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281831915_Mapping_Bug_Reports_to_Relevant_Files_A_Ranking_Model_a_Fine-Grained_Benchmark_and_Feature_Evaluation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221554436_A_discriminative_model_approach_for_accurate_duplicate_bug_report_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/261276658_Improving_bug_localization_using_structured_information_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221560728_DebugAdvisor_A_recommender_system_for_debugging?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281050357_On_the_Effectiveness_of_Information_Retrieval_Based_Bug_Localization_for_C_Programs?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/200773081_A_Vector_Space_Model_for_Automatic_Indexing?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==

Finding relevant classes for bug
reports using NSGA-II

Objective 1: Maximize the relevance
of recommended classes

Objective 2: Minimize the number of
recommended classes.

Source code and API specifications
of the program to be inspected

A list of previous bug reports

Best sequence of
classes to inspect

The history of the applied changes
in previous releases

The description of the bug report(s)

Figure 1: Approach Overview.

be applied to solve that problem.
Many search-based software testing techniques have been

proposed for test cases generation [17], mutation testing [15],
regression testing [22] and testability transformation. How-
ever, the problem of bugs localization was not addressed be-
fore using SBSE. The closest problem addressed using SBSE
techniques is the bugs prioritization problem [8]. A mono-
objective genetic algorithm was proposed to find the best se-
quence of bugs resolution that maximizes the relevance and
importance of the bugs to fix while minimizing the cost. The
main limitation of this work is the use of a mono-objective
technique that aggregates two conflicting objectives. In the
next section, we describe our formulation of bug localization
as a multi-objective problem.

3. MULTI-OBJECTIVE FORMULATION
We first present an overview of our multi-objective ap-

proach to identify and prioritize relevant code fragments
(e.g. classes) for bug reports, and then we describe the de-
tails of our multi-objective formulation.

3.1 Approach Overview
Our approach aims at exploring a large search space to

find relevant classes, to inspect by developers, given a de-
scription of a bug report. The search space is determined
not only by the number of possible class combinations to rec-
ommend, but also by the order in which they are proposed
to the programmer. In fact, bug reports may require the
inspection of more than one class to identify and fix bugs.

A heuristic-based optimization method is proposed based
on two main conflicting objectives. The first objective is the
correctness function that includes two sub-functions: 1.a)
maximizing the Lexical similarity between recommended classes
and the description of the bug report (including the API and
name of code elements similarity), and 1.b) maximizing the
history-based function score that includes the number of a
recommended classes that have been fixed in the past, re-
cent changes introduced by the developers to these classes
and similarities with previous bug reports. The second ob-
jective is to minimize the number of classes to recommend.

It is clear that these two objectives are conflicting since
maximizing the relevance of recommended classes may leads
to a lower precision and thus increases the number of recom-
mended classes. Thus, we consider, in this paper, the task
of localizing bugs as a multi-objective optimization problem
using the non-dominated sorting genetic algorithm (NSGA-
II) [7]. The proposed algorithm will explore a large search
space of a combinatorial number of combinations of classes
to recommend.

The general structure of our approach is sketched in Fig-
ure 1. It takes as input the source code of the program to be
inspected, the API specifications of the classes of the system,
the description of the bug report and a list of previous bug
reports and the history of the applied changes in previous
releases. Our approach generates as output a near-optimal

sequence of ranked classes that maximizes the relevance to
the bug report and minimizes the number of recommended
classes. In the following, we describe an overview of NSGA-
II, the solution representation, a formal formulation of the
two objectives to optimize and the change operators.

3.2 NSGA-II
In this paper, we adapted one of the widely used multi-

objective algorithms called NSGA-II [7]. NSGA-II is a pow-
erful search method stimulated by natural selection that is
inspired by the theory of Darwin. Hence, the basic idea
of NSGA-II is to make a population of candidate solutions
evolve toward the near-optimal solution in order to solve a
multi-objective optimization problem. NSGA-II is designed
to find a set of optimal solutions, called non-dominated so-
lutions, also Pareto set. A non-dominated solution is the
one which provides a suitable compromise between all ob-
jectives without degrading any of them. As described in Al-
gorithm 1, the first step in NSGA-II is to create randomly a
population P0 of individuals encoded using a specific repre-
sentation (line 1). Then, a child population Q0 is generated
from the population of parents P0 using genetic operators
such as crossover and mutation (line 2). Both populations
are merged into an initial population R0 of size N (line 5).
As a consequence, NSGA-II starts by generating an initial
population based on a specific representation that will be
discussed later, using the exhaustive list of classes from the
system to inspect given as input as mentioned in the pre-
vious section. Thus, this population stands of a set solu-
tions represented as sequences of classes to inspect, which
are randomly selected and ordered, for a specific bug report
description taken as input.

Algorithm 1 High level pseudo code for NSGA-II

1: Create an initial population P0

2: Create an offspring population Q0

3: t = 0
4: while stopping criteria not reached do
5: Rt = Pt ∪Qt

6: F = fast-non-dominated-sort(Rt)
7: Pt+1 = ∅ and i = 1
8: while | Pt+1 | + | Fi |� N do
9: Apply crowding-distance-assignment(Fi)
10: Pt+1 = Pt+1 ∪ Fi

11: i = i+ 1
12: end while
13: Sort(Fi,≺ n)
14: Pt+1 = Pt+1 ∪ Fi[N− | Pt+1 |]
15: Qt+1 = create-new-pop(Pt+1)
16: t = t+1
17: end while

The whole population that contains N individuals (solu-
tions) is sorted using the dominance principle into several
fronts (line 6). The dominance level becomes the basis of
a selection of individual solutions for the next generation.
Fronts are added successively until the parent population
Pt+1 is filled with N solutions (line 8). When NSGA-II
has to cut off a front Fi and select a subset of individual
solutions with the same dominance level, it relies on the
crowding distance to make the selection (line 9). This front
Fi to be split, is sorted in descending order (line 13), and the
first (N-|Pt+1|) elements of Fi are chosen (line 14). Then
a new population Qt+1 is created using selection, crossover
and mutation (line 15). This process will be repeated until

288

https://www.researchgate.net/publication/228264082_Using_genetic_algorithms_to_generate_test_sequences_for_complex_timed_systems?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/293813436_Mutation-Based_Generation_of_Software_Product_Line_Test_Configurations?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/3418687_A_fast_and_elitist_multiobjective_genetic_algorithm_NSGA-II?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/3418687_A_fast_and_elitist_multiobjective_genetic_algorithm_NSGA-II?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==

reaching the last iteration according to stop criteria (line 4).
The following three subsections describe more precisely

our adaption of NSGA-II to the model change detection
problem.

3.3 Solution Approach

3.3.1 Solution representation
To represent a candidate solution (individual), we used a

vector representation. Each dimension of the vector repre-
sents a class to recommend for a specific bug report. Thus,
a solution is defined as a sequence of classes to recommend
for inspection by the developer to locate the bug.

When created, the order of recommended classes corre-
sponds to their positions in the vector. The classes to recom-
mend are dependent since a bug can be located in different
classes. In addition, the goal is to recommend a minimum
set of classes while maximizing the correctness objective.

StackRenderer CompositeRenderer TrimUtil
Figure 2: Simplified Example of a Solution Representation.

Bug ID: 378535
Summary: “Close All" and “Close Others" menu
options available when right clicking on tab in
PartStack when no part is closeable.

Description: If I create a PartStack that contains
multiple parts but none of the parts are closeable,
when I right click on any of the tabs I get menu
options for “Close All“ and “Close Others".
Selection of either of the menu options doesn't cause
any tabs to be closed since none of the tabs can be
closed.

Reported: 2012-05-04 14:03

Figure 3: An Eclipse Bug Report Example1 (ID 378535)

Figure 2 describes a simplified solution generated to find
possible relevant classes for the bug report of Figure 3 that
shows an example of a bug report from the Eclipse project
(ID 378535)1. This bug report describes a defect about in-
correct menu options for parts that are not closeable. The
solution consists of a sequence of three classes to inspect
extracted from the Eclipse project.

3.3.2 Fitness functions
Correctness objective: This objective is defined as the av-

erage of two functions: lexical-based similarity (LS) and
history-based similarity (HS). Thus, we formally define this
function as:

f1 =
LS +HS

2
(1)

The lexical-based similarity (LS) consists of an average
of two functions. The first function is based on a cosine
similarity [24] between the description of a bug report and
the source code. We used the whole content of a source code
file (the code and comments). The vocabulary was extracted

1https://bugs.eclipse.org/bugs/show bug.cgi?id=378535

Figure 4: A code fragment from the class StackRenderer.

from the names of variables, classes, methods, parameters,
types, etc. We used the Camel Case Splitter to perform the
Tokenization for preprocessing the identifiers [10].

During the tokenization process, we used a standard in-
formation retrieval stop words to eliminate irrelevant infor-
mation such as punctuation, numbers, etc. In addition, the
words are reduced to their stem based on a Porter stem-
mer. This operation reduces the deviation between related
words such as designing and designer to the same stem de-
sign. Then, the cosine similarity measure is used to compare
between the description of a bug report and the source code.

Equation 2 calculates the cosine similarity between two
actors. Each actor is represented as an n dimensional vec-
tor, where each dimension corresponds to a vocabulary term.
The cosine of the angle between two vectors is considered as
an indicator of similarity. Using cosine similarity, the con-
ceptual similarity between two actors: c1 and c2 is deter-
mined as follows:

Sim(c1, c2) = Cos(−→c1 ,−→c2) =
−→c1 .−→c2

‖ −→c1 ‖ × ‖ −→c2 ‖

=

n∑
i=1

(wi,1 × wi,2)√
n∑

i=1
(wi,1)2 ×

n∑
i=1

(wi,2)2

∈ [0, 1] (2)

where −→c1 = (w1,1, ..., wn,1) is the term vector correspond-
ing to actor c1 and −→c2 = (w1,2, ..., wn,2) is the term vector
corresponding to c2. The weights wi,j is computed using in-
formation retrieval based techniques such as the Term Fre-
quency - Inverse Term Frequency (TF-IDF) method. The
first lexical simialrity function is then defined as the sum of
the of the cosine similarity scores between a description of a
bug report and the source code of each the suggested classes
divided by the total number of recommended classes.

As described in Figures 4 and 5, the description of the
bug report example includes several similar words with one
of the recommended classes to inspect, the class StackRen-
derer. Thus, the cosine similarity function applied between
the source code of that class and the description of the bug
report will detect such similarities. However, the only use
of this similarity function may not be enough.

In fact, the text of a bug report is, in general, expressed
in a natural language however the large part of the content

289

https://www.researchgate.net/publication/224503232_Mining_Source_Code_to_Automatically_Split_Identifiers_for_Software_Analysis?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==

API Specification of MUIElement:

Description: A representation of the model object 'UI Label'. This is a mix in that will be used
for UI Elements that are capable of showing label information in the GUI (e.g. Parts, Menus /
Toolbars, Perspectives, ...). The following features are supported: Label, Icon URI, Tooltip ...

API Specifications:

Figure 5: API Specification of the interface MUIElement.

of a source code is described in a programming language.
Thus, the similarity score between a bug report description
and a source code will be higher in case of an extensive use
of comments in the code or if the bug report clearly uses
the names of code elements. To address this challenge, we
propose to use an additional lexical similarity function.

The second lexical function is based on the use of cosine
similarity between the bug report description and the API
specification of each method of a recommended buggy class.
Thus, it is defined as the sum of the maximum of the cosine
similarity scores between a description of a bug report and
each of the methods composing the suggested class divided
by the total number of recommended classes.

As described in Figure 5, the class StackRenderer includes
a variable uiElement having as a type MUIElement. Figure
5 shows the API specification of the MUIElement interface
that includes different terms such as parts and menus that
also exists in the bug report description of Figure 4. Thus,
the lexical similarity between the API specification and the
description of a bug report may also help to better identify
relevant buggy classes.

The second component of the correctness objective is the
history-based similarity. This measure is an average of three
functions. The first function counts the number of times that
a class was fixed to eliminate bugs based on the history of
bug reports. In fact, a class that was fixed several times has
a high probability of being a buggy class and includes new
bugs. Formally, this function, normalized between [0,1] is
defined as:

H1 =

∑Size(S)
i=1 NbFixedBugs(report, ci)

Size(S) ∗Max(NbFixedBugs(report, c))
(3)

The second function checks if a recommended class was
recently changed or fixed. In fact, a class that was modi-
fied recently has a higher probability of containing a bug.
Thus, the function compares between the date of the bug
report and the last date where the recommended class was
modified. If a suggested class was modified on the same day
of the bug report then the value of this function is 1. We
define this normalized function, normalized in the range of
[0, 1] as following:

H2 =

∑Size(S)
i=1

1
report.date−last(report,ci)+1

Size(S)
(4)

The third function evaluates the consistency between the
recommended classes based on previous bug reports. The
classes that are recommended together for similar previous
bug reports have a high probability to include a bug evolv-
ing most of them. To this end, this function calculates first
the cardinality, Cbr, of the largest intersection set of classes
between the solution S and the sets of classes recommended
for each of previous bug reports. Then, this measure is nor-
malized as follows:

H3 =
Cbr

Size(S)
(5)

3.3.3 Change operators
In a search algorithm, the variation operators play the

key role of moving within the search space with the aim of
driving the search towards better solutions. We used the
principle of the Roulette wheel [12] to select individuals for
mutation and crossover. The probability to select an indi-
vidual for crossover and mutation is directly proportional to
its relative fitness in the population. In each iteration, we
select half of the population in iteration i. These selected in-
dividuals will give birth to another half of the population of
new individuals in iteration i+1 using a crossover operator.
Therefore, two parent individuals are selected, and a few di-
mensions (recommended classes) picked on each one. The
one point crossover operator allows creating two offspring
P ′
1 and P ′

2 from the two selected parents P1 and P2. It is de-
fined as follows: a random position, k, is selected. The first k
classes of P1 become the first k elements of P ′

1. Similarly, the
first k operations of P2 become the first k operations of P ′

2.
Our crossover operator could create a child that contains
redundant recommended classes. In order to resolve this
problem, for each obtained child, we verify whether there
are redundant classes or not. In case of redundancy, we re-
place the redundant classes by randomly chosen ones from
the system without causing another redundancy.

The mutation operator can be applied to pairs of dimen-
sions of the vector selected randomly. Given a selected so-
lution, the mutation operator first randomly selects one or
many pairs of dimensions of the vector. Then, for each se-
lected pair, the dimensions, which correspond to classes, are
deleted or replaced by new classes. We used the same repair
operator, described previously, to eliminate redundancy.

4. EVALUATION
In order to evaluate our approach for recommending rel-

evant classes to inspect for bug reports, we conducted a set
of experiments based on different versions of 6 open source
systems. Each experiment is repeated 30 times, and the ob-
tained results are subsequently statistically analyzed with
the aim to compare our NSGA-II proposal with a variety
of existing approaches not based on heuristic search [26, 16,
28] and a mono-objective formulation. In this section, we
present our research questions and then

4.1 Research Questions
In our study, we assess the performance of our approach

by finding out whether it could identify the most relevant
classes to inspect for bug reports. Our study aims at ad-
dressing the following research questions outlined below. We
also explain how our experiments are designed to address
these questions. The main question to answer is to what ex-
tent the proposed approach can propose meaningful bug lo-
calization solutions based on the description of a bug report.
To this end, we defined the following research questions:

• RQ1. (Efficiency) To what extent can the proposed
approach identify relevant classes to localize bugs based
on bug reports description?

• RQ2. (Comparison to search techniques) How does
the proposed multi-objective approach based on NSGA-
II perform compared to random search and a mono-
objective approach?

290

https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/257559900_Parameter_tuning_or_default_values_An_empirical_investigation_in_search-based_software_engineering?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/257559900_Parameter_tuning_or_default_values_An_empirical_investigation_in_search-based_software_engineering?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/201976467_A_Comparative_Analysis_of_Selection_Schemes_Used_in_Genetic_Algorithms?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==

• RQ3. (Comparison to state-of-the-art) How does our
approach perform compared to existing bugs localiza-
tion techniques not based on heuristic search?

To answer RQ1, we validate the proposed multi-objective
technique on six medium to large-size open-source systems,
as detailed in the next section, to evaluate the correctness
of the recommended classes to inspect for a bug report. To
this end, we used the following evaluation metrics:

• Precision@k denotes the number of correct recom-
mended files in the top k of recommended files by the
solution divided by the minimum number of files to in-
spect, in the ranked recommendations list, to localize
the bug.

• Recall@k denotes the number of correct recommended
files in the top k of recommended files by the solution
divided by the total number of expected files to be
recommended that contain the bug.

• Accuracy@k measures the percentage of bug reports
for which at least one correct recommendation was pro-
vided in the top k ranked classes.

To answer RQ2, we compared, using the above metrics,
the performance of NSGA-II with random search and a mono-
objective genetic algorithm aggregating all the objectives
into one objective with equal weight. If Random Search
outperforms a guided search method thus, we can conclude
that our problem formulation is not adequate. It is impor-
tant also to determine if our objectives are conflicting and
outperforms a mono-objective technique. The comparison
between a multi-objective technique with a mono-objective
one is not straightforward. The first one returns a set of
non-dominated solutions while the second one returns a sin-
gle optimal solution. To this end, for we choose the nearest
solution to the Knee point [7] (i.e., the vector composed of
the best objective values among the population members) as
a candidate solution to be compared with the single solution
returned by the mono-objective algorithm.

To answer RQ3, we compared our multi-objective approach
to different existing techniques not based on heuristic search:
1. BugScout [16] identifies relevant classes based on the use
of Latent Dirichlet Allocation measure [5]; 2. BugLocator
[28] ranks classes using both textual and structural simi-
larity.3. Learning-to-rank (LR) [26] technique ranks classes
using a machine learning technique to learn from the his-
tory of previous bug reports. In addition, we compared our
work with two additional baselines. The first one is based
on the only use of the lexical measure (LS) to rank classes
and the second one is based on the only use of the history
measure (HS). These two baselines may justify or not the
need of considering complementary information from both
the lexical and history similarities in our multi-objective for-
mulation.

In the next section, we describe the different projects and
the 10-fold cross-validation used in our experiments.

4.2 Software Projects and Experimental Set-
ting

As described in Table 1, we used a benchmark datasets
for six open-source systems [26].

• Eclipse UI is the user interface of the Eclipse devel-
opment framework.

• Tomcat implements several Java EE specifications.

• AspectJ is an aspect-oriented programming (AOP)
extension created for the Java programming language.

• Birt provides reporting and business intelligence ca-
pabilities.

• SWT is a graphical widget toolkit.

• JDT provides a set of tool plug-ins for Eclipse.

Table 1 shows the different statistics of the analyzed sys-
tems including the time range of the bug reports, the number
of bug reports, the size, the number of APIs, and the number
of fixed classes per bug report.

The total number of collected bug reports and associated
classes is more than 22,000 bug reports for the six open
source systems. All these projects are using BugZilla track-
ing system and GIT as a version control system. To avoid
using a fixed code revision, we associated a before-fixed ver-
sion of the system to each bug report. Therefore, for each
bug report, the version of the software package just before
the fix was committed was used in our validation.

Based on the collected data, we created two sets: one for
the training data and the other for the test data. The bug
reports for each system were sorted chronologically based on
the time dimension. The sorted bug reports are then split
into 10 folds with equal sizes, where fold1 contains the most
recent bug reports and the last fold fold10 contains the oldest
ones. In addition, the oldest fold is split into 70% training
(history of bug reports) and 30% validation. The approach
is trained on foldi+1 and tested on foldi, for all i from 1 to
9. The best recommended solution is then compared with
expected solution of classes that contain the bug.

4.3 Parameters Tuning and statistical tests
Since metaheuristic algorithms are stochastic optimizers,

they can provide different results for the same problem in-
stance from one run to another. For this reason, our experi-
mental study is performed based on 30 independent simula-
tion runs for each problem instance and the obtained results
are statistically analyzed by using the Friedman test with
a 95% confidence level (α = 5%) [1]. The Friedman test
is a non-parametric statistical test useful for multiple pair-
wise comparisons. The latter verifies the null hypothesis
H0 that the obtained results of the different algorithms are
samples from continuous distributions with equal medians,
as against the alternative that they are not, H1. The p-value
of the Friedman test corresponds to the probability of reject-
ing the null hypothesis H0 while it is true (type I error). A
p-value that is less than or equal to α (≤ 0.05) means that
we accept H1 and we reject H0. However, a p-value that
is strictly greater than α (> 0.05) means the opposite. In
this way, we could decide whether the superior performance
of NSGA-II to one of each of the other algorithms (or the
opposite) is statistically significant or just a random result.

The Friedman test allows verifying whether the results
are statistically different or not. However, it does not give
any idea about the difference in magnitude. To this end,
we used the Vargha and Delaneys A statistics which is a
non-parametric effect size measure. In our context, given
the different performance metrics (such as Precision and Re-
call), the A statistics measures the probability that running
an algorithm B1 (NSGA-II) yields better performance than

291

https://www.researchgate.net/publication/221620547_Latent_Dirichlet_Allocation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/257559900_Parameter_tuning_or_default_values_An_empirical_investigation_in_search-based_software_engineering?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/3418687_A_fast_and_elitist_multiobjective_genetic_algorithm_NSGA-II?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==

Table 1: Studied Projects

Project # Bug reports Time # API
files in the project
(average per version)

fixed files/classes per bug report
(median)

Eclipse UI 6495 10/2001-01/2014 1314 3454 2
Birt 4178 06/2005-12/2013 957 6841 1
JDT 6274 10/2001-01/2014 1329 8184 2
AspectJ 593 03/2002-01/2014 54 4439 2
Tomcat 1056 07/2002-01/2014 389 1552 1
SWT 4151 02/2002-01/2014 161 2056 3

running another algorithm B2 (such as GA). If the two al-
gorithms are equivalent, then A = 0.5.

An often-omitted aspect in metaheuristic search is the
tuning of algorithm parameters. In fact, parameter set-
ting influences significantly the performance of a search al-
gorithm on a particular problem. For this reason, for each
search algorithm and each system, we performed a set of
experiments using several population sizes: 10, 20, 30, 40
and 50. The stopping criterion was set to 100,000 fitness
evaluations for all search algorithms in order to ensure fair-
ness of comparison. We used a high number of evaluations
as a stopping criterion since our approach requires involves
multiple objectives. Each algorithm was executed 30 times
with each configuration and then the comparison between
the configurations was performed based on different metrics
described previously using the Friedman test. The other
parameters values were fixed by trial and error and are as
follows: (1) crossover probability = 0.4; mutation probabil-
ity = 0.2 where the probability of gene modification is 0.1.

4.4 Results

4.4.1 Results for RQ1
The results of Table 2 and Figures 6 to 8 confirm the effi-

ciency of our multi-objective approach to identify the most
relevant classes for bug reports that include the bugs on the 6
open source systems. Table 2 shows the average precision@k
results of our multi-objective technique on the different six
systems, with k ranging from 5 to 20. For example, most
of the recommended classes to inspect in the top 5 (k=5)
are relevant with a precision of 89%. The lowest precision
is around 70% for k=20 which is still could be considered
acceptable since most of the bug reports do not have many
classes to inspect. In terms of recall, Table 2 confirms that
the majority of the expected classes to recommend are lo-
cated in the top 20 (k=20) with an average recall score of
94%. An average of more than 72% of classes recommended
in the top5 cover the expected buggy classes.

The average accuracy@k results on the different six sys-
tems are described in Table 2 showing that an average of
68%, 86%, 94% and 97% are achieved for k = 5, 10, 15
and 20 respectively. These results confirm that if we recom-
mend only 10 classes to programmers, we can make correct
recommendations for 86% of the thousands of collected bug
reports for every system.

Figures 6 to 8 summarize the results of the precision@10,
recall@10 and accuracy@10 for every of the studied systems.
The obtained results clearly show that most of the buggy
classes were recommended correctly by our multi-objective
approach in the top 10 with a minimum precision of 78% for
AspectJ, a minimum recall of 79% for Eclipse and a mini-
mum accuracy of 82% for Eclipse as well. Thus, we noticed
that our technique does not have a bias towards the eval-

Table 2: Median Precision@k, Recall@k and Accuracy@k on
30 independent runs. The results were statistically signifi-
cant on 51 independent runs using the Friedman test with a
95% confidence level (α < 5%).
k Precision@k

NSGA-II
Bug

Scout

Bug

Locator
LR LS HS RS GA

5 89 76 78 81 69 71 34 71

10 82 71 74 76 61 64 29 61

15 74 63 69 72 57 58 33 55

20 68 48 51 58 48 51 24 53

k Recall@k

NSGA-II
Bug

Scout

Bug

Locator
LR LS HS RS GA

5 72 59 62 64 54 56 27 54

10 81 64 67 72 60 62 31 62

15 87 69 72 79 65 67 26 69

20 94 74 80 83 70 72 24 76

k Accuracy@k

NSGA-II
Bug

Scout

Bug

Locator
LR LS HS RS GA

5 68 41 44 49 37 34 29 38

10 86 62 69 71 56 59 24 59

15 94 74 78 82 68 72 31 79

20 97 79 82 86 74 77 33 77

uated system. As described in Figures 6-8, in all systems,
we had almost similar average scores of precision, recall and
accuracy. All these results based on the different measures
were statistically significant on 30 independent runs using
the Friedman test with a 95% confidence level (α < 5%).

To answer RQ1, the obtained results on the six open
source systems using the different evaluation metrics of pre-
cision, recall and accuracy clearly validate the hypotheses
that our multi-objective approach can recommend efficiently
relevant buggy classes to inspect for each bug report.

4.4.2 Results for RQ2
Concerning RQ2, Table 2 and Figures 6 to 10 confirm that

NSGA-II is better than random search and the three mono-
objective formulations (LS, HS and GA) based on the three
metrics of precision, recall and accuracy on all the 6 systems.
Three mono-objective formulations were implemented:

1. with an equal aggregation of both objectives (GA);

2. a mono-objective algorithm with the only objective of
lexical similarity (LS); and

3. a mono-objective algorithm with the only objective of
history similarity (HS).

The average accuracy, precision and recall values of ran-
dom search (RS) on the six systems are lower than 35% as

292

Figure 6: Average Precision@k of NSGA-II, BugScout, Bu-
gLocator, LR, LS, HS, RS and GA on the different systems
for 30 independent runs. .

Figure 7: Average Recall@k of NSGA-II, BugScout, BugLo-
cator, LR, LS, HS, RS and GA on the different systems for
30 independent runs.

Figure 8: Average Accuracy@k of NSGA-II, BugScout, Bu-
gLocator, LR, LS, HS, RS and GA on the different systems
for 30 independent runs.

described in Table 2. This can be explained by the huge
search space to explore to identify the best order of classes
to inspect for bugs localization. The performance of the
three mono-objective algorithms was much better than ran-
dom search but lower than our multi-objective formulation.
The aggregation of both objectives into one objective gener-
ates better results on all the six systems than the two other
algorithms considering each objective separately. Thus, an
interesting observation is the clear complementary between
the history-based similarity function and the lexical-based
measure. In fact, we found that the buggy classes that are
not detected by one of the two algorithms were identified
by the other algorithm. The average precision, recall and
accuracy of each of the two algorithms (LH and HS) was
between 67% and 72% but the aggregation of both objec-
tives into one in our multi-objective formulation improve a
lot the obtained results. In addition, since NSGA-II out-
performs the mono-objective GA then it is clear that the
two objectives of correctness/relevance and the number of
recommended classes are conflicting.

All these results were statistically significant on 30 inde-
pendent runs using the Friedman test with a 95% confidence
level (α < 5%). We have also found the following results
of the Vargha Delaney A {12} statistic : a) On large and
medium scale systems (Birt, JDT, Eclipse UI and AspectJ)
NSGA-II is better than all the other algorithms based on all
the performance metrics with an A effect size higher than
0.93; b) On small scale systems (Tomcat, SWT), NSGA-II
is better than all the other algorithms with a an A effect size
higher than 0.96.

We conclude that there is empirical evidence that our
multi-objective formulation surpasses the performance of ran-
dom search and mono-objective approaches thus our formu-
lation is adequate (this answers RQ2).

4.4.3 Results for RQ3
Since it is not sufficient to compare our approach with only

search-based algorithms, we compared the performance of
NSGA-II with three different bugs localization techniques
not based on heuristic search [26, 16, 28]. Table 2 and
Figures 6 to 8 present the precision@k, recall@k and accu-
racy@k results for the 3 implemented methods, with k rang-
ing from 5 to 20. NSGA- II achieves better results, on av-
erage, than the other three methods on all six projects. For
example, our approach achieved, on average, Precision@k
of 90%, 84%, 73% and 69% are achieved for k= 5, 10, 15
and 20 respectively as described in Table 2. In compari-
son, BugLocator achieved an average Precision@k of 68%.
BugScout and LR achieved an average Precision@k of 66%
and 72%, respectively. Similar observations are also valid
for the recall@k and accuracy@k.

Based on the results of Figures 6 to 8 Birt and Tomcat
are two projects where LR performs close to the NSGA-II
approach. For many bug reports in Birt, most of the buggy
classes are those that have been frequently fixed in previous
bug reports which explain the relatively high performance
obtained by LR and NSGA-II. Since the bug fixing informa-
tion is exploited by both the NSGA-II approach and LR, it
is expected that they obtain the best performance results.

To answer RQ3, the obtained results on the six open
source system using the different evaluation metrics of pre-
cision, recall and accuracy clearly validate the hypotheses
that our multi-objective approach outperforms several bugs

293

https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==

Figure 9: Impact of the data training size (folds) on the
three metrics based on the JDT project.

Figure 10: Average execution time (in minutes) of NSGA-
II, on the different systems for 30 independent runs on the
different systems.

localization techniques not based on heuristic search.

5. DISCUSSIONS
Impact of Data Size. To evaluate the impact of in-

creasing the size of the data used (history of previous bug
reports and changes), we executed a scenario on the JDT
project in which we increased the size of the dataset in-
crementally fold by fold until we include all the 9 folds in
the dataset. It is clear from Figure 9 that for all the three
metrics of Precision@k, Recall@k and Accuracy@k that in-
creasing the size of the previous bug reports do not improve
all the three metrics. This can be explained by the fact that
recent bug reports and history of changes are the most im-
portant part of the data. The obtained results confirm also
that our multi-objective approach did not require a large set
of data to generate good results in terms of finding possible
buggy classes for bug reports.

Execution time. We executed our multi-objective algo-
rithm on a desktop computer with CPU Intel(R) Core(TM)
i7 3.2 GHz and 20G RAM. Figure 10 presents the execution
time performance of our approach. The average execution
time on the different systems was around 18 minutes. The
highest execution time was observed on the JDT system
with 23 minutes and the lowest one was around 11 minutes
for SWT. We believe that the execution is reasonable since
bugs localization is not a real-time problem. We also found
that the execution time is related to the number of files to
parse and the history of bug reports.

6. THREATS TO VALIDITY
We explore, in this section, the factors that can bias our

empirical study. These factors can be classified in three cat-
egories: construct internal and external validity. Construct
validity concerns the relation between the theory and the ob-
servation. Internal validity concerns possible bias with the
results obtained by our proposal. Finally, external validity
is related to the generalization of observed results outside
the sample instances used in the experiment.

In our experiments, construct validity threats are related
to the absence of similar work that uses search-based tech-
niques for bug’s localization. For that reason, we compared
our proposal with different mono-objective formulations to
check the need for a multi-objective approach. A construct
threat can also be related to the corpus of manually local-
ized bugs for every bug report. A limitation related to our
experiments is the difficulty to set the thresholds for some of
the parameters of Bug Locator. In fact, we used the default
thresholds used by the authors that can have an impact on
the quality of the generated results.

We take into consideration the internal threats to valid-
ity in the use of stochastic algorithms since our experimental
study is performed based on 30 independent simulation runs
for each problem instance, and the obtained results are sta-
tistically analyzed by using the statistical test with a 95%
confidence level (α = 5%). The parameter tuning of the
different optimization algorithms used in our experiments
creates another internal threat that we need to evaluate in
our future work by additional experiments to evaluate the
impact of the parameters on the quality of the results.

External validity refers to the generalization of our find-
ings. In this study, we performed our experiments on six
different widely-used open-source systems belonging to dif-
ferent domains and with different sizes. However, we cannot
assert that our results can be generalized to other applica-
tions, other programming languages, and to other practi-
tioners.

7. CONCLUSION AND FUTURE WORK
We propose, in this paper, an automated approach to lo-

calize and rank potential relevant classes for bug reports.
Our approach finds a trade-off between minimizing the num-
ber of recommended classes and maximizing the correctness
of the proposed solution using a multi-objective optimiza-
tion algorithm. The correctness of the recommended classes
is estimated based on the use of the history of changes and
bug-fixing, and the lexical similarity between the bug report
description and the API documentation. We have executed
extensive empirical evaluations on 6 large open-source soft-
ware projects with more than 22,000 bug reports in total
based on an existing benchmark. The results on the before-
fix versions show that our system outperforms, on average,
three state-of-the-art approaches not based on search tech-
niques [16, 26, 28]. In particular, our search-based approach
is able to successfully locate the true buggy methods within
the top 10 recommendations for over 87% of the bug reports.

As part of our future work, we plan to evaluate our multi-
objective approach on further projects in other different pro-
gramming languages. In addition, we will extend our work
to address the problem of the software bugs management
and prioritization using multi-objective search techniques.

294

https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==

8. REFERENCES
[1] A. Arcuri and G. Fraser. Parameter tuning or default

values? an empirical investigation in search-based

[2] B. Ashok, J. Joy, H. Liang, S. K. Rajamani,
G. Srinivasa, and V. Vangala. Debugadvisor: a
recommender system for debugging. In 7th joint
meeting of the European software engineering
conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages
373–382. ACM, 2009.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In 16th ACM SIGSOFT International
Symposium on Foundations of software engineering,
pages 308–318. ACM, 2008.

[4] N. Bettenburg, R. Premraj, T. Zimmermann, and

S. Kim. Duplicate bug reports considered harmfulâĂ ↪e
really? In International Conference on Software
maintenance (ICSM), pages 337–345, 2008.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Journal of machine Learning
research, 3(Jan):993–1022, 2003.

[6] B. Bruegge and A. H. Dutoit. Object-Oriented
Software Engineering Using UML, Patterns and
Java-(Required). Prentice Hall, 2004.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

[8] D. Dreyton, A. A. Araújo, A. Dantas, Á. Freitas, and
J. Souza. Search-based bug report prioritization for
kate editor bugs repository. In International
Symposium on Search Based Software Engineering,
pages 295–300. Springer, 2015.

[9] S. T. Dumais. Latent semantic analysis. Annual review
of information science and technology, 38(1):188–230,
2004.

[10] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker.
Mining source code to automatically split identifiers
for software analysis. In International Working
Conference on Mining Software Repositories, pages
71–80. IEEE, 2009.

[11] M. Fischer, M. Pinzger, and H. Gall. Analyzing and
relating bug report data for feature tracking. In
WCRE, volume 3, page 90, 2003.

[12] D. E. Goldberg and K. Deb. A comparative analysis of
selection schemes used in genetic algorithms.
Foundations of genetic algorithms, 1:69–93, 1991.

[13] M. Harman and B. F. Jones. Search-based software
engineering. Information and software Technology,
43(14):833–839, 2001.

[14] M. Harman, S. A. Mansouri, and Y. Zhang.
Search-based software engineering: Trends, techniques
and applications. ACM Computing Surveys (CSUR),
45(1):11, 2012.

[15] C. Henard, M. Papadakis, and Y. Le Traon.
Mutation-based generation of software product line
test configurations. In International Symposium on
Search Based Software Engineering, pages 92–106.
Springer, 2014.

software engineering. Empirical Software Engineering,
18(3):594–623, 2013.

[16] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H. V.
Nguyen, and T. N. Nguyen. A topic-based approach
for narrowing the search space of buggy files from a
bug report. In IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages
263–272, 2011.

[17] A. Núñez, M. G. Merayo, R. M. Hierons, and
M. Núñez. Using genetic algorithms to generate test
sequences for complex timed systems. Soft Computing,
17(2):301–315, 2013.

[18] S. Rao and A. Kak. Retrieval from software libraries
for bug localization: a comparative study of generic
and composite text models. In 8th Working
Conference on Mining Software Repositories, pages
43–52, 2011.

[19] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry.
On the effectiveness of information retrieval based bug
localization for c programs. In ICSME, pages 161–170,
2014.

[20] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry.
Improving bug localization using structured
information retrieval. In IEEE/ACM International
Conference on Automated Software Engineering
(ASE), pages 345–355, 2013.

[21] G. Salton, A. Wong, and C.-S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613–620, 1975.

[22] J. Shelburg, M. Kessentini, and D. R. Tauritz.
Regression testing for model transformations: A
multi-objective approach. In International Symposium
on Search Based Software Engineering, pages 209–223.
Springer, 2013.

[23] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A
discriminative model approach for accurate duplicate
bug report retrieval. In 32nd ACM/IEEE
International Conference on Software
Engineering-Volume 1, pages 45–54. ACM, 2010.

[24] P.-N. Tan et al. Introduction to data mining. Pearson
Education India, 2006.

[25] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang,
and H. Mei. Boosting bug-report-oriented fault
localization with segmentation and stack-trace
analysis. In ICSME, pages 181–190. Citeseer, 2014.

[26] X. Ye, R. Bunescu, and C. Liu. Learning to rank
relevant files for bug reports using domain knowledge.
In 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 689–699.
ACM, 2014.

[27] X. Ye, R. Bunescu, and C. Liu. Mapping bug reports
to relevant files: A ranking model, a fine-grained
benchmark, and feature evaluation. IEEE
Transactions on Software Engineering, 42(4):379–402,
2016.

[28] J. Zhou, H. Zhang, and D. Lo. Where should the bugs
be fixed? more accurate information retrieval-based
bug localization based on bug reports. In 34th
International Conference on Software Engineering

(ICSE), pages 14–24. IEEE, 2012.

295
The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.

https://www.researchgate.net/publication/220691686_Object-oriented_software_engineering_-_using_UML_patterns_and_Java_2_ed?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220691686_Object-oriented_software_engineering_-_using_UML_patterns_and_Java_2_ed?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220691686_Object-oriented_software_engineering_-_using_UML_patterns_and_Java_2_ed?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221656940_Retrieval_from_software_libraries_for_bug_localization_A_comparative_study_of_generic_and_composite_text_models?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221656940_Retrieval_from_software_libraries_for_bug_localization_A_comparative_study_of_generic_and_composite_text_models?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221656940_Retrieval_from_software_libraries_for_bug_localization_A_comparative_study_of_generic_and_composite_text_models?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221656940_Retrieval_from_software_libraries_for_bug_localization_A_comparative_study_of_generic_and_composite_text_models?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221656940_Retrieval_from_software_libraries_for_bug_localization_A_comparative_study_of_generic_and_composite_text_models?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/235704145_What_Makes_a_Good_Bug_Report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/235704145_What_Makes_a_Good_Bug_Report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/235704145_What_Makes_a_Good_Bug_Report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/235704145_What_Makes_a_Good_Bug_Report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/235704145_What_Makes_a_Good_Bug_Report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221620547_Latent_Dirichlet_Allocation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221620547_Latent_Dirichlet_Allocation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221620547_Latent_Dirichlet_Allocation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281831915_Mapping_Bug_Reports_to_Relevant_Files_A_Ranking_Model_a_Fine-Grained_Benchmark_and_Feature_Evaluation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281831915_Mapping_Bug_Reports_to_Relevant_Files_A_Ranking_Model_a_Fine-Grained_Benchmark_and_Feature_Evaluation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281831915_Mapping_Bug_Reports_to_Relevant_Files_A_Ranking_Model_a_Fine-Grained_Benchmark_and_Feature_Evaluation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281831915_Mapping_Bug_Reports_to_Relevant_Files_A_Ranking_Model_a_Fine-Grained_Benchmark_and_Feature_Evaluation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281831915_Mapping_Bug_Reports_to_Relevant_Files_A_Ranking_Model_a_Fine-Grained_Benchmark_and_Feature_Evaluation?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/228264082_Using_genetic_algorithms_to_generate_test_sequences_for_complex_timed_systems?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/228264082_Using_genetic_algorithms_to_generate_test_sequences_for_complex_timed_systems?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/228264082_Using_genetic_algorithms_to_generate_test_sequences_for_complex_timed_systems?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/228264082_Using_genetic_algorithms_to_generate_test_sequences_for_complex_timed_systems?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/4068916_Analyzing_and_Relating_Bug_Report_Data_for_Feature_Tracking?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/4068916_Analyzing_and_Relating_Bug_Report_Data_for_Feature_Tracking?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/4068916_Analyzing_and_Relating_Bug_Report_Data_for_Feature_Tracking?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/262395024_Search-Based_Software_Engineering_Trends_Techniques_and_Applications?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/293813436_Mutation-Based_Generation_of_Software_Product_Line_Test_Configurations?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/293813436_Mutation-Based_Generation_of_Software_Product_Line_Test_Configurations?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/293813436_Mutation-Based_Generation_of_Software_Product_Line_Test_Configurations?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/293813436_Mutation-Based_Generation_of_Software_Product_Line_Test_Configurations?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/293813436_Mutation-Based_Generation_of_Software_Product_Line_Test_Configurations?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/293813436_Mutation-Based_Generation_of_Software_Product_Line_Test_Configurations?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/293813436_Mutation-Based_Generation_of_Software_Product_Line_Test_Configurations?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/220884057_A_topic-based_approach_for_narrowing_the_search_space_of_buggy_files_from_a_bug_report?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224343297_Duplicate_Bug_Reports_Considered_Harmful_Really?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224343297_Duplicate_Bug_Reports_Considered_Harmful_Really?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224343297_Duplicate_Bug_Reports_Considered_Harmful_Really?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224343297_Duplicate_Bug_Reports_Considered_Harmful_Really?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224343297_Duplicate_Bug_Reports_Considered_Harmful_Really?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221554436_A_discriminative_model_approach_for_accurate_duplicate_bug_report_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221554436_A_discriminative_model_approach_for_accurate_duplicate_bug_report_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221554436_A_discriminative_model_approach_for_accurate_duplicate_bug_report_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221554436_A_discriminative_model_approach_for_accurate_duplicate_bug_report_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221554436_A_discriminative_model_approach_for_accurate_duplicate_bug_report_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/261276658_Improving_bug_localization_using_structured_information_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/261276658_Improving_bug_localization_using_structured_information_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/261276658_Improving_bug_localization_using_structured_information_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/261276658_Improving_bug_localization_using_structured_information_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/261276658_Improving_bug_localization_using_structured_information_retrieval?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/263469498_Learning_to_Rank_Relevant_Files_for_Bug_Reports_using_Domain_Knowledge?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221560728_DebugAdvisor_A_recommender_system_for_debugging?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221560728_DebugAdvisor_A_recommender_system_for_debugging?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221560728_DebugAdvisor_A_recommender_system_for_debugging?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221560728_DebugAdvisor_A_recommender_system_for_debugging?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221560728_DebugAdvisor_A_recommender_system_for_debugging?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221560728_DebugAdvisor_A_recommender_system_for_debugging?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/221560728_DebugAdvisor_A_recommender_system_for_debugging?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281050357_On_the_Effectiveness_of_Information_Retrieval_Based_Bug_Localization_for_C_Programs?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281050357_On_the_Effectiveness_of_Information_Retrieval_Based_Bug_Localization_for_C_Programs?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281050357_On_the_Effectiveness_of_Information_Retrieval_Based_Bug_Localization_for_C_Programs?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/281050357_On_the_Effectiveness_of_Information_Retrieval_Based_Bug_Localization_for_C_Programs?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224503232_Mining_Source_Code_to_Automatically_Split_Identifiers_for_Software_Analysis?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224503232_Mining_Source_Code_to_Automatically_Split_Identifiers_for_Software_Analysis?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224503232_Mining_Source_Code_to_Automatically_Split_Identifiers_for_Software_Analysis?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224503232_Mining_Source_Code_to_Automatically_Split_Identifiers_for_Software_Analysis?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/224503232_Mining_Source_Code_to_Automatically_Split_Identifiers_for_Software_Analysis?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/257559900_Parameter_tuning_or_default_values_An_empirical_investigation_in_search-based_software_engineering?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/257559900_Parameter_tuning_or_default_values_An_empirical_investigation_in_search-based_software_engineering?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/200773081_A_Vector_Space_Model_for_Automatic_Indexing?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/200773081_A_Vector_Space_Model_for_Automatic_Indexing?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/200773081_A_Vector_Space_Model_for_Automatic_Indexing?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/201976467_A_Comparative_Analysis_of_Selection_Schemes_Used_in_Genetic_Algorithms?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/201976467_A_Comparative_Analysis_of_Selection_Schemes_Used_in_Genetic_Algorithms?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/201976467_A_Comparative_Analysis_of_Selection_Schemes_Used_in_Genetic_Algorithms?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/254041669_Where_should_the_bugs_be_fixed_More_accurate_information_retrieval-based_bug_localization_based_on_bug_reports?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/3418687_A_fast_and_elitist_multiobjective_genetic_algorithm_NSGA-II?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/3418687_A_fast_and_elitist_multiobjective_genetic_algorithm_NSGA-II?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/3418687_A_fast_and_elitist_multiobjective_genetic_algorithm_NSGA-II?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==
https://www.researchgate.net/publication/3418687_A_fast_and_elitist_multiobjective_genetic_algorithm_NSGA-II?el=1_x_8&enrichId=rgreq-708b2f8638b7e45d25c3bc671c41db8a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA5MDM5NjtBUzo0MDI5NzY3NDIxMDA5OTRAMTQ3MzA4ODU1MDA2OA==

