
M-Perm: A Lightweight Detector for Android
Permission Gaps

Piper Chester, Chris Jones, Mohamed Wiem Mkaouer and Daniel E. Krutz
Department of Software Engineering

Rochester Institute of Technology

Rochester, NY, USA

Email: {pwc1203,caj6831,mwmvse,dxkvse}@rit.edu

Abstract—Android apps operate under a permissions-based
system where access to specific APIs are restricted through the
use of permissions. Unfortunately, there is no built-in verification
system to ensure that apps do not request too many or too few
permissions, which could lead to serious quality and/or privacy
concerns. Apps requesting too many permissions create unnec-
essary vulnerabilities, leaving the potential for abuse by SDKs
within the app or other malicious apps installed on the device.
In order to assist with the discovery of misused permissions,
we created a new detection tool, M-Perm, which combines static
and dynamic analysis in a computationally efficient manner
compared to existing tools. M-Perm also identifies permission
usage in apps including requested normal, dangerous, and 3rd
party permissions. The tool, complete usage instructions, and
screencast are available online: http://www.m-perm.com

I. INTRODUCTION

A cornerstone of Android’s security is its use of permis-

sions. Unfortunately, there is no built-in verification system

to ensure that apps adhere to the principle of least privilege
and do not request unnecessary permissions, which increases

the app’s attack surface and make it more susceptible to a

variety of security and privacy related issues [3]. Several

studies have analyzed app permissions through combining

static and dynamic analysis. Stowaway [3] introduced the

idea of mapping between all the apps interactions with the

Android system. PScout [1] uses a Class Hierarchy Analysis

(CHA) of a decompiled source code to generate the list of all

objects and uses the Soot library to link objects to their call

graphs. This allows detecting any implicit use of permissions

by any of the app’s components. Similarly, Spark-Android

[2] extends PScout’s static analysis by using CHA and field-

sensitive analysis. Table I provides an overview of these tools.

A limitation of Stowaway is the need of test cases that

maximize the coverage of the instrumented app’s code in order

to detect permissions, another limitation of using this dynamic

analysis is the detection of only overprivileges. PScout and

Spark-Android were designed around static analysis to over-

come the limitations of Stowaway. Still, besides using string

analysis to detect any explicit permission use, e. g., calling

permissions check methods of Android.content.Context, using

the Soot1 library they also generate the call graph of both

the app and the system to detect implicit permissions. Al-

though this analysis does reveal permission issues, it is highly

1https://sable.github.io/soot/

dependent on the tested Android release and the tools do

not provide any automated support on how to re-analyze any

new release of Android. Additionally, they are not tailored

for the permission system used in Android API ≥ 23. To

address these limitations, we have created a new tool M-
Perm that combines string analysis with static analysis to

detect permissions misuse. In contrast with PScout and Spark-

Android, M-Perm accepts but does not require any prior built

and refined call graph.

II. M-PERM TOOL

The primary components of M-Perm are shown in Figure 1.

The Driver is responsible for interacting with the configuration

file and the decompilation tools that reverse engineer the APK

files. M-Perm decompiles APK files into source code using a

three-step process encompassing three popular tools including

Apktool2, dex2jar3, and JD-Core-java4. Although there are

several other available tools for reverse engineering apps, we

found that our selected tools were able to quickly and reliably

reverse engineer apps while adequately being able to overcome

many of the challenges associated with obfuscated apps. PMD5

is ran on the decompiled source files to eliminate dead code

from the analysis and minimize the generated graph.

Fig. 1: M-Perm Architecture

2https://ibotpeaches.github.io/Apktool/
3https://sourceforge.net/projects/dex2jar/
4https://github.com/nviennot/jd-core-java
5https://pmd.github.io/

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.23

149

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.23

213

2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

978-1-5386-2669-6/17 $31.00 © 2017 IEEE

DOI 10.1109/MOBILESoft.2017.23

217

TABLE I: Overview of Existing Tools

Tool Methodology Last Compatible Android Release Publicly Available
Stowaway API-calls test case generation to detect permissions Android 2.2.2
PScout CHA Android 5.1.1 Yes
Spark-Android CHA + Spark for call graph refinement Android 4.0.1

Static analysis is performed after inputting the system’s and

app’s bytecodes to the Soot library. The permission gap is then

generated using similar steps as defined by Bartel et al. [2].

M-Perm first scans the permissions declared in the manifest

files, those permissions are saved in a vector labeled Pmanifest

whose size represents the total number of permissions which

can be declared. Every dimension in Pmanifest is set to 0 if

the permission is not declared in the file and 1 otherwise.

Similarly, we compute the vector Psrc with every dimension in

Psrc is set to 0 if the permission is not explicitly solicited by

any of the source code methods and 1 otherwise. Secondly,

we use the app’s call graph to analyze the reachability of

the methods to the framework’s entry points. This allows the

generation of a vector labeled EPactive, whose size represents

the total number of entry points, every dimension in EPactive

is set to 1 if it exists any afferent or efferent coupling between

a method and an entry point and 0 otherwise. Since the entry

points may lead accessing resources protected by permissions,

the matrix EPperm has as rows the number of entry points

and as columns the number of permissions. For a given cell

EPperm(i,j), it is set to 1 if entry point i has accessed to a

resource protected by a permission j. So the permissions being

currently used by the app, are stored in a vector labeled Pchecked

and computed as follows: Pchecked = Psrc OR (EPactive AND

EPperm) The under and overprivileges are calculated as: Punder

= Pchecked - Pmanifest Pover = Pmanifest - Pchecked

M-Perm’s output is placed in two output files. The first is

analysis_<package_name> which lists the normal, dan-

gerous6, 3rd party, and under & over privileges found in the

app. The file also correlates the requested dangerous permis-

sions with their associated permission groups, along with all

dangerous permissions in the app and how they are being used.

For example, dangerous permissions may be directly used by

the app in a function, or the app may merely check to see if the

app already has access to the permission. M-Perm will provide

the context of how the app is using this permission. Knowing

the context of permission requests can be useful to a variety of

researchers including those analyzing app permission leaks [4],

or those simply looking to better understand app permissions

and how they are used. M-Perm has been designed to use

an easily interchangeable configuration file to make using

different versions of Android permissions as easy as possi-

ble. This lack of interchangeability has caused many leading

Android permission analysis tools to lag and even become

quickly outdated. M-Perm’s analyzers are independent, the

developer can run the syntactic analysis without referring to

the call graphs, in case the system’s call graph is not available.

6https://developer.android.com/guide/topics/permissions

The file source_report_<package_name> describes

the usage of permissions inside of the app. The report lists the

files that permission requests occur in, along with the block

of code that is requesting the permission.

III. EVALUATION

To assess the effectiveness of M-Perm, we investigated the

existence of a permission gap on Android Marshmallow apps

from both Google Play7 and apkMirror8. A few of these apps

included Uber, Skype, LinkedIn, Twitter, and Google Calendar.

The results of this analysis are shown in Table II.

TABLE II: Analysis Results for 50 Apps

Total avg/App
Total Permissions 1119 22.4
Dangerous Permissions 531 10.6
Third Party Permissions 321 6.4
Under Privileges 89 1.8
Over Privileges 110 2.2

Recent research [2] has found that 11% of around 500 tested

apps extracted from Google Play contain at least one overpriv-

ilege. We found that 2.2% of apps contained an overprivilege,

this was expected since the analyzed apps are popular well-

designed projects, and that the updated permission model

in API ≥ 23 may affect permission misuse. However, our

sample size is very small and calls for future work in this

area. Unfortunately, with the absence of datasets used by the

state of art tools, we couldn’t directly compare our findings

with their results. Moreover, comparing with the existing tools

requires not only using older Android releases but also locating

previous releases of apps that may no longer be available. As

part of the future work, we plan on extending the static analysis

by adding the Spark refinement introduced by Bartel et al. [2].

REFERENCES

[1] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing
the android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 217–228.
ACM, 2012.

[2] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon. Static analysis for
extracting permission checks of a large scale framework: The challenges
and solutions for analyzing android. IEEE Transactions on Software
Engineering, 40(6):617–632, 2014.

[3] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 627–638. ACM, 2011.

[4] D. Wang, H. Yao, Y. Li, H. Jin, D. Zou, and R. H. Deng. Cicc:
a fine-grained, semantic-aware, and transparent approach to preventing
permission leaks for android permission managers. In Proceedings of
the 8th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, page 6. ACM, 2015.

7https://play.google.com/
8https://www.apkmirror.com

150214218

