
Interactive Code Smells Detection: An Initial
Investigation

Mohamed Wiem Mkaouer(&)

Department of Computer and Information Science,
University of Michigan, 4901 Evergreen Road,

Dearborn, MI 48128, USA
mmkaouer@umich.edu

Abstract. In this paper, we introduced a novel technique to generate more
user-oriented detection rules by taking into account their feedback. Our tech-
niques initially generate a set of detection rules that will be used to detect
candidate code smells, these reported code smells will be exposed in an inter-
active fashion to the developer who will give his/her feedback by either
approving or rejecting the identified code smell in the code fragment. This
feedback will be fed to the GP as constraints and additional examples in order to
converge towards more user-preferred detection rules. We initially investigated
the detection of three types of code smells in four open source systems and
reported that the interactive code smell detection achieves a precision of 89 %
and recall on average when detecting infected classes. Results show that our
approach can best imitate the user’s decision while omitting the complexity of
manual tuning the detection rules.

1 Introduction

Code smells have been known as bad programming behavior that can be introduced
during the initial software design or during its maintenance. The existence of these
smells is a strong indicator for poor software quality as the infected code tends to be
more difficult to understand and to update. As a consequence, the risk of introducing
errors while committing regular software updates becomes alarming.

There has been much work resulting in different techniques and tools for code smells
detection [1–4]. These techniques deploy different detection strategies using various
structural metrics due to the inconsistency in the definition of code smells and due to the
subjectivity of the code smell interpretation by the software engineers [5]. In fact, the
source code used measurements, i.e., metrics, may vary from one technique to another.
Also, two detection strategies using the same rules may give different results based on
various thresholds that can be used when interpreting metric values. One of the main
limitations of these strategies is that they impose a pre-defined definition of what is
seen as bad symptoms in the code although it should be subject to the developer’s
interpretation.

To cope with the above mentioned limitations, we propose a novel interactive code
smells detection that dynamically adapts the developers’ preference by deploying
detection rules that have been tuned based on their feedback. This approach starts by

© Springer International Publishing AG 2016
F. Sarro and K. Deb (Eds.): SSBSE 2016, LNCS 9962, pp. 281–287, 2016.
DOI: 10.1007/978-3-319-47106-8_24

using three state-of-art code smells detection techniques that each one generates a list of
code smells along with their location in the code. One of the challenges is how to
choose the most suitable detection technique for a given smell type. To this end, this
approach starts by finding the overlapping code smells (type and location) among the
detection techniques. Based on this analysis, the infected code fragments are ranked
based on their frequency and suggested to the developer for each smell type. The
developer can approve or reject each suggestion. This feedback is then used to evaluate
the performance of the detection techniques using the accepted/rejected suggestions
and rank them. In the next stage, this feedback is also used as a training set to refine the
detection rules of the best-ranked detection technique. This approach was evaluated it
on four open source systems.

2 Interactive Code Smells Detection

The general structure of this approach is sketched in Fig. 1. Our detection framework
starts by generating, for an input software system, a list of detected code smells, for
each detection strategy. Any detection strategy can be used as part of the initial
detection stage as long as it is based on semi-automated or fully automated rules-based
detection and its rules are defined using a set of structural metrics that can be easily
computed using the code parsing and statistical analysis.

The generated lists, as outcomes of the first step, are firstly clustered per smell type.
Each type is associated with a pool of possibly infected code fragments that are also
classified by their originated detector. At the second stage, for each pool, the code
fragments are sorted based on their occurrences among the classes of detectors, and so,
for each smell type, a list of candidate code fragments to investigate is generated. In
other terms, fragments are obviously sorted based on their overlap between detectors.
More generally, any common feature among different strategies could be beneficial in
search for more meaningful results that may achieve a tradeoff between these tech-
niques [6].

The third stage suggests the top candidate fragments to analyze for each smell type.
The developer can interactively confirm the existence of the smell in the fragment or
report it as false positive. The developer does not need to evaluate the whole list of
fragments, only with few evaluations, the ranking of detectors can still be effective, but
the higher the number of evaluations is, per smell type, the more effective will be the

Code smells
identification using

detectors

Software system

List of initial detectors

Detectors ranking

List of detected code smells for each detector

Suggested code smells

List of accepted smells / List of rejected smells

Detection rules
derivation
using GP

Updated code smells

Detection rules of best ranked detector

Fig. 1. The interactive Detection four main stages.

282 M.W. Mkaouer

generation of detection rules using the GP that is conducted after the interactive session
with the developer.

The last step takes the developer’s feedback along with the highest ranked detec-
tor’s rules as input to the GP. A GP algorithm is a population-based evolutionary
algorithm that uses natural selection to generate an optimal solution. GP encoding is
optimized for trees structure, where the internal nodes are functions (operators) and the
leaf nodes are terminal symbols. Both the function set and the terminal set must contain
symbols that are appropriate for the target problem which matches, for instance, the
detection rules representation. During the evolution, a training set is still applied to
assess the learning process. The following pseudo-code highlights the adaptation of GP
for the problem of detection rules generation.

Algorithm1. Rules generation using GP
Input: Software System (S)
Input: Detection rules (R)
Input: Set of Accepted (SA) and Rejected (SR) code smells
Output: Derived Detection rules
1: initial_population(P, Max_size)
2: P:= set_of(I)
3: I := rules(R, Smell_Type)
4: repeat
5: for all I P do
6: detected_smells := execute_rules(R,S)
7: fitness(I) := compare(detected_smells, SA, SR)
8: end for
9: best_solution := best_fitness(I);
10: P := generate_new_population(P)
11: it:=it+1;
12: until it=max_it
13: return best_solution

3 Initial Evaluation Study

3.1 Research Questions

We defined two research questions to address in our experiments.

RQ1: To what extend can the interactive detection assist developers in the process of
smells detection?

RQ2: Can the generated rules be generalized and used in the detection of code smell
instances in software systems?

The answer to RQ1 is conducted through recording the number of accepted sug-
gestions compared to the overall suggested fragments per smell type after the execution
of all the stages of the interactive detection. A group of two Ph.D. students was asked

Interactive Code Smells Detection: An Initial Investigation 283

to evaluate, manually, whether the suggested code fragments do contain the reported
smell. Eventually, the number of meaningful suggestions per all suggestions constitutes
the Manual Correctness (MC):

MC ¼ accepted suggestion sj j
all suggestion sj j

To answer RQ2, a cross-fold validation has been conducted using the four open
source systems used for in the experiment through four iterations. Precision and recall
scores are calculated based on the ratio of the reported smells out of those suggested
manually:

PRprecision ¼ suggested smells \ expected smellsj j
suggested smellsj j 2 0; 1½ �

RCrecall ¼ suggested smells \ expected smellsj j
expected smellsj j 2 0; 1½ �

3.2 Experimental Setting

We used a set of well-known open-source Java projects that were mainly chosen
because they were the subject of several extensive studies in detection and comparison
between code smells detection tools. We used two state of art code smell detectors
namely InCode [7], Mäntylä et al. [5], as initial detectors for the first stage of the
interactive detection. The choice of these techniques is based on the fact of their
tree-based rules representation, Fig. 2 illustrates the example of the God Class detec-
tion rule based on [7]. The tree leaves are a composition of structural metrics and their
ordinal values (Very_High, High, Medium, Low and Very_Low), the ordinal values
are statistically interpreted using Box-Plot [8] in order to replace them with actual
values extracted from the software system.

We applied our approach to four open-source Java projects: Xerces-J, JFreeChart,
GanttProject, and JHotDraw. Table 1 provides some descriptive statistics about these
four programs. We compared the performance of our approach with two deterministic
detectors [5, 7] (previously used during the first stage) and one search-based detection
rules generator [4].

TCC < 0.33 WMC > VERY_HIGH ATFD > LOW

AND

Fig. 2. Tree representation of the God Class rule in [11].

284 M.W. Mkaouer

During this study, we use the same parameter setting for all executions of the
GP. The parameter setting is specified in Table 2.

3.3 Results and Discussions

As an answer to RQ1, Fig. 3 reports the results of the empirical qualitative evaluation
of the detection rules in terms of the MC ratio.

Table 1. Statistics of the studied systems.

Systems Release # of
classes/KLOC

of
flawed
classes

Overlap
%
between
detectors

of
interactive
sessions
with
subjects

Average subjects’
actions
(accepted/rejected
combined)

Xerces-J v2.7.0 991/240 61 66 % 1 29
JHotDraw v6.1 585/21 14 73 % 1 21
JFreeChart v1.0.9 521/170 34 84 % 1 17
GanttProject v1.10.2 245/41 19 89 % 1 12

Table 2. Parameter tuning for GP.

GP parameter Values

Population size/Max Tree Depth 100/2
Selection/Survival/K Roulette-Wheel/K-Tournament/2
Crossover/Crossover rate Single-point/0.9
Mutation/Mutation rate Sub-tree/0.1
Max iterations 1000/2500/5000

0
0.2
0.4
0.6
0.8

1

M
an

ua
l P

re
ci

si
on

 (
M

C
)

Software System

InCode

Mäntylä et al. 2006

Kessentini et al. 2011

Interactive Detection

Fig. 3. Median of MC on all four software systems using different rules detection techniques.

Interactive Code Smells Detection: An Initial Investigation 285

As reported in Fig. 3, the majority of the code smells detected our approach gained
the satisfaction of the subjects. It is clear that the least performance of our approach in
terms of median of accepted code smells among all reported ones over all the three
smell types is with Xerces-J, which is the largest software used in our experiment, this
can be explained by the fact that our approach may need a larger number of interactive
sessions especially that the ratio of the number of interactions per number of flawed
classes is relatively low compared to the other projects. For medium to small projects,
the interactive detection performance was relatively acceptable.

In addition to the qualitative evaluation, we automatically evaluate our approach in
terms of precision and recall to give more quantitative evaluation and answer RQ2. It is
notable that we used the same training process for our approach as well as the
By-Example approach of Kessentini et al. [4]. Since InCode [7], Mäntylä et al. [5] use
pre-defined detection rules, no fold training was necessary for them and since they were
deterministic approaches, no multiple runs were required as well. Then, we compare
the proposed detected smells with some expected ones defined manually by the dif-
ferent groups for several code fragments extracted from the four systems. Table 3
summarizes our finding.

4 Conclusion and Future Work

We proposed, in this paper a novel interactive recommendation tool, for the problem of
code smells detection rules’ generation. The empirical study shows promising results as
well as several further investigations to be conducted as part of the future work. Future
work should also validate our approach with additional smells types, larger systems and
especially a threshold that defines the maturity of the generated rules in order to draw
conclusions about the general applicability of our methodology. We are planning on
automating the whole smell management process through the combination of this
approach as a first phase with the correction phase that has been the subject of a
previous study [9].

Table 3. Median values of precision and recall for the detection of God Class, BLOB and Data
Class in 4 systems over 30 runs.

Software God Class BLOB Data Class
Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

InCode 91 96 84 85 97 99
Mäntylä et al. 86 89 78 82 94 96
Kessentini
et al.

88 97 82 96 89 97

Interactive
detection

89 98 85 87 95 98

286 M.W. Mkaouer

References

1. Mäntylä, M., Vanhanen, J., Lassenius, C.: A taxonomy and an initial empirical study of bad
smells in code. In: Proceedings of Conference Name, Conference Location, pp. 381–384
(2003)

2. Marinescu, R.: Detection strategies: metrics-based rules for detecting design flaws. In:
Proceedings of Conference Name, Conference Location, pp. 350–359 (2004)

3. Moha, N., Gueheneuc, Y.-G., Duchien, L., Le Meur, A.-F.: DECOR: a method for the
specification and detection of code and design smells. IEEE Trans. Softw. Eng. 36(1), 20–36
(2010)

4. Kessentini, M., Kessentini, W., Sahraoui, H., Boukadoum, M., Ouni, A.: Design defects
detection and correction by example. In: Proceedings of Conference Name, Conference
Location, pp. 81–90, 22–24 June 2011

5. Mäntylä, M.V., Lassenius, C.: Subjective evaluation of software evolvability using code
smells: an empirical study. Empirical Softw. Eng. 11(3), 395–431 (2006)

6. Deb, K., Srinivasan, A.: Innovization: innovating design principles through optimization. In:
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle,
Washington, USA (2006)

7. Marinescu, R., Ganea, G., Verebi, I.: inCode: continuous quality assessment and improve-
ment. In: Proceedings of Conference Name, Conference Location, pp. 274–275 (2010)

8. Williamson, D.F., Parker, R.A., Kendrick, J.S.: The box plot: a simple visual method to
interpret data. Ann. Intern. Med. 110(11), 916–921 (1989)

9. Mkaouer, M.W., Kessentini, M., Bechikh, S., Deb, K., Ó Cinnéide, M.: Recommendation
system for software refactoring using innovization and interactive dynamic optimization. In:
Proceedings of Conference Name, Conference Location, pp. 331–336 (2014)

Interactive Code Smells Detection: An Initial Investigation 287

	Interactive Code Smells Detection: An Initial Investigation
	Abstract
	1 Introduction
	2 Interactive Code Smells Detection
	3 Initial Evaluation Study
	3.1 Research Questions
	3.2 Experimental Setting
	3.3 Results and Discussions

	4 Conclusion and Future Work
	References

