
Advl: A Visualization Language for Dynamic Visualization

T. Cerrah1, and H.-P. Bischof12
1Department of Computer Science, Rochester Institute of Technology Rochester, NY, USA

2Center for Computational Relativity and Gravitation, Rochester Institute of Technology Rochester, NY, USA

Abstract— Visualization of scientific data can help to ana-
lyze and explore the data in ways, which cannot be achieved
with analytical methods. Most visualization programs are
typically implemented using a data flow approach. A visual-
ization programs consist of a set of components connected
via directed graph, and the data flows through the program
and this process creates images, which are later assembled
into a movie. We often need to change the properties of
the components dynamically during the visualization process
in order to create the best possible movie. We propose a
method to use the visualization program as an interpreter
for a dynamic visualization program, which allows making
these changes without rewriting the visualization program.
This method allows us to focus on a particular visual after
the visualization program has been written. This method al-
lows us to create significantly more interesting visualization
movies.

Keywords: Visualization Languages, Data Flow, Dynamic Visu-
alizations

1. Introduction
A visualization of data can produce one image or a movie,

meaning many images. This paper concerns only the type
of visualizations, which generates more than one image
for a data set. Examples for these kind of data sets are
simulations of Black Hole mergers [2], or measurements of
fracture strains[7] etc. These data sets have one common
property: one value changes during the simulation or the
experiment, but not necessarily in a linear fashion. In a
Black Hole merger simulation this property is time, which
moves forward in a linear fashion; in a fracture strain
experiment/simulation it could be force, or gauge which
changes cannot be described with a linear function.

Most visualization environments are using a data flow
framework, which was first described by Foulser[4]. A visu-
alization program can be modified and executed as often as
needed creating individual images, which are then mounted
to a movie.

In principle, a visualization program consists of com-
ponents, which are connected via a directed graph. A
component has n input channels and k output channels,
which are connected, which create the directed graph. The
same graph can also be achieved by calling methods in a
particular order. A component's functionality can typically
be fine-tuned using component-specific arguments. These

arguments specifying individual properties, like line width,
the color or transparency of a visualized object, position
of the viewpoint, look-at position etc. In most visualization
systems these properties cannot be modified during the
execution of the visualization process, or it is very difficult
to do so.

We typically create many versions of a movie from the
same data set because we are not satisfied with the final
result. For example, the camera movement starts to late/early
and is to fast/slow, or the camera speed for two different
movements needs to be identical. We decide to change when
and by how much an object becomes translucent often,
because the desired effect has not been achieved yet. Light
positions needed to be changed dynamically because the
shadow of an object hides what should be visible. Using
this technique allows us to experiment with much different
visualization until we find the best fitting one.

This paper describes a visualization environment where
all these modifications can be made without rewriting the
visualization program. This is not a new idea. The LATEX
typesetting framework follows a similar idea for typesetting
text. The text is written in a document including formatting
ideas like new paragraph, this is a bulleted lists, heading,
sub-heading etc.

The paper describes a use case in detail followed by
a discussion of related work, the Spiegel visualization
framework[5], and A Visualization Language for dynamic
visualizations (advil).

2. Dynamic Visualization
Dynamic visualizations allow changing the properties of

components during the visualization process. An example
will help to illustrate this. Let's assume we visualize the
simulation of a black hole's merger. One purpose of this
visualization is to show the trajectory of the black hole's
position over time. The number of past positions, also
called the length of the trajectory, must decrease over time
otherwise the trajectories will be on top of each other. The
left part of Figure 1 shows the simulation at the beginning
stage and the right part shows the state of the simulation
close to the merger. The decreasing length of the trajectory
cannot be described with a linear function, because the
distance between black hole's during the merger is not linear.

Another example would be to move the viewpoint from
position a to position b and then to position c. The viewpoint



Fig. 1: Trajectory Length over Time.

position can be moved in a linear way between the anchor
points, or on a spline curve. Moving the viewpoint along
a linear function will cause a kink, if a, b, and c are not
linearly aligned; moving them along a spline curve forces
one to have less control over the exact movement because
of the nature of splines[8]. We will later explain how these
kind of problems could be addressed using Spiegel and advl.

3. Related Work
Many wonderful visualization systems have been devel-

oped. Most visualization systems focus on the quality of the
images, being able to read a wide range of data formats, and
particular visualization algorithms for very specific visual-
ization challenges. We selected two highly used visualization
systems here and a novel approach by Forbes.

The main focus of Spiegel is to create movies. Therefore
it was logical to look into the production problems of
cinematography[9]. We realized the world of cinematogra-
phy and visualizations is so different that their approaches
are not applicable for your problem.

3.1 behaviorism: a framework for dynamic
data visualization

Forbes[1] created a framework which provides flexibility
for visualizations of dynamic data. The framework is based
on three connected graphs, and operators for each graph.
The scene graph is used for rendering, a data graph is used
for accessing the data, and a time graph to connect the two.

The framework provides a range of flexibility and aims to
help visualization developer to focus on the visualization
and not on the behavior. The paper provides little about
how the behavior is controlled, it is more focused on the
implementation and the design. Therefore it is very difficult
to tell how it is used, but best to our understanding the
behavior modifications are very limited.

3.2 yt
Yt[3] is a cross-code visualization tool that works with a

number of astrophysical simulation codes, and is therefore
very well suited for astrophysical visualizations. Yt is one

out of four visualization systems supported by the Blue
Waters Sustain Petascale Computing Center[10]. Python
was the language of choice for the developer. Only the
parts, which require high performance computing, have been
implemented in C. Yt supports around 20 different data
types, numerous algorithms to examine, and visualize the
data, and MPI support for distributed visualization programs.

The code snippet in Listing 1 shows how a camera is
created, rotated, and moved to a position. Lines 1-12 create
the camera object. A camera rotation is shown in line 15,
and a movement to a position in line 16. The first argument
of move_to is the final position, and the second argument
defines in how many steps the final position will be reached.

This example gives a glimpse of how yt is used. It is fair
to say that dynamic programming is extremely difficult to
achieve in yt. It can be done, but requires a rewrite of the
visualization program. This is extremely time consuming and
therefore not advisable.

Listing 1: Creating and moving a camera in yt.
1 c e n t e r = [ 0 , 0 , 0 ]
2 normalV = [ 1 , 1 , 1 ]
3 wid th = 1 . 0
4 x P i x e l s = 512
5 y P i x e l s = 512
6 t r a n s F = y t . C o l o r T r a n s f e r F u n c t i o n ( . . . )
7
8 nor thV = [ 0 . , 0 . , 1 . ]
9

10 cam = ds . camera ( c , normalV , width ,
11 ( x P i x e l s , y P i x e l s ) ,
12 t r a n s F , nor thV = nor thV )
13
14 t h e t a =0 .2
15 cam . r o t a t i o n ( t h e t a )
16 cam . move_to ( [ 0 , 1 , 2 ] , 10)

3.3 ParaView
ParaView[6] is a visualization tool supporting C++,

Python and JavaScript. ParaView is one out of four sup-
ported visualization systems supported by the Blue Waters
Sustain Petascale Computing Center[10]. The user guide for
ParaView is 230 pages long. ParaView, differently to yt is
a more general visualization tool. ParaView supports around
11 most commonly used data formats. A graphical editor
can be used to create a visualization program, and it is also
possible to script a visualization program.

A simple Python paraView script is shown in Listing 2 to
give a glimpse of how it is used. Lines 1-4 define a sphere;
Line 7 creates a renderer, which is connected with the view
in line 9. Lines 11-13 shrink the sphere by a factor of 2 and
are rendered in line 15.

Listing 2: ParaView Code Snippet.



1 >>> from p a r a v i e w . s i m p l e i m p o r t *
2 >>> s p h e r e O b j e c t = Sphere ( )
3 >>> s p h e r e I n s t a n c e . Rad ius = 1 . 0
4 >>> s p h e r e I n s t a n c e . C e n t e r [ 1 ] = 2 . 0
5
6 >>> s p h e r e D i s p l a y = Show ( s p h e r e I n s t a n c e )
7 >>> view = Render ( )
8
9 >>> Render ( view )

10
11 >>> s h r i n k I n s t a n c e =
12 S h r i n k ( I n p u t = s p h e r e I n s t a n c e ,
13 S h r i n k F a c t o r = 2 . 0 )
14 >>> s h r i n k D i s p l
15 >>> Render ( )

Fig. 2: ParaView Animation View [11].

ParaView supports the creation of animations using key
frames. This is described in ParaView[6] guide on the pages
119-123. The key frames can be defined using the Animation
View. The animation view is shown in Figure 2.

Only very simple animations can be created using the Ani-
mation view, like modifying a scalar, creating and modifying
a camera path. Anything sophisticated cannot be done within
this framework.

4. Spiegel
Spiegel[5] is a visualization framework written in Java. A

program in Spiegel is a directed graph connecting individual
components. An interpreter executes the program. A Spiegel
program is most often implemented by using a graphical
editor, but can also be implemented using a text editor.
The language is type safe; this means only connections of
connectors of the same type can be made. The graphical
editor uses reflection[13] to ensure this property. The Spiegel
language is simple, but it allows creating functions to create
more complex components using simpler components or
functions.

Figure 3 shows a very simple, but complete, Hello World
program. The data flows from the component named Stars

Fig. 3: Hello World.

to the BH_visualizer component, and finally to the Camera.
The size of the black hole is set via an argument to be 1.4.

Fig. 4: A Graphical Representation of a Function inSpiegel.

Figure 4 shows a representation of the camera function
used in Figure 3. As can be seen, some arguments from
the components inside the function are not accessible within
the Camera component. This encapsulating can be done
with input and output channels. Encapsulation and using
functions reduces the complexity of a creating a program
with a graphical editor significantly.

A selection of the available Spiegel components and their
categories are:

• Visuals: for visualizing Black Holes, Stars, Gas, Mesh
• Extractors: for extracting data from different data for-

mats and origins (disk/network)
• Filters: For finding intersections, extracting positions
• Inputs: for data types like double, int, point
• Light: for point light, ambiguous light
• Util: for advl, orbiter, linear value supplier

5. Dynamic Visualization and Spiegel
Simulations or experiments, which produce the data sets,

have one common property. A value changes, which drives
the simulation or the experiment. In most simulations this
variable is a scalar, like time, temperature, pressure, or light
intensity. This value is typically used to determine which
part of the data set will be used for an individual image,
and which data set will be used for the next image. We will
use this property to drive the programming of the dynamic
visualization.

We will explain this with the help of Figure 5. The goal
is to move the view point at the times 0, 3, 7, 8, and 9 to the
positions outlined in Figure 5. The points are called anchor
points. The positions of the view point locations in between



the known positions can be interpolated. The dotted line
represents a linear and the dashed line represents a spline
interpolation.

Fig. 5: Linear vs. Spline Interpolation.

6. Spiegel and Advl
Figure 6 illustrates how the advl program is used within

the Spiegel framework. An interpreter component, output In-
terpolator, reads the program and provides for every stream
connection. This connection, in this example location of the
camera, is connected to one or more components. The input
for the Interpolator is provided by the Time component. This
component produces a series of values beginning at tbeginning
to tend with intervals of tδ and there fore the camera moves
along the defined path.

Fig. 6: Interpolating between Anchorpoints.

One component in the Spiegel framework can be pro-
gramed in advl to achieve the interpolation between points
and send out the values between the anchor points. Figure 6
depicts the graphical version of the program. The component
Interpreter interprets the advl program seen in Listing 3.
Lines 1-4 define two constant values. Lines 6-16 define the
output stream viewP. Line 8 defines the type of the output
stream. The type of interpolator used to calculate the position
between two anchor points is a TCP spline interpolator
is defined in line 9. Lines 12-16 define the output stream
simulationTime. The interpolator for this output stream is

linear as defined in line 15. Lines 18-25 define the anchor
points and the position of the viewpoints.

The Clock component is programmed to send out values
from 0 to 9 with a δ of 0.1. The simulationTime component
output of the Interpolator will send out exactly the same
values through the simulationTime output, because the line
24-25 specifies the simulationTime equal to the Clock time.
This means the camera moves along on a TCB spline[12]
path in 0.1 time units. The data set is accessed for the same
time units. This visualization program will create 90 frames.

Listing 3: Interpolating between Anchor Points.
1 v a r {
2 c o n s t dou b l e s t a r t C l o c k = 0 ;
3 c o n s t dou b l e endClock = 1 ;
4 }
5
6 s t r e a m {
7 viewP {
8 t y p e v e c t o r ;
9 i n t e r p o l a t o r TCB;

10 }
11
12 s i m u l a t i o n T i m e {
14 t y p e do ub l e ;
15 i n t e r p o l a t o r L i n e a r ;
16 } }
17
18 s t a r t C l o c k { viewP = ( 3 , 1 , 1 ) ;
19 }
20 3 . 0 { viewP = ( 5 , 1 , 1 ) ; }
21 7 . 0 { viewP = ( 3 . 5 , 2 , 4 ) ; }
22 8 . 0 { viewP = ( 2 . 5 , 1 . 5 , 3 ) ; }
23 end { viewP = ( 1 , 1 , 5 ) ;
24 s i m u l a t i o n T i m e =
25 endClock ; }

6.1 Spiegel and Slow-Motion
We now would like to change this program to achieve

a different kind of visualization. First, changing TCBh-
pbEdMSV06 to Linear will move camera along a linear path.

The data between simulation time, 1 and 2, might be very
interesting and therefore we would like to show this part in
slow motion. This means we must generate more visuals for
this time period versus the other time periods. One way to
achieve this is to move the clock time faster forward than the
simulation time. As a result, more images will be generated
and therefore a slow-motion effect will be created.

The modified advl code is shown in listing 4. We added
a few constants to make code easier to modify. Line 12 was
changed to move the camera on a linear path. Lines 23-26
will produce 40 clock ticks. This means instead of 10, 30
images will be generated. Lines 30-33 are needed so such



the of the visualization produces for every 0.1 time unit one
image.

Listing 4: Slow Motion.

1 v a r {
2 c o n s t dou b l e s t a r t C l o c k = 0 ;
3 c o n s t dou b l e endClock = 9 ;
4 c o n s t dou b l e s l o w S t a r t = 1 ;
5 c o n s t dou b l e s l o w D e l t a = 1 ;
6 c o n s t dou b l e c l o c k D e l t a = 5 ;
7 }
8
9 s t r e a m {

10 viewP {
11 t y p e v e c t o r ;
12 i n t e r p o l a t o r L i n e a r ;
13 }
14
15 s t r e a m s i m u l a t i o n T i m e {
17 t y p e do ub l e ;
18 i n t e r p o l a t o r L i n e a r ;
19 } }
20
21 s t a r t C l o c k { viewP = ( 3 , 1 , 1 )
22 }
23 s l o w S t a r t {
24 s i m u l a t i o n T i m e = s l o w S t a r t Õ }
25 s l o w S t a r t + c l o c k D e l t a {
26 s i m u l a t i o n T i m e += s l o w D e l t a ; }
27 3 . 0 { viewP = ( 5 , 1 , 1 ) ; }
28 7 . 0 { viewP = ( 3 . 5 , 2 , 4 ) ; }
29 8 . 0 { viewP = ( 2 . 5 , 1 . 5 , 3 ) ; }
30 end + c l o c k D e l t a {
31 viewP = ( 1 , 1 , 5 )
32 s i m u l a t i o n T i m e = endClock +
33 s l o w D e l t a ; }

7. Advanced Advl Program
A more complicated example is show in Lisiting 5. Lines

1-8 define variables; lines 9-14 create the camera position
stream. A function, moveCam , is defined in 15-21. The
anchor point, line 23-27, defines the variables x and y.
The scope of these variables is this block. The lines 23-
34 move the camera position to a given point and back. The
value of the built in variable time is equal to deltaTime
after line 27 has been interpreted. It is worth to point out
that the speed of camera is identical for both movements. A
modification of deltaTime would change the speed for the
camera movements for both segments. Lines 35-39 moves
the camera in the time along a varying x value.

Listing 5: Advl and Spiegel in Concert.

1 v a r {
2 c o n s t d ou b l e d e l t a T i m e = 4 2 ;
3 c o n s t d ou b l e z = 2 ;
4 c o n s t d ou b l e r a d i u s C = 1 0 . 0 ;
5 c o n s t d ou b l e middleC = ( 1 , 2 , 2 ) ;
6 d ou b l e midX = 1 0 . 0 ;
7 d ou b l e midY = 2 0 . 0 ;
8 }
9 s t r e a m {

10 cameraPos {
11 t y p e p o i n t ;
12 i n t e r p o l a t o r TCB;
13 }
14 }
15 p o i n t moveCam ( do ub l e x ) {
16 do ub l e r = r a d i u s C ^ 2 ;
17 do ub l e xComp = ( x − midX ) ^ 2 ;
18 do ub l e y = ( s q r t ( r−xComp ) ) + midY ;
19
20 r e t u r n ( x , y , z ) ;
21 }
22
23 0 . 0 {
24 do ub l e x = 9 0 . 0 ;
25 do ub l e y = 2 0 . 0 ;
26 cameraPos = ( x , y , z ) ;
27 }
28
29 0 + d e l t a T i m e {
30 cameraPos = ( x + d e l t a , y+ d e l t a , z )
31 }
32 t ime + d e l t a T i m e {
33 cameraPos = ( x y , z )
34 }
35 t ime + d e l t a T i m e {
36 f o r ( i = 1 : 20) {
37 cameraPos = moveCam ( ( x − 10) + i ) ;
38 }
39 }

Changing of the variable deltaTime (line 2) would change
the speed of the camera movement, but not the path of the
camera movment.

8. Conclusion

Advl is a language, which allows controlling the behavior
of visualization systems effortlessly. It would be relatively
easy to add this framework to yt, or ParaView, which
would allow developers to use and control very sophisticated
visualization with the same language. Using small, domain
specific languages allows for an ease of use which can not
be achieved general purpose languages.



9. Future Work
Future work will include to add the functionality to

yt, and ParaView. Spiegel and advl do not support much
user interaction during the execution of the visualization
program. Domain specific programming languages drive the
complete visualization process. It might be useful to allow
user interaction during the visualization process to change
the visualization process if interesting things can be seen. It
might be useful to add an AI component, which can direct
the visualization process to direct the visualization process
instead of advl.

10. Acknowledgements
The authors would like to thank all members of The

Center for Computational Relativity and Gravitation at RIT.
Their visualization needs drove much of the development of
advl.

11. Appendix: Advl
This section describes the syntax of advl .

Listing 6: advl Syntax.

prog : v a r s ? s t r e a m s func * a nc ho r +

v a r s : ’ var ’ ’{ ’ v a r D e c l * ’} ’

s t r e a m s : ’ s t r eam ’ ’{ ’ s t r e a m + ’} ’

v a r D e c l : ’ c o n s t ’ ? b a s i c ID
( ’= ’ exp r ) ? ’ ; ’

s t r e a m : ID ’{ ’ ’ type ’ b a s i c ’ ; ’
( ’ i n t e r p o l a t o r ’ i n t e r p ’ ; ’ ) ? ’} ’

func : t y p e ID ’ ( ’ params ? ’ ) ’ b l o c k

b l o c k : ’{ ’ s t m t * ( ’ r e t u r n ’ exp r ’ ; ’ ) ? ’} ’

params : b a s i c ID ( ’ , ’ b a s i c ID )*

a nc ho r : DOUBLE ( ’+ ’ ID ) ? b l o c k

s t m t : ID ( ’ = ’ | ’ + = ’ | ’ −= ’ ) exp r ’ ; ’
| ID ( ’++ ’ | ’ −− ’) ’ ; ’
| ID ’ ( ’ a r g s ? ’ ) ’ ’ ; ’
| v a r D e c l
| i f B l o c k e l s e I f B l o c k * e l s e B l o c k ?
| ’ whi le ’ ’ ( ’ exp r ’ ) ’ b l o c k
| ’ f o r ’ ’ ( ’ ID ’= ’ exp r ’ : ’ exp r ’ ) ’

b l o c k

i f B l o c k : ’ i f ’ ’ ( ’ exp r ’ ) ’ b l o c k

e l s e I f B l o c k : ’ e l s e i f ’ ’ ( ’ exp r ’ ) ’ b l o c k

e l s e B l o c k : ’ e l s e ’ b l o c k

exp r : ID ’ ( ’ a r g s ? ’ ) ’
| exp r ’== ’ exp r
| exp r ’ != ’ exp r
| exp r ’ <= ’ exp r
| exp r ’ >= ’ exp r
| exp r ’ > ’ exp r
| exp r ’ < ’ exp r
| exp r ’&&’ exp r
| exp r ’ | | ’ exp r
| exp r ’* ’ exp r
| exp r ’ / ’ exp r
| exp r ’+ ’ exp r
| exp r ’− ’ exp r
| exp r ’%’ exp r
| exp r ’^ ’ exp r
| ’− ’ exp r
| ’ s i n ’ exp r
| ’ cos ’ exp r
| ’ t an ’ exp r
| ’ s q r t ’ exp r
| ’ abs ’ exp r
| ’ ( ’ exp r ’ ) ’
| boo l
| INT
| DOUBLE
| p o i n t
| boo l

a r g s : exp r ( ’ , ’ exp r )*

i n t e r p : ’ L inea r ’ | ’TCB’
t y p e : ’ i n t ’ | ’ double ’ |

’ p o i n t ’ | ’ bool ’ | ’ void ’
b a s i c : ’ i n t ’ | ’ double ’ |

’ p o i n t ’ | ’ bool ’
p o i n t : ’ ( ’ doub leVa lue ’ , ’

doub leVa lue ’ , ’ doub leVa lue ’ ) ’
boo l : ’ True ’ | ’ F a l s e ’

doub leVa lue : DOUBLE | i d

ID : ID_LETTER ( ID_LETTER | DIGIT )*
INT : ’− ’? ( ’ 0 ’ | NZD DIGIT *)
DOUBLE: ’− ’? ( ’ 0 ’ | NZD DIGIT * ) ?

DOT DIGIT*

ID_LETTER : ’ a ’ . . ’ z ’ | ’ A’ . . ’ Z ’
DIGIT : ’ 0 ’ . . ’ 9 ’
NZD: ’ 1 ’ . . ’ 9 ’



COMMA: ’ , ’
DOT: ’ . ’

LINE_COMMENT: ’ / / ’ . * ? ’ \ n ’
COMMENT: ’ / * ’ . * ? ’ * / ’
WS: [ \ t \ r \ n ]+

References
[1] A., Forbes, T., Hoellerer, and G. Legrady, “ behaviorism: a framework

for dynamic data visualization,” IEEE Transactions on Visualization
and Computer Graphics , vol. 16, issue 6, October, 2010, pages 1164-
1171.

[2] C., Lousto, and J. Healy, “ Flip-Flopping Binary Black Holes ,” Phys.
Rev. Lett. , vol. 114, April, 2015.

[3] M. J. Turk, et all., “ yt: A Multi-code Analysis Toolkit for Astrophysical
Simulation Data ,” arXiv, vol. 192, Jan. 2011.

[4] D., Foulser, “IRIS Explorer: a framework for investigation,” ACM
SIGGRAPH Computer Graphics - Special focus: modular visualization
environments (MVEs), vol. 29, Issue 2, pp. 13-16, Nov. 1995.

[5] H.-P. Bischof, E. Dale, and T. Peterson, “Spiegel - a visualization
framework for large and small scale systems,” in Proc. MSV’06, 2006,
paper, p. 199-205.

[6] C. Quammen, “Scientific Data Analysis and Visualization with Python,
VTK, and ParaView,” in Proc. Python Conference’15, 2015, paper, p.
32-39.

[7] G. Yuang, B. Yan, and H. Zhu, “Measurement of Fracture Strains
for Advanced High Strength Steels (AHSS) Using Digital Image
Correlation ,” in Proc. SAE’09, 2009, paper, p. 482-486.

[8] Donald House.(April/2016). Chapter 14: Spline Curves. [Online].
Available: https://people.cs.clemson.edu/~dhouse/courses/405/notes/
splines.pdf

[9] H. Moore: Production Problems: Cinematography. (Journal of the
University Film Producers Association, 1(1), 2Ð9. (April/2016)
[Online]. Available: http://www.jstor.org/stable

[10] Blue Waters - National Center for Supercomputing Applications.
University of Illinois of Urbana-Champaign. (April/2016) [Online].
Available: http://www.ncsa.illinois.edu/enabling/bluewaters

[11] Paraview. (April/2016) [Online]. Available: http://http://www.
paraview.org/

[12] David Eberly. (April/2016). Kochanek-Bartels Cubic Splines
(TCB Splines). [Online]. Available: http://www.geometrictools.com/
Documentation/KBSplines.pdf

[13] Ira R. Forman, and Nate Forman. “Java Reflection in Action.”
Manning Publishing Company, 2004.

https://people.cs.clemson.edu/~dhouse/courses/405/notes/splines.pdf
https://people.cs.clemson.edu/~dhouse/courses/405/notes/splines.pdf
 http://www.jstor.org/stable
http://www.ncsa.illinois.edu/enabling/bluewaters
http://http://www.paraview.org/
http://http://www.paraview.org/
http://www.geometrictools.com/Documentation/KBSplines.pdf
http://www.geometrictools.com/Documentation/KBSplines.pdf

	Introduction
	Dynamic Visualization 
	Related Work
	 behaviorism: a framework for dynamic data visualization 
	yt
	ParaView

	Spiegel
	Dynamic Visualization and Spiegel
	Spiegel and Advl 
	Spiegel and Slow-Motion 

	Advanced Advl Program
	Conclusion
	Future Work
	Acknowledgements
	Appendix: Advl 
	References

