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a b s t r a c t 

Experts have a remarkable capability of locating, perceptually organizing, identifying, and categorizing ob- 

jects in images specific to their domains of expertise. In this article, we present a hierarchical probabilistic 

framework to discover the stereotypical and idiosyncratic viewing behaviors exhibited with expertise- 

specific groups. Through these patterned eye movement behaviors we are able to elicit the domain- 

specific knowledge and perceptual skills from the subjects whose eye movements are recorded during 

diagnostic reasoning processes on medical images. Analyzing experts’ eye movement patterns provides 

us insight into cognitive strategies exploited to solve complex perceptual reasoning tasks. An experiment 

was conducted to collect both eye movement and verbal narrative data from three groups of subjects 

with different levels or no medical training (eleven board-certified dermatologists, four dermatologists in 

training and thirteen undergraduates) while they were examining and describing 50 photographic derma- 

tological images. We use a hidden Markov model to describe each subject’s eye movement sequence com- 

bined with hierarchical stochastic processes to capture and differentiate the discovered eye movement 

patterns shared by multiple subjects within and among the three groups. Independent experts’ annota- 

tions of diagnostic conceptual units of thought in the transcribed verbal narratives are time-aligned with 

discovered eye movement patterns to help interpret the patterns’ meanings. By mapping eye movement 

patterns to thought units, we uncover the relationships between visual and linguistic elements of their 

reasoning and perceptual processes, and show the manner in which these subjects varied their behav- 

iors while parsing the images. We also show that inferred eye movement patterns characterize groups of 

similar temporal and spatial properties, and specify a subset of distinctive eye movement patterns which 

are commonly exhibited across multiple images. Based on the combinations of the occurrences of these 

eye movement patterns, we are able to categorize the images from the perspective of experts’ viewing 

strategies in a novel way. In each category, images share similar lesion distributions and configurations. 

Our results show that modeling with multi-modal data, representative of physicians’ diagnostic viewing 

behaviors and thought processes, is feasible and informative to gain insights into physicians’ cognitive 

strategies, as well as medical image understanding. 

© 2016 Elsevier Inc. All rights reserved. 
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1. Introduction 

Solely behavioral variables from task manipulations, such as re-

sponse time or accuracy, are insufficient to determine whether a

particular cognitive process is engaged or whether a particular cog-

nitive architecture theory is correct. Since visual attention, as a

selective dynamic cognitive process, is dominated by knowledge,

interest, and expectations of the scene [7,23] , it is possible to ac-

quire insight into some aspects of subjects’ interests or cognitive
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trategies by analyzing their eye movement sequences while they

re pursuing certain tasks in domains of expertise where per-

eptual skills are paramount. One key step to manifest percep-

ual skill and uncover underlying cognitive processes is to discover

xpertise-specific perceptual viewing behaviors and differentiate

he stereotypical and idiosyncratic behavioral patterns that char-

cterize a group of subjects at the same training level. Addressing

his problem requires segmenting an eye movement sequence into

 set of time intervals that have a useful interpretation, as well as

ummarizing the commonality of eye movement patterns shared

ithin and between expertise-specific groups. Furthermore, these

eaningful patterns enable us to uncover time-evolving properties

f subjects’ perceptual reasoning processes and to understand im-

ges at a domain-knowledge level. 
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Fig. 1. Two example dermatological images examined by the subjects. The images from left to right are the original images, the primary and secondary abnormalities 

marked and numbered by an experienced dermatologist and three subjects’ complete eye movement sequences acquired during the inspection process super-imposed onto 

the image, respectively. To visualize eye movement sequences, each circle center represents a fixation location and the radius is proportional to the duration time on that 

particular fixation. A line connecting two fixations represents a saccade. 
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Perceptual skill is considered to be the crucial cognitive fac-

or accounting for the advantage of highly trained experts [24] .

xperts generate distinctively different perceptual representations

hen they view the same scene as novices [38,45] . Rather than

assively “photocopying” the visual information directly from sen-

ors into minds, visual perception actively interprets the informa-

ion by altering perceptual representations of the images based on

xperience and goals. By analyzing the whole sequences of fixation

nd saccadic eye movements from groups with different exper-

ise levels or no expertise, significant differences in visual search

trategies between groups show that expertise plays a key role in

edical image examination. In such knowledge-rich domains, per-

eptual expertise is particularly valuable but poses challenges to its

xtraction, representation and application. Analyzing medical im-

ge understanding via traditional knowledge acquisition methods

uch as experts’ marking on images (as shown in Fig. 1 ), verbal

eports, and annotations is not only labor intensive but also inef-

ective because of the variability and noise of experts’ performance

21] . In contrast, experts’ perceptual skill is a valuable yet effort-

ess resource worth exploiting, particularly for training and design-

ng decision support systems where knowledge regarding the ba-

ic diagnostic strategies and principles of diagnostic-reasoning are

esired [9] . We propose that this subconscious knowledge can be

cquired by extracting and representing experts’ perceptual skill in

 form that is ready to be applied. 

In this article we describe human-centered experimental ap-

roaches, which actively engage humans in the experimental

rocess, to observe and record their perceptual and conceptual

rocessing while inspecting medical images such as in Fig. 1 . We

ubsequently profile the shared time-evolving eye movement pat-

erns among physicians through our novel computational model,

nd also time-align eye movement patterns with semantic labels

nnotated by independent experts based on other dermatologists’

erbal descriptions. We are then able to integrate these multi-

odal data towards understanding diagnostic reasoning processes

nd the dermatological images as well. 

.1. Visual attention 

Attention is a critical contribution to perception in that focus of

ttention determines the portion of the sensory input from the ex-

ernal environment that will be readily available to perceptual pro-

esses. Complex visual information available in real-world scenes

r stimuli exceeds the processing capability of the human visual

ystem. Consequently, human vision is an active dynamic process

n which the viewer seeks out specific information to support on-

oing cognitive and behavioral activity [23] . Since high visual acu-

ty is limited to the foveal region and resolution fades dramatically
n the periphery, we move our eyes to bring a portion of the visual

eld into high resolution at the center of gaze. 

A series of fixations and saccades are used to describe such eye

ovements. Fixations occur when the gaze is held at a particu-

ar location, whereas saccades are rapid eye movements used to

eposition the fovea to a new location. Both the number of fixa-

ions and their durations are commonly assumed to indicate the

epth of information processing associated with the visual fields.

accade amplitudes, which are rarely considered in the analysis of

ye movement data, may also influence some conclusions drawn

rom the visual processing [7,39,51] . 

Studies have shown that visual attention is influenced by two

ain sources of input: bottom-up visual attention driven by low-

evel saliency features which are image properties that are dis-

inctively different from their surroundings [27] , and top-down

ognitive processes, guided by the viewing task and scene con-

ext, influence visual attention [8,32,48] . Growing evidence sug-

ests that top-down information dominates the active viewing pro-

ess and the influence of low-level salience guidance is minimal

7] . It is acknowledged that covert visual attention can be disso-

iated from overt visual attention manifested by eye movements

22] . Nonetheless, studies have shown that overt and covert vi-

ual attention are tightly coupled in complex information process-

ng tasks, such as reading and scene perception [40] . In particu-

ar, saccades which direct gaze to a new location usually follow

 shift of covert attention to this location, leading to speculation

hat covert attention serves to plan saccades [26] . These theoreti-

al findings provide us with the support to pursue the underlying

ngaged cognitive processing based on observed eye movements. 

The concept of the saliency map [27] is based on the Feature In-

egration Theory [49] . A saliency map characterizes the bottom-up

istinctiveness of a particular location relative to that of other loca-

ions in the scene through its conspicuousness. One derived com-

utational model concerned with understanding people’s visual at-

ention deployments on natural images was developed [26] . The

esearchers built a computational model to evaluate the saliency

evel of an image based only on extracted low-level visual features

uch as intensity, color, and orientation. According to the computed

aliency map, they attempted to predict people’s visual attention

llocation. The model has been tested over various image sets, and

ts performance is generally robust. Particularly in regards to man-

ade images, its performance is consistent with observations in

umans. More recent research has moved beyond using only low-

evel visual features to compute the salient image areas, and has

egun to investigate multiple cognitive factors that influence vi-

ual attention. The main additional factors include one’s expecta-

ions about where to find information and one’s current informa-

ion need, as well [25] . To further formulate these cognitive factors,

mage saliency was redefined in terms of the combination of both
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top-down and bottom-up cognitive influence and computed to pre-

dict users’ viewing behaviors from the perspective of probability

theory [37,54] , and users were found to adapt their visual search

in order to optimize the expected information gain [50] . The above

series of modeling studies attempt to test visual attention theo-

ries by modeling the engaged cognitive factors. However, in spe-

cific domains requiring expertise, without guidance of perceptual

skill and domain knowledge, scenes cannot be interpreted effec-

tively purely based on factors such as visual features or goals. This

motivates us to investigate how to formalize perceptual skill and

reason about semantic meanings of image contents from observed

experts’ viewing behaviors and task performance. 

1.2. Perceptual skill 

Perceptual skill has been studied across various domains where

it is profoundly exploited such as watching soccer games [45] ,

playing chess [5] , analyzing geo-spatial images [29] , airport se-

curity screening [35] , and examining photographical materials in

clinical diagnosis [28,33] . Empirical perceptual studies of medical

image-based diagnosis suggest that subjects vary their eye move-

ment behaviors while they proceed in diagnosis on medical im-

ages. Furthermore, by analyzing the whole sequences of fixation

and saccadic eye movements from groups with different expertise

levels, significant differences in visual search strategies between

groups show that human expertise plays a great role in medical

image examination. One related study investigated the nature of

expert performance of four observer groups with different levels

of expertise [33] . They compared multiple eye movement mea-

sures and suggested that these distinctive variations and better

performance of the higher expertise group are due to the conse-

quences of experience and training. Eye movement studies were

conducted on diagnostic pathology by light microscopy to identify

typical viewing behaviors for three expertise levels: pathologists,

residents, and medical students [28] . Their results suggest that eye

movement monitoring could serve as a basis for the creation of

innovative pathology training routines. 

Although capturing perceptual skills is challenging, compre-

hension of the cognitive basis could benefit a wide range of

research areas in medical informatics such as medical image

retrieval, proactive human-computer interaction, and domain train-

ing. We approach this challenge by working closely with medi-

cal specialists (dermatologists) using human-centered experimen-

tal approaches to observe and record their overt perceptual and

conceptual processing while inspecting medical images towards di-

agnosis. The inherent dynamic property and complexity of experts’

diagnostic reasoning motivates our investigation into the temporal

dynamics of this perceptual-conceptual-interleaving process. 

Previous studies fill the gap between physicians’ interpreta-

tion and the statistics of pixel values by experts’ manual an-

notation on segmented images and mapping into a domain

knowledge ontology so as to perform medical image analysis at a

semantic level [2,53] . However, there is great inter-variability be-

tween experts and intra-variability with which a single expert’s

performance changes from time to time also hinders this approach

[21] . Moreover experts’ perception, as tacit knowledge, functions

below the level of consciousness. The eye tracking technique al-

lows researchers to study experts’ subconscious image viewing be-

haviors by objectively measuring eye movements and is a promis-

ing way to address these challenges. Recently, more and more

studies have tried to incorporate human perceptual skills into im-

age understanding approaches, treating eye movements as a static

process by directly mapping eye movement data into the image

feature space or by weighting image segments. However, the fact

that meaningful perceptual patterns sometimes exist only over

time and that the observed eye movement data are noisy and in-
onsistent undermine the reliability and robustness of these meth-

ds. In particular, inferring latent patterns underlying these observ-

ble human behaviors is a critical intermediate step in terms of ad-

ancing image understanding. One of the important contributions

f our work is that we computationally discover and capture the

patial-temporal patterns in eye movement data. 

.3. Metrics of visual behaviors 

Differentiation between stereotypical and idiosyncratic visual

ehaviors is considered a key aspect to investigate perceptual ex-

ertise using eye tracking data in domain-specific tasks [9] . This

equires similarity measures to compare and evaluate visual be-

avior patterns between different observers. To capture medical

pecialists’ (dermatologists’) stereotypical and idiosyncratic visual

ehaviors from their eye movements, there has been significant

rogress in developing metrics for comparing and evaluating large

mount of fixation and saccadic eye movement data represented

s scanpaths [12,13,20,44,52] . To compare two eye movement se-

uences, normally the distances between their fixations are calcu-

ated. These methods can be broadly categorized into two classes. 

One class of these algorithms is based on predefined Areas Of

nterest (AOIs) [52] . A temporal sequence of AOIs is defined based

n either dividing a scene into equally spaced bins or segment-

ng semantically meaningful regions in the scene. Then string-edit

lgorithms can be used to compare different sequences. These al-

orithms calculate the distance between two strings as the min-

mum number of edits required to transform one into the other.

owever, there are some issues: human intervention is still needed

ith respect to defining AOIs or specifying the size of the square

egions and their locations; fixation durations are not taken into

ccount; and string editing comparison among multiple scanpaths

ail to measure meaningful variations between scanpaths. 

The other analysis methods are based on clustering algorithms

18,44] . Clusters of fixation points are first grouped via parametric

r non-parametric clustering algorithms based on their relative lo-

ations. After these clusters are labeled, pairwise comparisons can

e conducted through various string editing methods. However, the

lusters are not always meaningful, and fixation durations or sac-

ade information is still not taken into account. 

To compensate the above limitations, the Earth Mover’s Dis-

ance (EMD) metric was proposed to measure the similarity of

ifferent visual behavior sequences in a pairwise way [10] . The

imilarity between eye movement sequences are viewed as a trans-

ortation problem by defining one sequence as a set of piles of

arth and another sequence as a collection of holes and by setting

he cost for a pile-hole pair to equal the ground distance between

xation in the two sequences. EMD thus compare eye movement

equences in a pair-wise manner, and the thresholds have to be

euristically specified. In contrast to EMD, our approach summa-

izes the similarity of multiple sequences simultaneously as well

s of multiple related but distinct groups. Moreover, unlike EMD

ethod using a number to characterize the similarity of whole se-

uences, we are able to cluster the similar sequence segments into

onsistent patterns based on their statistical properties. 

.4. Dynamic modeling approaches 

Some studies adopted HMMs to profile subjects’ perceptual pro-

essing based on their eye movements [1,34,41,42] . The disad-

antage of these approaches is that they either have to heuris-

ically predefine the number of hidden states or use standard

arametric model selection methods to identify a “best” single

umber, the strengths and weaknesses of which in this problem

etting is unknown. Two alternatives to HMMs are AOI-based or
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lustering-based methods mentioned above. Although comprehen-

ive eye movement features are taken into account in recent stud-

es [11] , current pair-wise comparison algorithms among multiple

canpaths are sensitive to data noise and minor variations between

canpaths. Furthermore, meaningful patterns may only exist over

he time of whole processes, rather than comparing them piece by

iece. This suggests a Markovian framework in which the model

ransitions among eye movement patterns that are associated with

erceptual expertise and domain knowledge. 

Recently there has been significant interest in augmenting dy-

amic systems’ capabilities of modeling time series by combining

tochastic processes. The hierarchical Dirichlet process (HDP) based

MMs allow the number of hidden states to be learned from ob-

ervations by treating transition distributions as realizations of the

DP over countably infinite state spaces [3,14,46] . The infinite fac-

orial HMM models a single time-series with emissions dependent

n a feature with potentially infinite dimensionality which evolves

ith independent Markov processes [17] . Beta process (BP) based

MMs model multiple time series and capture an infinite number

f potential dynamical modes which are shared among the series

sing the Indian buffet process (IBP) by integrating over the latent

P [15] . However, these approaches lack the capability of model-

ng multiple related but distinct groups of time series. This model-

ng requirement in our problem scenario motivates us to develop

 novel hierarchically-structured dynamic model which is capable

f profiling stereotypical and idiosyncratic patterns from multiple

xpertise-specific groups of eye movement sequences. 

. Experiment 

We designed and conducted an eye tracking experiment to col-

ect multi-modal data to investigate the conceptual and percep-

ual processing involved in subjects’ medical image inspection [30] .

hese data were used to evaluate the new model. 

.1. Subjects 

Subjects recruited for the eye tracking experiment belong to

hree groups based on their dermatology training level including

leven board-certified dermatologists (attending physicians), four

ermatologists in training (residents) and thirteen undergraduate

tudents who were lay people (novices). We also recruited physi-

ian assistant students who served as “trainees” in order to mo-

ivate dermatologists to verbalize their diagnostic reasoning using

 modified Master-Apprentice scenario [4] , which is known to be

ffective for eliciting tacit knowledge. 

.2. Apparatus 

An SMI (Senso-Motoric Instruments) eye tracking apparatus was

pplied to display the stimuli at a resolution of 1680x1050 pix-

ls for the collection of eye movement data and recording of ver-

al descriptions. The eye tracker was running at 50 Hz sampling

ate and with reported accuracy of 0.5 ° visual angle. The sub-

ects viewed the medical images binocularly at a distance of about

0 cm. The experiment was conducted in an eye tracking labora-

ory with ambient light. 

.3. Materials and procedure 

A set of 50 dermatological images, each representing a different

iagnosis, was selected for the study. These images were collected

rom the database of Logical Images Inc. and our collaborating au-

hor Cara Calvilli MD. These images were presented to subjects on

 monitor. Viewing time limit on each image is 90 s. The subjects

ere instructed not only to view the medical images and make
 diagnosis, but also to describe what they saw as well as their

hought processes leading them to the diagnosis to the student sit-

ing beside them as if they were in a training process. Both eye

ovements and verbal narratives were recorded for the viewing

urations controlled by each subject. The experiment started with

 13-point calibration and the calibration was validated after every

0 images. The audio recordings of the verbal narratives from the

ermatologists were transcribed and annotated, as described below

n Section 3.2 . 

. Multi-modal data analysis 

The fixations and the saccades were detected and identified us-

ng the position-variance method [43] . The dispersion threshold

as set to 1.5 degree of visual angel which corresponds to about

4 pixels, given the subjects’ distance and the monitor resolution.

he minimum duration threshold was set to 80 milliseconds. Our

tatistical analysis of the eye movement events uncovered the at-

entive behavior difference between the three groups. 

.1. Statistical properties of eye movement data 

Analysis of both fixation duration and saccade amplitude were

onducted as a function of ordinal fixation number for the three

xpertise-specific groups to determine whether the two eye move-

ent events, which are used as eye movement observation fea-

ures, change over the time course of diagnosis and whether the

ifferences as a function of expertise levels might be revealed at

rdinal time points as shown in Fig. 2 . 

The first 20 fixations show a significant monotonically in-

reasing trend for all three groups based on an ANOVA analy-

is ( F (19 , 200) = 1 . 4 , p < 0.01; F (19 , 60) = 2 . 92 , p < 0.01 and

 (19 , 240) = 1 . 98 , p < 0.01 respectively) and both attendings

nd residents have significantly longer averaged fixation durations

han lay people ( F (2 , 273) = 12 . 5 , p < 0.001), which is presented

hrough the histogram of fixation duration distribution as shown

n Fig. 2 . Similar analysis on saccade amplitudes of the three

xpertise-specific groups shows that the first 20 saccade ampli-

udes of both dermatologists and residents follows a significant

onotonically decreasing trend ( F (19 , 200) = 1 . 24 , p < 0 . 01 ; and

 (19 , 60) = 1 . 19 , p < 0.01). There was no effect for the lay peo-

le’ average saccade amplitudes. The shorter fixation durations and

onger saccade amplitudes at the initial stage suggests that both at-

ending and residents started examining images with a quick im-

ge scan. After that, fixation duration became longer and saccade

mplitudes decreased, suggesting a more thorough examination.

n contrast, lay peoples’ fixation durations increased at the initial

tage but there is no statistically significant change for their sac-

ades. 

In sum, the above descriptive statistical analysis indicates

hat the expertise-level difference can be manifested via percep-

ual viewing behaviors, which is consistent with previous studies

28,33] . We then apply our model on these time series data to re-

eal the subtlety of the behavior patterns varying over time. 

.2. Annotation analysis on transcribed verbal descriptions 

An annotation study was conducted on the experts’ transcripts

o investigate the verbalized cognitive processes of dermatolo-

ists on their paths toward a diagnosis [36] . After transcribing

he experts’ narration of the images, independent experts identi-

ed conceptual units of thought (corresponding to particular steps

r information in the diagnostic process) in the transcripts. These

hought units were subsequently time-aligned with the recorded

peech and eye movement patterns in the speech analysis tool

raat [6] . Two highly trained dermatologists annotated transcribed
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Fig. 2. Analysis of eye movement data. On the top left are two histograms of the fixation duration (msec) distribution for 15 physicians (attendings and residents), and 13 

lay persons, respectively. On the top right are the average fixation durations by ordinal fixation number over the course of diagnosis of all 50 images for the three expertise- 

specific groups: attendings (blue), residents (cyan) and lay persons (red). On the lower left are the histograms of the saccade amplitude (degree) distribution for experts and 

lay people. The lower right graph shows the average saccade amplitude by ordinal fixation number for three expertise-specific groups over the course of diagnosis with the 

same color coding. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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verbal descriptions with these thought units. A thought unit is a

single word or group of words that receives a descriptive label

based on its semantic role in the diagnostic process. Nine basic

thought units, provided by a dermatologist, were used for anno-

tation. The provided thought unit labels are patient demograph-

ics (DEM), body location (LOC), configuration (CON), distribution

(DIS), primary morphology (PRI), secondary morphology (SEC), dif-

ferential diagnosis (DIF), final diagnosis (Dx), and recommenda-

tions (REC). Words not belonging to a thought unit were desig-

nated as ‘None’. 

The conceptual thought unit annotations were then linked to

the model’s inferred perceptual eye movement patterns, as dis-

cussed below in Section 4 . 

4. The computational modeling approach 

The modeling approach of the expertise-specific groups’ eye

movements for the dermatological images is diagrammed in Fig. 3 .

In Fig. 3 (a), the hierarchy represents the heterogeneous struc-

ture produced by individuals with different expertise levels exam-

ining medical image viewing strategies. A group of subjects with

the same expertise level share a set of behavior patterns based on

their knowledge. In accordance with these common behavior pat-

terns, each group member’s time-evolving behaviors also display

their individualized temporal patterns in terms of unique subsets

of behaviors and/or their unique sequential combinations. At the

lowest level, each behavior is measured based on observed eye

movements. Fig. 3 (b) shows the graphical representation of the hi-

erarchical dynamic model corresponding to (a)’s structure. B 0 is the

global base measure on the space of all possible behaviors �. The

common behavior pattern of the group defined as {( θ k , E k )} is char-

acterized by the shared behaviors among p group members and

the probabilities that it possesses each particular behavior is en-

coded by B 0 . A group member p performs individualized behavior

pattern defined as{( θ k , S pk )} which is a Bernoulli process realiza-

tion of the group common pattern {( θ k , E k )}. The transition matrix

πp follows a Dirichlet distribution specified by the non-zero en-

tries of S p . 

4.1. Dynamical likelihoods 

Autoregressive-HMMs has been proposed to be a simpler but

often effective way to describe dynamical systems [16] . Let y 
(i j) 

t 
enote the eye movement data of the i th subject at time step t

n the j th group. We associate each time-step’s observation with

ne fixation and its successive saccade as one observation unit. Let

 

(i j) 
t denote the corresponding latent dynamic mode. We have 

 

(i j) 
t ∼ π

x (i j) 
t−1 

(1)

 

(i j) 
t = A 

x (i j) 
t 

˜ y (i j) 
t + e t (x (i j) 

t ) (2)

here e 
(i j) 
t (k ) ∼ N(0 , �k ) which is an additive white noise, A k =

 A 1 ,k , ..., A r,k ] as the set of lag matrices, and ˜ y 
(i j) 
t = [ y 

(i j) 
t−1 

, ..., y 
(i j) 
t−r ] .

n our case, we specify r = 1 .We thus define θk = (A k , �k ) as one

ye movement pattern. 

.2. Hierarchical prior 

The hierarchical beta-Bernoulli processes proposed by Thibaux

t al. [47] is a suitable tool to describe the situation where mul-

iple groups of subjects are defined by countably infinite shared

eatures following the Levy measure. We utilize this process in the

ollowing specification based on our problem scenario. 

Let B 0 denote a fixed continuous random base measure on

 measurable space � = { θk } which represents a library of all

he potential eye movements patterns. To characterize patterns

hared among multiple groups, let B denote a discrete realiza-

ion of a beta process given the prior BP ( c 0 , B 0 ). Let G j be a dis-

rete random measure on � drawn from B following the beta pro-

ess which represents a measure on the eye movement patterns

hared among multiple subjects within the group j . Let P ij denote

 Bernoulli measure given the beta process G j . P ij is a binary vec-

or of Bernoulli random variables representing whether a particular

ye movement pattern exhibited in the eye movement sequence of

ubject i within group j . This hierarchical construction can be for-

ulated as follow: 

 | B 0 ∼ BP (c 0 , B 0 ) (3)

 j | B ∼ BP (c j , B ) j = 1 , ..., N (4)

 i j | G j ∼ BeP (G j ) i = 1 , ..., N j (5)

here B = 

∑ 

k b k δθk 
with { θ k } drawn from the library � and cou-

led with their weights b k . b k is beta-distributed given b 0 and

 0 . Furthermore, G j = 

∑ 

k g jk δθ jk 
shows that G j is associated with
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Fig. 3. The hierarchical dynamic model represented by graphical model schemes. The detailed description is in Section 4 . 

Fig. 4. Realizations from a hierarchal beta process with n = 3 and n 1 = n 2 = n 3 = 20 . We vary the concentration parameters: c 1 , c 2 and c 3 , and the base measure parameters: 

a 0 and b 0 . In (a), the parameters are c 1 = c 2 = c 3 = 1 and a 0 = 2 , b 0 = 6 . In (b), the parameters are c 1 = c 2 = c 3 = 1 and a 0 = 2 , b 0 = 0 . 6 . 
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oth { θ jk } which is a subset of countable number of eye move-

ent patterns drawn from { θ k } and their corresponding probabil-

ty masses { g jk } given group j . { g jk } is also beta-distributed given

 k and c j . The combination of these two variables characterizes

ow the eye movement patterns shared among subjects within

xpertise-specific group j . Thus P ij as a Bernoulli process realiza-

ion from the random measure G j is denoted as: 

 i j = 

∑ 

k 

p i jk δθ jk 
(6) 

here p ijk as a binary variable denotes whether subject i within

roup j exhibits eye movement pattern k given probability

ass g jk . 

Based on the above formulation, for k = 1 , ..., K j patterns {( θ jk ,

 jk )} characterize how a set of common eye movement patterns

ikely shared among group j and {( θ jk , p ijk )} represent subject i ’s

ersonal subset of eye movement patterns given group j . Accord-

ng to the above equations, we illustrate two sets of hierarchical

eta process each of which contains three groups of beta-Bernoulli

rocesses from a common beta process with specified parameters

n Fig. 4 . This illustration highlights the effect of the concentration

arameters for c 1 −3 and mass parameters for ( a 0 , b 0 ). 

The transition distribution πi j = { π
x 
(i j) 
t 

} of the auto-HMMs at

he bottom level governs the transitions between the i th sub-

ect’s personal subset of eye movement patterns θ jk of group

 . It is determined by the element-wise multiplication between

he eye movement subset { p ijk } of subject i in group j and the
amma-distributed variables { e ijk }: 

 i jk | γ j ∼ Gamma (γ j , 1) (7) 

i j ∝ E i j 

⊗ 

P i j (8) 

here E i j = [ e i j1 , ...e i jK j 
] . P ij determines the effective dimensional-

ty of π ij , which is inferred from observations. 

.3. Posterior inference with Gibbs sampler 

We use the Gibbs sampler to do the posterior inference. In one

teration of the sampler, each latent variable is visited and assigned

 value by drawing from the distribution of that variable condi-

ional on the assignments to all other latent variables as well as

he observation. In particular, based on the sampling algorithm

roposed in [47] , we developed a Gibbs sampling solution to the

ierarchical beta processes part of the model. 

We adopt normal-inverse-Wishart distribution to provide an

ppropriate conjugate matrix prior to pattern space �. The conju-

ate prior on the set of design matrix A and the noise covariance �

s the matrix normal-inverse-Wishart prior. This distribution places

 conditionally matrix normal prior on A given �: 

p(A | �, M, K ) = 

| K | d 2 

| 2 π�| exp 

{ 

−1 

2 

tr((A − M) T �−1 (A − M) K) 
} 

(9) 

nd an inverse-Wishart prior on �

∼ W(ν, 	) (10) 
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Fig. 5. Inference of the eye movement patterns. From left to right, six subjects’ eye movement sequences are illustrated on a dermatological image. The sequences are 

represented as time series which is composed of 4 components: log values of fixation location (x-y coordinates), fixation duration and saccade amplitude. The model-derived 

eye movement pattern sequences for the corresponding time series are estimated with 4 chains of 55,0 0 0 sampling iterations. The color coding corresponds to the segments 

of each specific eye movement pattern. 
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Consider a set of observations D = { X, Y } , the posterior distri-

bution of { A , �} can be decomposed as the product of posterior

A as MN (A ; S yx S 
−1 
xx , �, S xx ) with S xx = X X T + K, S yx = Y X T + MK,

and S yy = Y Y T + M KM 

T and the marginal posterior of � as W(ν +
N, 	 + S y | x ) where S y | x = S yy − S yx S 

−1 
xx S 

T 
yx . 

When sampling the pattern indicator matrix P j of group j , we

need to address two situations separately. For a pattern which has

non-zero probability because of either its priori or having already

been instantiated by at least one subject, we compute its posterior

as follows. 

Let { ω} denote the atoms (eye movement patterns) that

have been observed at least once. We define the variables

to perform inference: b 0 = B 0 ({ ω} ) , b = B ({ ω} ) = 

∑ 

k b k δω , g j =
G j ({ ω} ) = 

∑ 

k g jk δω , and p i j = P i j ({ ω} ) = 

∑ 

k p i jk δω . According to

Eqs. (3) –5 , these variables from their respective processes have the

following distributions: 

B (ω) ∼ Beta (c 0 B 0 (ω) , c 0 (1 − B 0 (ω))) (11)

G j (ω) ∼ Beta (c j B (ω) , c j (1 − B (ω))) (12)

P i j (ω) ∼ Ber(G j ) (13)

We marginalize out G using conjugacy. Let m j = 

∑ n j 
i =1 

p i j , and

use �(x + 1) = x �(x ) , the posterior distribution of b given P j : 

p(b| b 0 , P ) ∝ p(b| b 0 ) �(m j + c j b)�(n j − m j + c j (1 − b)) 

�( c j b)�( c j ( 1 − b)) 
(14)

This posterior is log-concave, which we can use adaptive rejection

sampling method [19] to approximate in our Gibbs sampler. We

can sample g j from its conditional posterior distribution by conju-

gacy: 

p(g j | b, P ) ∝ Beta (c j b + m j , c j (1 − b) + n j − m j ) (15)

Given the i th subject’s eye movements data sequence y 
(i j) 
1: T i j 

in

the group j , transition variable E ij and within-group- j shared pat-

tern set θ1: K j 
, the current sampling pattern indicator p ijk of pattern

k exhibited by subjects i in group j follows this posterior distribu-

tion: 

p(p i jk | P (−i jk ) , y 
1: T (i j) 

i j 

, θ (−i jk ) 
1: K j 

, E i j , B 0 ) ∝ 

p(p i jk | P (−i jk ) , B 0 ) p(y 
1: T (i j) 

i j 

| P i j , E i j , θ
(−i jk ) 
1: K j 

) 
(16)
s  
here P (−i jk ) denotes the set of all P ij except p ijk . In particular, for

he instantiated patterns 

p(p i jk | P (−i jk ) , B 0 ) = 

∫ 
p(p i jk | G j ) 

∫ 
p(G j | B, P ) p(B | B 0 , P ) d Bd G j 

(17)

oth p ( G j | B , P ) and p ( B | B 0 , P ) can be sampled as in Eq. (15) and Eq.

14) , respectively. 

For the yet-instantiated patterns of group j , since they can be

irectly sampled from the conjugate prior distribution of �, we

nly need to infer the distribution of their number the prior distri-

ution of which is Poisson-distributed K ∼ Poi ( 
c 0 λ

c 0 + k −1 
) . Given that

ll other patterns from all other groups are zero: 

p(k i j | P i j , y 1: T (i j) 
i j 

, θ (−i jk ) 
1: K j 

, E i j , λ) 

∝ p(p i jk | P (−i jk ) , λ) p(y 
1: T (i j) 

i j 

| P i j , E i j , θ
(−i jk ) 
1: K j 

) (18)

Given transition distributions π ( i ) , shared patterns { θ k }, and ob-

ervations y 1: T i j 
, within a massage passing algorithm, we compute

he backward messages: 

 t+1 ,t (x t i j 
) ∝ p(y (i j) 

t+1: T i j 
| x t i j 

, πi j , { θk } ) (19)

o update the hidden state sequences x 
(i j) 
1: T i j 

by sampling from: 

p(x t i j 
| x t i j −1 , y 

(i j) 
1: T i j 

, πi j , { θk } ) 
∝ πx t i j −1 

(x t i j 
) N(y (i j) 

t i j 
; A x t i j ̃

 y (i j) 
t i j 

,�x t i j 
) m t+1 ,t (x t i j 

) (20)

. Interpretations of the eye movement patterns 

In Fig. 5 , the eye movement sequences are represented as four

imensional time series of fixation x-y coordinates, fixation dura-

ion, and saccade amplitude. The time series are the input of our

odel. For a given time series, the eye movement patterns are es-

imated by our model as a set of time series segments. the seg-

ents with the same color correspond to a specific eye movement

attern shared across the time series. 

Furthermore, Figs. 6 and 7 visualize the discovered eye move-

ent patterns from three expertise-specific groups on two der-

atological images. The color-coding is consistent with in Fig. 5 .

e defined a fixation and its subsequent saccade as one fixation-

accade unit. Each eye movement pattern is visualized by a subset
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Fig. 6. The eye movement patterns of the three expertise-specific groups signify the different perceptual behaviors between the experts and the novices. 
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f fixation-saccade units which have similar fixation durations, fix-

tion spatial coordinates, and saccade amplitudes. These two im-

ges are among the most difficult cases to make a correct diag-

osis, and some of the patterns exhibited on them are critical to

nform some properties of the images. 

Taking the first illustrated image in Fig. 6 for example, there

re multiple skin lesions spreading over the thumb nail and tip,

he two parts of index finger and the middle finger. A primary ab-

ormality is on the thumb tip. The eye movement sequences in-

icate that attending dermatologists fixated on the primary abnor-

ality heavily and switched their visual attention actively between

nd within the primary and secondary findings. The same pat-

erns are also exhibited in the resident dermatologist group. The
eason for lacking other patterns is probably because the num-

er of participants at this expertise-specific group is limited in

he dataset (only four participants). In contrast, the novice group

xhibits significantly different eye movement patterns compared

o the other groups. According to the novices’ patterns, we can

ee shorter saccades so as to leave long fixation durations at the

enter of the image as seen in Pattern 1 and 9 of Fig. 6 (c) and

o not exhibit the eye movement switching between primary and

econdary abnormalities as dermatologists’ Pattern 2, 3, and 5

n Fig. 6 (a). 

In a transition probability matrix, a row corresponds to a cur-

ent eye movement pattern, and its cell values represent a discrete

robability distribution over subsequent patterns given the current
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Fig. 7. The inferred eye movement patterns of the three expertise-specific groups. 
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pattern. For example, in Fig. 6 (a) the matrices have high values in

diagonal, which means that each pattern is persistent (If the cur-

rent pattern is A, then the subsequent pattern is most likely to

be A). The more random transition matrices in Fig. 6 (c) indicate

that novice group’s patterns are not persistent, which suggests that

novices’ focus of attention is unstable when viewing the image. We

reason that these relatively unstable viewing behavior reflect that

fact that the novice cannot perceive the important diagnostic re-

lationships among the multiple abnormalities and fail to prioritize

them. All the pattern differences between expertise-specific groups

holds for the other images studied here. 
Some shared patterns emerged in the attending and the res-

dent groups but are lacking in the novice group as shown in

ig. 6 (c). This suggests that experts, equipped with domain knowl-

dge organized in finer gradations of functional categories [24] , can

iscriminate the significance of their findings in a particular con-

ext. In contrast, in Fig. 6 (c) the novices failed to do so, although

heir eye movement patterns indicate that they notice the same

bnormalities too. When comparing the transition probability ma-

rices between the expertise-specific groups in the second column

f Fig. 6 (a–c) and Fig. 7 (a–c), it becomes clear that professionals’

ye movement patterns are more persistent than the novices’. 
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Fig. 8. Analysis of the correspondence between eye movement patterns and thought units for the two example images. Histograms show the relationship between discovered 

eye movement patterns and annotated thought units. For each pattern we plotted the counts of fixations which are labeled as the corresponding thought units. The pattern 

numbering is consistent with previous figures. 

Fig. 9. Six out of eleven eye movement sequences super-imposed onto one dermatological image are illustrated here. Our model decomposes the eleven eye movement 

sequences on this image into nine eye movement patterns (color-coded) with the transition probability matrices. In this way, each eye movement sequence is represented 

by a certain number out of nine patterns and their corresponding transition matrix. On the right is the shared eye movement pattern matrix of which each row corresponds 

to a subject’s eye movement sequence and each column indicates one shared eye movement pattern among multiple subjects. In this case, three patterns are recognized as 

signature patterns based on their self-transition probabilities, temporal-spatial properties, and diagnostic semantics. 
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To further analyze the meanings of the discovered eye move-

ent patterns, we mapped thought units (see Section 3.2 ) to pat-

erns discovered in the eye movement data in order to see whether

hey correspond consistently during the diagnostic process. Pattern

ccurrence and thought unit alignment resulted in assignment of

ach fixation in a complete eye movement sequence to a specific

attern and to a thought unit such as PRI or LOC (or None). Al-

hough thought units are often spread out across eye movement

atterns, some trends can be discerned. Initial integration of eye

ovement patterns with thought units was accomplished by cal-

ulating the counts of their time-aligned correspondence in Fig. 8 .

nalysis on the left column diagram of Fig. 8 shows, for example,

hat primary morphology (PRI) is closely related to the combina-

ion of two specific patterns: Pattern 2 is characterized by fixa-

ions switching between the primary and the different secondary

bnormalities; and Pattern 7 by long fixations only on the primary

bnormality. It is worth to point out that identification of the pri-

ary morphology is an early key diagnostic step which helps the

hysician to place the lesion in the correct category. Pattern 7 has

elationship to location (LOC) which appears to correspond to the

rimary morphology location. Pattern 4 consists of eye movement

equence segments which are characterized by shorter fixation
urations and longer saccades. This scanning behavior corresponds

o the thought units, including distribution (DIS), secondary mor-

hology (SEC), diagnosis (DX) and differential diagnosis (DIF). For

xample, the scanning pattern coupled with thought unit DX is

ossibly related to confirmation of secondary findings to support

r rule out diagnostic hypotheses. 

. Image analysis based on signature patterns 

Our model converges, after 50 0 0 sampling iterations, to gener-

te 387 eye movement patterns based on eleven subjects diagnos-

ng fifty dermatological images. These results allow us to analyze

nd describe the dermatological images based on a novel perspec-

ive of experts’ perceptual strategies. 

.1. Eye movement pattern estimation 

Fig. 9 illustrates the eleven dermatologists diagnosing a case of

 skin manifestation of endocarditis by showing one set of ob-

erved eye movement sequences and the model’s discovered eye

ovement patterns shared by the dermatologists which corre-

pond to descriptively meaningful perceptual units. In the medical
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Fig. 10. Distinctive temporal-spatial properties of 217 fixation-saccade pairs from 

12 exemplars forms the three types of signature patterns. Each blue dot represents 

one eye movement unit from a signature pattern exemplar. The exemplars are in- 

dicated by dash-line Gaussian emission distributions estimated from our model. 

Both eye movement units and their corresponding exemplars are projected from 

a four-dimension space (including x-y coordinate, fixation duration and saccade 

amplitude) onto this space. The signature patterns are characterized by a three- 

component Gaussian mixture. The one on the upper left represents Concentrating 

Pattern , the one on the right captures Switching Pattern , and the one on the lower 

middle represents Clutter Pattern . For each type, we project the units back into x-y 

coordinate space centered on the origin and visualize them on the right side of the 

main diagram. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article). 
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image, there are multiple skin lesions spreading over the thumb

nail and tip, the two parts of index finger, and the middle finger.

A primary abnormality is on the thumb tip. The eye movement se-

quences in Fig. 9 indicates that dermatologists examine the image

in a highly patterned manner by fixating on the primary abnormal-

ity heavily and switching their visual attention actively between

and within the primary and secondary abnormalities. Our model

decomposes each eye movement sequence into several subsets of

its segments. Each subset is characterized by one estimated la-

tent state and a Gaussian emission distribution which summarizes

the similar temporal-spatial properties shared among multiple se-

quences. The way that the patterns are shared among the subjects

is also indicated by their matrix in Fig. 9 . For example the first sub-

ject’s eye movements evolve over time with the first eight out of

nine patterns, and the eleventh subject has seven patterns except

pattern 5 and pattern 9. In other words, most but not all patterns

are shared by all physicians, as one would expect when modeling

human behaviors where there almost certainly exist some varia-

tion and some individual differences. Again, our model is able to

capture both the shared (stereotypical) behaviors and the individ-

ualized (idiosyncratic) ones. Transition probability matrices indi-

cated these patterns are persistent with high self-transition proba-

bilities which measure the likelihood of a given pattern transiting

into itself in our dynamic model. 

6.2. Signature pattern recognition 

When expanding the analysis to multiple images, we discover

several basic yet distinctive types of patterns shared across multi-

ple images which we term as signature patterns with respect to the

patterns’ fixation duration and saccade amplitude. 

We define a type of signature patterns by three criteria. First,

its self-transition probability, which is indicated by the transition

matrix, is no less than the median 0.65, so the signature patterns

are stably retained by experts. Second, it manifests clear diagnos-

tic regions, for example pattern 7 in Fig. 9 corresponds to a long

fixation duration on the primary abnormality. Third, the temporal-

spatial properties of signature pattern exemplars within each type

are similar but distinctive from other types, which is elaborated

in Fig. 10 . The other discovered patterns are not identified as sig-

nature patterns because they lack one or more of the three cri-

teria. In the illustrated case in Fig. 9 , there are three patterns

recognized as the signature patterns. Pattern 2 and Pattern 5 are

characterized by fixations switching back and forth between the

primary and the different secondary abnormalities with long sac-

cade amplitudes and relatively short fixation durations. These pat-

terns suggest that subjects compare and associate the two types

of abnormalities. Pattern 7 is characterized by a series of long-

duration fixations only on the primary abnormality with extremely

short saccades. This pattern suggest that subjects fixate on the pri-

mary abnormality to make a diagnosis. 

Based on the eye movement patterns generated from our model

over fifty images, we are able to specify three types of signa-

ture patterns. The first type is named Concentrating Pattern which

is characterized by a series of long-duration fixations and short-

amplitude saccades usually fixating on primary abnormalities. The

second is the Switching Pattern characterized by a series of rel-

atively short-duration fixations and long-amplitude saccades usu-

ally switching back and forth between two abnormalities. And the

third is Clutter Pattern characterized by a series of shorter fixations

and relatively long saccades usually scanning within localized ab-

normal regions. To quantify the temporal-spatial properties of the

three types of signature patterns, we illustrate some of their exem-

plars in Fig. 10 . 

The estimation of the signature patterns based on their

exemplar features can be solved using different classification
echniques. Since Gaussian mixture is one intuitively appropriate

ool to describe the distributions of these signature patterns ac-

ording to Fig. 10 , we first adopt quadratic discrimination analysis

QDA) by assuming a simple parametric model for the densities

f the temporal-spatial properties of the eye movement units. A

raining set includes 217 eye movement units of 12 exemplar pat-

erns from 10 images, which are shown in Fig. 10 . We test the va-

idity of the classifier through comparing the image categorization

erformance based on QDA with K nearest neighbors (K-NN) and

xperts’ performance. 

.3. Perceptual category specification 

Based on our consulting dermatologist’s suggestion, we propose

our broad perceptual categories in terms of lesion distribution and

onfiguration [31] . We further determine the associations between

he combinations of the exhibitions of these three types of signa-

ure patterns and the four specified categories: 

• If the set of eye movement patterns exhibited on an image only

includes Concentrating Patterns , the image is categorized as Lo-

calized which means that the image contains a solitary lesion

as primary abnormality. 

• If the set of eye movement patterns exhibited on an image

solely includes Switching Patterns , the image is categorized as

Symmetrical which means that the lesions in the image are

symmetrically distributed. 

• If the set of eye movement patterns exhibited on an image in-

cludes both Concentrating Patterns and Switching Patterns , the

image is categorized as Multiple Morphologies which means that

the lesions in the image belong to different dermatological

morphologies and usually one lesion is identified as primary

abnormalities and the other are secondary ones. 

• If the set of eye movement patterns exhibited on an image in-

cludes Clutter Patterns , the image is categorized as High-Density

Lesions which means that the image contains multiple lesions

distributed in either scattered or clustered manner. 

According to the signature patterns recognized on the images,

e can catalogue the images into the four categories as shown in

ig. 11 (a)–(d). 
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Fig. 11. For each category five example images are illustrated with the signature patterns recognized. 
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The difference between Multiple Morphologies images and Sym-

etrical images is that the eye movement patterns exhibited on

he latter do not contain Concentrating Pattern . This is because the

ymmetrical visual-spatial structures imply that lesions are equiva-

ent important without single primary one for the subjects to con-

entrate their focus on as shown in Fig. 11 . Since the specifica-

ions of signature patterns are determined heuristically, we may

e able to improve the categorization performance by identifying

dditional meaningful and distinctive eye movement patterns, and

hese extra patterns may also lead to image categorization at a

ner detailed level. 
. Results and discussion 

To measure the performance of our image categorization ap-

roach, we conduct an experiment following the same proce-

ure by recruiting another ten dermatologists and using a differ-

nt set of forty dermatological images as stimuli. These images

re also randomly selected from a dermatological image database.

ur three consulting dermatologists achieve consensus to catego-

ize the forty images into the four perceptual categories. We use

32 estimated eye movement patterns on these images and the

nes from the previous experiment as a testing set. In Fig. 12 , we
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Fig. 12. ROC curves summarizing categorization performance for the four perceptual categories. Left: Area under average ROC curves for different numbers of exemplar 

patterns. Right: We compare our model using two different classification techniques with canonical Hidden Markov Models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Two false positive cases. The left panel shows an image labeled as Localized 

lesion with Clutter Pattern recognized on it. The right panel shows a case labeled as 

symmetric lesion with Clutter Pattern recognized on it. Image used with permission 

from Logical Images, Inc. 
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examine categorization performance given training sets containing

between 4 and 24 exemplars. We assume each eye movement se-

quence exhibits the same set of patterns in order to implement the

canonical HMMs. We see that our model lead to significant im-

provements in categorization performance, particularly when few

training exemplars are available. The highest accuracy is achieved

on detection of the “Multiple Morphologies” category. This may be

caused by the requirement of detections of the two different signa-

ture patterns to determine the varied distributions and significance

of the lesions. The difference between “Multiple Morphologies” im-

ages and “Symmetry” images is that the eye movement patterns

exhibited on the latter do not contain “Concentrating Pattern”. This

is because the symmetrical visual-spatial structures imply that le-

sions are equivalent important without single primary one for the

subjects to concentrate their focus on as shown in Fig. 11 b. Since

the specifications of signature patterns are heuristic, we may be

able to improve the categorization performance by identifying ex-

tra meaningful and distinctive eye movement patterns, and these

extra patterns may also lead to image categorization at a finer de-

tailed level. 

We obtain certain aspects of experts’ domain-specific knowl-

edge by summarizing their perceptual skills from their eye move-

ments while diagnosing images. The domain-specific knowledge

unveils the meaning and significance of the visual cues as well as

the relations among functionally integral visual cues without seg-

mentation or processing of individual objects or regions. This will

benefit the traditional pixel-based statistical methods for image

understanding by evaluating perceptual meanings and relations of

the image features which spatially correspond to the eye move-

ment patterns. This combination of expert knowledge and image

features allows us to generalize our approach to images on which

there is no experts’ eye movements recorded. 

The dermatological images are taken and collected by derma-

tologists for diagnosis and training purpose. Since the photogra-

phers tend to center primary abnormalities and preserve related

contextual information such as patients’ demographic information,

body parts, lesion size and so on, these high-resolution images

have complex backgrounds and large variations in luminance and

camera angles. These factors cause some false alarms. In particu-

lar, photographic scales of some lesions in the images tend to in-

fluence our model’s performance. For instance, the solitary lesions

are at large scale in some images, leading to cluttered eye move-

ment patterns rather than concentrating ones as shown in the fifth
mage of Fig. 11 (d). Since both the number of fixations and their

urations are indicative of the depth of information processing as-

ociated with the particular image regions, the exhibition of Con-

entrating Pattern usually corresponds to a localized primary abnor-

ality as shown in Fig. 11 (a) and (c). The saccade amplitudes of

witching Pattern and Clutter Pattern inform both the image visual-

patial structures (symmetry) as in Fig. 11 (b) and distributions of

ultiple abnormalities (primary abnormality versus secondary ab-

ormality) as in Fig. 11 (c). 

Since the dermatological images are collected for future diagno-

is, and training purposes, the dermatologists took them in a par-

icular way. They tend to center primary abnormalities and pre-

erve as much related contextual information as possible, such as

atients’ demographic information, body parts, lesion size and so

n. Nonetheless, these high-resolution images have complex back-

rounds, and large appearance variations for luminance and cam-

ra angles. These factors cause some false alarms, as shown in

ig. 13 . In particular, photographic scales of some lesions in the

mages tend to influence our model’s performance. For instance,

he localized lesions are at large scale in some images, leading to

luttered eye movement patterns rather than concentrating ones

s shown in Fig. 13 (a). In another case shown in Fig. 13 (b) there is

n angle between the camera and the patient’s back, so the sym-

etric shape lesions are skewed in the image. When dermatolo-

ists are examining this image, they tend to focus on the half of

he lesion that are closer. This leads to a Clutter Pattern instead of
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 Symmetric Pattern . Since both the number of fixations and their

urations are indicative of the depth of information processing as-

ociated with the particular image regions, the exhibition of Con-

entrating Pattern usually corresponds to a localized primary abnor-

ality as shown in Fig. 11 (a) and (c). The saccade amplitudes of

witching Pattern and Clutter Pattern inform both the image visual-

patial structures (symmetry) as in Fig. 11 (b) and distributions of

ultiple abnormalities (primary abnormality versus secondary ab-

ormality) as in Fig. 11 (c). 

Note that the different viewing times of dermatologists yield

ength-varying eye movement sequences. Since each sequence is

odeled with one HMM separately, the emission distributions of

hich group multiple fixation-saccadic units into one pattern ex-

ibited repeatedly. Thus longer sequence means that its corre-

ponding longer HMM draws more pattern samples from the prior

istribution, so besides containing more repeated common pat-

erns, it likely has some unique patterns. 

. Conclusions 

We proposed a hierarchical dynamic model by combining hi-

rarchical beta processes as the prior and autoregressive-HMMs

s the data model to discover dynamical patterns from three

xpertise-specific groups of eye movement sequences. Our ap-

roach identified expertise-specific eye movement patterns that

xist over time. Center bias effect is also discovered in free viewing

f scenes when there is no task (e.g. searching a particular object)

ssigned to subjects. However, when the dermatologists are exam-

ning and diagnosing a dermatological image, they tend to move

heir eyes actively and strategically. Dermatology images and ex-

erts are an appropriate test-bed, but we can also apply our ap-

roach to other problem domains. We analyzed 50 images and de-

ivered an extensive discussion on three illustrated cases. As our

uture work, we will use the discovered meaningful patterns to

arse corresponding image features, which correspond to deep per-

eptual skills (as opposed to detailed surface features only), and

hat, accordingly, have potential to fill the semantic gap described

t the paper’s beginning. 

We successfully discover certain aspects of experts’ domain-

pecific knowledge by summarizing their perceptual skills from

heir eye movements while diagnosing images. The domain-

pecific knowledge unveils the meaning and significance of the vi-

ual cues as well as the relations among functionally integral vi-

ual cues without segmentation or processing of individual objects

r regions. This will benefit the traditional pixel-based statistical

ethods for image understanding by evaluating perceptual mean-

ngs and relations of the image features which spatially correspond

o the eye movement patterns. This combination of expert knowl-

dge and image features will help us to generalize our approach to

mages for which there is no experts’ eye movements recorded. 
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