
Interviews and Observation of Blind Software Developers
at Work to Understand Code Navigation Challenges

Khaled Albusays
Computing and Information Sciences

Ph.D. Program
Rochester Institute of Technology

Rochester, NY 14623
khaled@mail.rit.edu

Stephanie Ludi
Department of Computer Science &

Engineering
University of North Texas

Denton, TX 76207
stephanie.ludi@unt.edu

Matt Huenerfauth
Golisano College of Computing and

Information Sciences
Rochester Institute of Technology

Rochester, NY 14623
matt.huenerfauth@rit.edu

ABSTRACT
Integrated Development Environments (IDEs) play an important
role in the workflow of many software developers, e.g. providing
syntactic highlighting or other navigation aids to support the
creation of lengthy codebases. Unfortunately, such complex visual
information is difficult to convey with current screen-reader
technologies, thereby creating barriers for programmers who are
blind, who are nevertheless using IDEs. To better understand their
usage strategies and challenges, we conducted an exploratory
study to investigate the issue of code navigation by developers
who are blind. We observed 28 blind programmers using their
preferred coding tool while they performed various programming
activities, in particular while they navigated through complex
codebases. Participants encountered many navigation difficulties
when using their preferred coding software with assistive
technologies (e.g., screen readers). During interviews, participants
reported dissatisfaction with the accessibility of most IDEs due to
the heavy use of visual abstractions. To compensate, participants
used multiple input methods and workarounds to navigate through
code comfortably and reduce complexity, but these approaches
often reduced their speed and introduced mistakes, thereby
reducing their efficiency as programmers. Our findings suggest an
opportunity for researchers and the software industry to improve
the accessibility and usability of code navigation for blind
developers in IDEs.

CCS Concepts
•Human-centered computing➝ User studies; •Social and
professional topics➝ Assistive technologies; •Software and its
engineering➝ Requirements analysis; •Human-centered
computing➝ Empirical studies in accessibility

Keywords
Accessibility; Blind Programmers; Programming Challenges;
Code Navigation Difficulties; User Studies.

1. INTRODUCTION
Integrated Development Environments (IDEs) is software which
integrates a text editor, file management, compiler, and other tools
to promote an efficient workflow for modern computer
programmers. IDEs play an important role in the modern software
development process, especially when creating lengthy codebases.
The text editors in these systems often include visual aids that use
indentation to indicate scope level, different colors for syntax

highlighting, and various other features to help programmers
understand their code structure and navigate through it more
easily.

Figure 1. A participant using JAWS with an 80-cell Brilliant
Braille Display, while programming in Java using the Eclipse

Integrated Development Environment (IDE).
Prior research on blind programmers has found that the
information conveyed through visual metaphors in IDEs are often
not conveyed by screen readers [2], which creates challenges for
blind programmers [9, 18], putting them at a disadvantage when
compared to their sighted peers [7, 11]. IDEs provide a particular
benefit when programmers are working on large pieces of
software, to help (sighted) programmers understand the structure
and relationships between lines of code. Blind programmers who
are using screen readers or braille displays (which convey
information linearly, one line at a time) have difficulty
understanding structural relationships quickly [11, 19, 23].
Screen reader users also have access to fewer advanced IDE
features for quickly moving through a large codebase, often
forcing them to navigate code line-by-line or jump to different
locations using “find/search” features [2].

Section 2 discusses how most prior studies on blind programmers
have based their findings on case study observations or feedback
from a relatively small number of users, e.g. 8 or 12 participants
[11, 19]. To build a foundation for future research addressing
users’ challenges, there is a need for larger empirical studies. Our
recent survey of 69 blind programmers explored a broad set of
issues [1], and participants listed navigating through code and
understanding its structure as key concerns. However, we had not
conducted follow-up interviews to analyze these issues more
deeply. To address this, we conducted this current observation
and interview-based study to specifically investigate how 28 blind
programmers navigate through code, using their own preferred
development tools while performing common programming
activities.

To preview for the reader, our study had three key findings:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ASSETS'17, October 29-November 1, 2017, Baltimore, MD, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4926-0/17/10…$15.00
https://doi.org/10.1145/3132525.3132550

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

91

1. Programming software (e.g., IDEs) did not meet participants’
needs for code navigation; they regularly struggled when
performing typical programming activities with these tools.
Nevertheless, participants still preferred to use IDEs, even
though they encountered these navigation difficulties.

2. Assistive technologies and specific accessibility features of
some IDEs did not provide adequate support to enable users to
navigate through code comfortably. Although some users were
able to customize their assistive technology to better convey
the information displayed by the IDE and trigger specific
commands, the inefficiency of code navigation made
participants feel a loss of control, and they often reported
disorientation in the code.

3. Participants felt uncomfortable disclosing their programming
needs (e.g., navigation difficulties) and their disability status
to colleagues or researchers, which may prevent them from
understanding the need to improve the accessibility of IDEs.

In summary, our findings provide greater empirical evidence
about the need to improve code navigation features in IDEs for
blind programmers, and it identifies opportunities for researchers
and industry for addressing these needs. This study contributes to
the literature by providing more detailed, firsthand feedback from
a relatively large number of participants.

This paper is structured as follows: Section 2 surveys prior work
in various tools and techniques to help blind individuals overcome
programming barriers. Section 3 outlines our specific research
questions to investigate how blind programmers navigate through
a lengthy codebase, using their own preferred development tools
and while performing common programming activities. Section 4
provides an overview of the methodology used in this paper to
investigate the outlined research questions in Section 3. Section 5
explains our interview and observation results, and Section 6
summarizes our conclusions and future research directions.

2. LITERATURE REVIEW
Globally, the number of students entering the Computer Science
discipline has increased over the past 10 years [7], however,
people with disabilities remain underrepresented in computing
[12]. Students who are blind must overcome significant
educational and technological barriers, including the heavy use of
images and visual abstractions in classrooms; prior researchers
have examined how the traditional curriculum in Computer
Science has not been designed with assistive technologies in mind
[18, 23]. While there has been significant prior research on
investigating particular design interventions to benefit blind
programmers, e.g. audio cues (Section 2.1) or navigation aids
(Section 2.2), there have been relatively few studies that have
explored the challenges faced by blind programmers more broadly
(Section 2.3).

2.1 Design Interventions: Audio Cues
Significant prior research has examined how to create audio-based
accessibility tools for computing students with visual disabilities
or other professional software developers [16, 21]. For instance,
Sanchez and Aguayo 2005 developed a custom programming tool
called Auditory Programming Language (APL) aimed to help
blind students write software code comfortably [17]. They
demonstrated that audio could convey important information to
non-visual users. However, their tool provided a limited set of
commands (e.g., input, output, cycle, condition, and variable)
making it difficult to scale.

Similarly, Stefik et al. [23] created a tool called Sodbeans based
on NetBeans IDE for Java programming, to help convey certain
information to students who are blind. The tool used audible cues
[6] so that blind students can learn programming concepts. These
cues were designed to be browsed in a hierarchical tree manner, to
support navigation. In addition, blind students have a rich set of
programming environments and tools that they can use beyond the
use of Java (e.g., Java, PHP, Ruby). The tool was evaluated based
on the students’ ability to master the programming concepts.

Various researchers, e.g. [20], have examined the potential of
auditory cues to benefit programmers, including the potential
benefits of non-speech audio for blind programmers: For instance,
Vickers and Alty [25] found that such audio helped programmers
locate bugs in their code. Specifically, musical cues proved useful
for conveying information to programmers during a debugging
process. Boardman et al. [4] created a tool called LISTEN to
investigate the use of sounds when analyzing various program
behaviors; their goal was to instrument computer programs so that
different audible sounds were mapped to different behaviors
during the program execution. Stefik et al. [22] investigated the
use of audio cues to convey lexical scoping relationships in
software code; different cues were played when a change in scope
was detected.

Some researchers have examined the limits of understandability of
audio cues: In [13], researchers conducted an experiment to
investigate the usefulness of auditory cues for navigating menus
on mobile phones. These authors also compared two techniques,
Earcons (a hierarchical progression of variable tones) and
Spearcons (spoken directions, compressed and sped up) as
navigation methods [26]; they found that Spearcons helped blind
users navigate through cell phones quickly and comfortably. They
also found that short cues were more effective than more
complicated cues, for conveying certain types of information.

In summary, audible cues have been found to be helpful for a
variety of programming activities. Further investigation might
help indicate whether audio cues can benefit non-visual users
(programmers) to locate errors and debug code faster, mainly to
reduce the amount of time blind programmers take to navigate
through lengthy codebases.

2.2 Design Interventions: Code Navigation
Several prior researchers, e.g. [8], have proposed interventions to
help enhance code navigation. By “code navigation,” we refer to
the ability of blind programmers to understand lengthy codebases
better and how each code statement is nested within the code,
which results in enabling blind programmers to navigate code
quicker.

Smith et al. [19] developed an Eclipse plug-in to help non-sighted
users understand code structure, to speed navigation through a
codebase. The authors used keyboard inputs and speech/sound
outputs of the hierarchical structure of the codebase to convey
certain information to non-visual users. In their work, authors
performed a usability test using hyperbolic browser method that
employs a fisheye technique [10]. The fisheye technique refers to
zooming-in on a single node in a hierarchy tree structure, with the
details of the ancestors and descendants presented in reduced
detail. Such an approach helped researchers identify strategies that
sighted developers tend to use while moving through familiar and
unfamiliar trees. Based on this, the authors defined a set of user
requirements for an accessible tree navigation system.

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

92

Similarly, Baker et al. [2] created an Eclipse plug-in called
StructJumper that aimed to help screen reader users navigate
through a large amount of codebase quickly. The tool was
designed to create a hierarchical tree representation based on the
codebase, which presents hierarchical tree-based information
about the nesting structure of a Java class. In their tool, blind
programmers used a TreeView feature to get an overview of the
code structure. In addition, they could use a Text Editor feature to
get an idea of where they are within the nested structure of the
code. Thus, blind programmers could look up contextual
information about their code without having to lose their position.
For example, with the use of shortcut keys, blind developers could
press a defined key to find which statement of the code he or she
is working on. Such a technique allows a blind developer to
quickly jump to the node corresponding to the current location.
This approach was similar to that used by other researchers to
recognize code in order to present a tree-like structure in a
hierarchical tree representation [19].

Other researchers have examined technology interventions to
improve code understanding for sighted developers: For example,
researchers in [5] created a system where code is presented in
“bubbles”, which are editable views of, e.g., specific methods or
collections of variables; each bubble is in a different color. Of
course, the heavy use of visual abstractions is not suitable for
blind programmers; further study would be needed to determine
whether this bubble metaphor could benefit non-visual users.

2.3 Programming Challenges
While a variety of studies have been published focused on the
design and evaluation of specific technology interventions to
benefit blind programmers, there have been relatively fewer
empirical studies to explore and identify programming challenges.
For example, Mealin and Murphy-Hill (discussed below)
interviewed 8 participants [11], and Smith et al. [19] conducted an
experiment with 12 participants to evaluate a code navigation
plug-in. We discuss two prior studies, most closely related to our
work:

Mealin and Murphy-Hill conducted an interview study with eight
experienced blind developers to highlight their programming
difficulties [11], and they identified a number of challenges: First,
they noticed that developers were not using the tools available
within the IDEs. It was unclear from their study whether users
were unaware of the tools offered within these IDEs, found the
tools to be too complex, or if the tools were not easily accessible.
Second, they found that many blind developers were using a
temporary text buffer to store programming notes and to work in
it. During the interviews, participants also mentioned challenges
with debugging, inaccessible UML diagrams, code navigation,
complexity of IDEs, and working in teams with sighted
programmers. The authors discussed how blind developers use
workarounds or other strategies to overcome the above-mentioned
challenges.

We recently conducted an online survey of 69 blind programmers
to identify challenges [1]. Similar to the findings of [11] regarding
the use of temporary text buffers, we found that blind developers
felt overwhelmed when using existing IDEs (e.g., Eclipse,
NetBeans, etc.), and therefore they preferred to use simpler editors
to write software code comfortably (e.g., Notepad, Notepad++,
etc.). In addition, participants indicated that navigating through
code and understanding its structure were key concerns. However,
the focus of our survey had been on programming challenges
broadly, and the survey methodology did not permit us to conduct

follow-up discussions with our participants to probe for additional
details about code navigation or conduct an in-depth analysis.

3. RESEARCH QUESTIONS
To better understand blind programmers’ challenges and build a
foundation for future research addressing these problems, we have
therefore conducted an observation and interview-based study to
specifically investigate how blind programmers navigate through
code, using their own preferred development tools and while
performing common programming activities. This new study also
allowed us to more specifically investigate this issue of code
navigation that had been raised in our prior survey [1].
Specifically, we wanted to investigate the following questions:

• RQ1: What difficulties do blind developers encounter when
navigating through a codebase?

• RQ2: What tools do they use in their development work?
• RQ3: What workarounds or strategies do they use to

overcome any code navigation barriers?

4. METHODOLOGY
As methodological inspiration, we have drawn upon the recent
work of Szpiro et al., who conducted a study using contextual
inquiry and qualitative data analysis to understand the challenges
faced by people with low vision when accessing computing
devices [24]. Their goal was to uncover challenges and identify
opportunities for researchers and industry to improve low vision
accessibility tools, and we have similar aims in regard to code
navigation for blind programmers. In this work, we used
observations and semi-structured interviews with blind
programmers to identify code navigation difficulties, the tools
they used, and any workarounds they employ. This methodology
will help us gain deeper insight, relative to our prior survey-based
study in [1]. In addition to identifying future research
opportunities, another goal was to involve blind programmers in
the research and to gather firsthand comments and suggestions
from these users.

4.1 Interview Design
Prior to the main study, we conducted pilot tests (mock interviews
with five sighted programmers) to ensure that our semi-structured
question plan, interview technique, and procedure were well-
formed. As a result of these pilot tests, the interview questions and
procedure were modified, e.g. the wording of some of the
questions were changed to use terminology more familiar to this
user group.

The planned questions included five multiple-choice and 16 open-
ended questions, which were grouped into several topics:

• Demographics: user characteristics such as age, gender,
country, visual acuity, and level of expertise in software
development.

• Languages and Tools: to identify a list of programming
languages and programming tools (e.g., Eclipse, etc.).

• Assistive Technologies: to identify participants’ preferences
of assistive technologies such as screen readers or braille
displays.

• Development Style: to capture and observe blind
programmers’ strategies when developing software, mainly to
navigate code.

• Navigation Difficulties: to uncover navigation difficulties and
how it impacted blind developers’ performance.

• Navigation Tools: to investigate existing code navigation
tools and how it helped overcome navigation difficulties.

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

93

• Working in Teams: to understand how blind programmers
work in teams, mainly with sighted programmers.

4.2 Participants
We recruited participants using a private mailing list from
previous studies (individuals had agreed to join this mailing list
and had previously indicated an interest in participating in studies)
and by posting advertisements on private groups (Google,
LinkedIn, and AppleVis) for people who are blind. A total of 36
people responded. We conducted an initial screening interview
over Skype and Google Hangouts to first determine the eligibility
of the participants. To participate, individuals had to be an
experienced developer (5+ years in programming), 18 years or
older, self-identified as fully blind, actively engaged in
programming either as a job or a hobby, and a user of assistive
technologies (e.g., screen reader or braille display). Eight
respondents were excluded from the study due to the use of
magnifiers and corrective lenses. (The focus of this study was on
users of screen readers or braille displays.)

Afterward, we conducted the interview sessions with the
remaining 28 blind programmers. Participants (all male) varied in
age from 22 to 52 (mean =29.68, SD=6.59). Our sample showed
variation in programming experience (lowest = 5 years, highest =
24 years) and employment status (e.g., retired, employed,
unemployed, freelancer). Few unemployed participants are
searching for job opportunities. All participants use screen
readers, and 8 participants used braille displays (see Table 2).
Participants were from five different countries: United States (n =
22), United Kingdom (n = 3), Australia (n = 1), India (n = 1), and
the Netherlands (n = 1).

4.3 Procedure
The interview took place online via Skype and Google Hangouts
per the participants’ preference. Prior to the interview, participants
were provided with informed consent documents and the
interview questions (so they could familiarize themselves with the
interview topic in advance). Each interview lasted approximately
one hour and occurred during January to December 2016.
Enrollment had not been fixed; rather, recruitment was
discontinued (at 28) after the researcher observed that no new
issues were raised during the sessions conducted with participants
27 and 28. All participants were compensated for their time with
$50 Amazon gift cards.

The session began with the brief semi-structured interview
(questions in section 4.1). This was followed by an observation
period when we asked participants to engage in common
programming activities. The participant transmitted their voice
and their computer’s audio output, and in addition, they
transmitted the video image of what was displayed on their
computer screen. The interviews and observations were recorded
with the participants’ prior approval, using Screencast-omatic
software.

Since our goal was to understand code navigation difficulties and
observe how participants deal with these navigation problems, we
identified in advance a set of programming activities, which we
requested the participant to perform during the observation:

• Conducting a programming walk through using any language
or tool: We asked the participant to open some code that they
had been editing recently as part of their professional work
and to explain the code, giving a demonstration of its
structure.

• Demonstrating for the researcher some code navigation
difficulties they encounter frequently.

• Navigation walk through of some other programmers’
codebase with which the participant had no prior knowledge.

• Demonstrating any strategies or workarounds that the
participant uses to overcome navigation difficulties.

• Demonstrating any solutions or tools and how they helped.

We observed participants perform the above-mentioned
programming tasks, and we occasionally interrupted them with
questions. For each question, we encouraged participants to speak
freely and openly (explaining that their feedback was very
valuable and this research might benefit other programmers in the
future) so that we can elicit more detailed answers. We did not
insist that participants use specific programming languages or
development tools, mainly because participants owned various
platforms and had their own preferences. In a few cases, some
participants did not wish to perform one of the asks or were
unable to do so, and we did not insist in those cases. Our priority
during the session was to elicit comments and impressions from
the participants about code navigation difficulties that they
encountered when performing these tasks, to capture information
about: what assistive technologies that they use and why, how
they used them, how they completed these activities, and how
they felt when performing it.

4.4 Data Analysis
During the session, we captured the following data:
• Responses to closed-ended questions were recorded.
• Additional written notes were taken for open-ended responses,

with particular focus on capturing direct quotations.
• Timestamps were noted when an important issue was raised,

to facilitate the researcher reviewing key portions of
recordings.

• All notes were stored and duplicated for further analysis.

We followed a qualitative methodology for our data analysis. The
data was managed and annotated using NVivo qualitative data
analysis software. Following an open-coding method [15], we
analyzed open-ended questions based on their content using a set
of codes that we developed to represent recurring ideas or
problems raised by participants. We assigned codes to segments
of text transcription or experimenter notes in our dataset.

Two researchers performed coding independently, reading and
organizing the participants’ transcripts. Afterwards, they met
periodically to discuss code categories (e.g., navigation
challenges, assistive technologies, programming tools,
workarounds, and user needs). In rare cases when coders
disagreed (inter-rater reliability = 67%), they held a meeting to
reach an agreement and form a consensus coding. We generated a
set of themes based on the number of times each issue was raised.
For example, high occurrences indicate higher demand or
importance. Themes were developed using affinity diagramming
[3], which is a useful technique for organizing and analyzing
large-scale qualitative data.

5. RESULTS
In this section, we describe key findings, illustrated with examples
of our participants’ behavior or comments from the interview
sessions. Quotations are labeled with code numbers preceded by
the letter P that represent individual participants (e.g., P1, P2,
etc.). This section is organized based on the major themes that
arose during our data analysis: code navigation challenges
(Section 5.1), tools (e.g., assistive technologies, programming

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

94

languages and tools) (Section 5.2), and strategies to overcome
navigation difficulties (Section 5.3).

5.1 RQ1: Code Navigation Challenges
In software development, programmers regularly use their sight to
obtain information about their software codebase, which allows
them to formulate an understanding of their code structure and
navigate throughout the code. Blind programmers rely on other
senses (e.g., hearing and touch) to acquire contextual and
structural information about their software codebase. We observed
our participants encountering several code navigation difficulties
when performing various programming activities, and participants
discussed this issue in their interview responses. We summarize a
taxonomy of sub-types of navigation difficulties in Table 1; next
to each description, we provide the number of participants who
mentioned each issue. Due to length constraints, the remainder of
this section will summarize some key points, along with
illustrative examples and quotations from participants.
Navigation Difficulties #

Participants
Debugging: difficulty navigating through the code in the
process of understanding a wrong output.

24

Line by Line: difficulty navigating through code to
locate specific information without having to go through
the entire codebase linearly, line-by-line.

23

Indentation: unable to distinguish the level of
whitespace using a screen reader in indentation-based
languages, e.g. Python.

22

Nesting: difficulty navigating through nested methods,
loops, functions, or classes.

20

Back Track: difficulty returning quickly to a specific
line (in a lengthy codebase) when reviewing other code
statements in various files.

18

Errors: difficulty quickly locating code errors while
navigating through lengthy codebases.

14

Scope: difficulty understanding the scope level, e.g.
while navigating deeply nested methods or loops.

14

Characters: difficulty perceiving certain characters,
operators, and parentheses, e.g. missing some characters
while coding.

10

Autocomplete: difficulty accessing the autocomplete
feature due to incompatibility with the screen reader.

9

Relationship: unable to distinguish the relationship
between code entities within a codebase, e.g. the
relationship between a class and its subclasses.

9

Line Numbers: difficulty accessing line numbers in the
code editor as they were not designed to be readable by a
screen reader, e.g. using PyCharm with VoiceOver.

7

Elements: unable to quickly locate a specific element
within a given array, class, function or loop, e.g. locating
values or variables.

5

Table 1. List of navigation difficulties and number of
participants who mentioned each during interviews; the

difficulties are sorted based on this number.

Debugging: When a failure occurs in software, programmers
must perform three main activities to correct the failure. First,
they need to perform fault localization to identify the code
statement responsible for the software failure. Second, they need
to complete a fault understanding activity that involves
understanding the origin of the software failure. Third, they must
perform a fault correction activity, to determine the best way to
remove the cause of the software failure. All three of these
activities are commonly referred to as “debugging,” which is an
essential skill in software development [14]. Our participants
indicated that they understood the importance of debugging and
how it helps to correct unwanted software behaviors. However,
participants indicated that they tend to rely on simple debugging

techniques, mostly because of the accessibility issues in current
debugging tools (e.g., FindBugs, Firebug, etc.). For example, P4
examined several available debugging tools to find one that is
compatible with their screen reader. He found that most
debugging tools were not accessible as they were designed with
vision in mind. Therefore, P4 and many other participants (n = 19)
decided to rely on simple debugging techniques such as inserting
print commands in the code or tracing:

“I rely on printf to fix code defects. I also tried to test different
tools like FindBugs or Firebug, but they were not fully accessible
to [my] screen reader.” (P4)

P26, on the other hand, discussed the difficulty of navigating
through a lengthy codebase to find logic errors. He explained that
debugging techniques, such as printf, may take longer as there is
no clear indication where to find the problem that caused the
software to behave incorrectly. While most participants relied on
simple debugging techniques, some (n = 9) used advanced
debugging tools:

 “I was trained to use advanced debugging tools by my sighted
colleagues even with the accessibility issues. I think the training
helped me use them better.” (P8)

Although participants vary in their own debugging experiences,
most participants mentioned that debugging is a significant barrier
to blind programmers, mostly because it is difficult to interpret
software control flow while debugging.

Line by Line: We have discussed previously how vision helps
software developers get an overview of the entire codebase. To
get an overview of code, most of our participants (n = 18)
indicated that they tend to go through a codebase line by line,
mainly because screen readers encourage users to move through
text in a linear fashion. P5, for example, explained a difficulty that
they encountered when working with complex codebase:

“How to accomplish things in my complex code [is] frustrating. I
need more time to understand each line and more time to
remember what each code block is doing.” (P5)

While several participants discussed the difficulty of navigating
linearly with a screen reader, some (n = 8) used other techniques,
e.g. searching through the codebase using keywords, to avoid
scrolling through the entire codebase line by line. While P13 and
others enjoy using keywords, another participant (P20) indicated
that keyword searching is time-consuming and often frustrating,
because the same keyword might appear in several locations
within the same codebase. P6 and a few others, on the other hand,
agreed that keywords are very popular among blind developers to
find a specific code statement. But considering that some cases
where the same keyword is used twice or even more, blind
programmers often need to review a few code statements before
and after the keyword location to ensure that they have found the
right line:

“Keywords [are] useful when you deal with the small code, but
not a large one, especially when you try to find a variable that
[has] been used several times in different locations. Which code
block I am reviewing is hard to distinguish with keywords.” (P6)

Indentation: Indentation-based languages (e.g., Python, Occam,
etc.) use whitespace indentation to delimit code blocks, instead of
using keywords or curly braces. In these languages, an increase in
indentation may indicate a new, deeper code block, and a decrease
in indentation indicates the end of the code block. Python was the
most commonly used programming language among our

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

95

participants (n = 18), mainly because of their job requirements. To
navigate through an indentation-based language, most participants
indicated that they tend to go through it block by block instead of
line by line, mainly to avoid the verbalization of whitespaces
(indents) using a screen reader. By “block by block,” we refer to
instances when blind programmers wish to skip-over code blocks
(e.g., in a loop, a function definition) to avoid reading one code
statement at a time while browsing the entire codebase. For
example, P10 explained that a screen reader will verbalize an
indentation as a sequence of individual “space” characters, rather
than a single indent of a particular length. When a screen reader
user navigates through indentation based languages, the blind
programmer will hear his or her screen reader verbalizing
whitespaces as a single space (e.g., “space, space, space”) rather
than a count (“three spaces”).

P21 explained how to overcome the whitespace problem using a
screen reader. The solution involves writing a custom script (a
modification of the typical functionality of a screen reader for a
particular application) that forces the screen reader to calculate
whitespaces and verbalize it as a complete list of whitespaces:

“I found it useful to write script that forces my screen reader to
calculate the whitespaces and then present it [to me]. I designed
the script to say, for example, ‘four spaces’ instead of saying
‘space’ four different times.” (P21)

P3 explained a similar approach:
“Instead of listening to my own screen reader telling me all the
spaces separately. I wrote [a] script to give me the level of
indentation in my code.” (P3)
Although calculating whitespaces and verbalizing it helped
several participants (n = 5), others (n = 4) found a braille display
much more helpful in determining the level of whitespaces. For
instance, P16 reported that a braille display provides valuable
assistance in determining the level of whitespaces, through touch.
Section 5.2 discusses how users mitigate this whitespace issue by
using a braille display in conjunction with their screen reader:

“I use a screen reader and [also] braille display with Python, it
helps [me] feel the indentation in my code.” (P16)

5.2 RQ2: Tools in Software Development
In this section, we discuss the participants’ behavior or
experiences towards assistive technologies, programming
languages, as well as development tools. We also describe each
method and technique used by participants to perform various
development activities. We presented each category with the
actual number of users based on the participants’ use of each
language or tool.

5.2.1 Assistive Technologies
Assistive technologies refer to any specialty hardware or software
add-ons that were designed to increase the functional capabilities
of people with disabilities. These assistive tools, whether
developed by the industry or privately customized by the end
users, provide freedom and independence to people with special
needs to accomplish tasks that are difficult without getting help
from those who are sighted. In this paper, participants used two
different forms of assistive technologies; screen readers and
braille displays. A screen reader enables blind users to access the
computer display by linearizing the presentation of information
from the graphical user interface and verbalizing this information
using a speech synthesizer (or transmitting this information to a
braille display).

Participants described a variety of experiences performing
common programming activities using their screen reader. For
example, P2 prefers to use the Non-Visual Desktop Access
(NVDA) screen reader when working with a Python codebase:
“I use NVDA because its free, made by a blind user, and helps me
convert text into [a] Braille Display.” (P2)
P10 uses NVDA for programming activities, mainly because it
allows for personal customization. He uses PyCharm to write
Python applications, despite challenges in using this tool with his
screen reader. P10 indicated that PyCharm is very complex
platform, and it poses many programming problems:
“I like to use PyCharm to write python application, I modified
NVDA script to ignore unwanted features and to help [me] reduce
its complexity.” (P10)
Although many participants (n = 12) decided to use NVDA for
personal reasons or financial constraints, others (n = 16) preferred
to use a different type of screen reader (see Table 2). For instance,
P13 uses JAWS with development software, mainly because it
allows users to load specific scripts (customized modifications of
its behavior) for each platform:
 “JAWS provide me with great functionality. You can assign
specific script to each application, it helps reduce the time I take
to navigate through the entire application.” (P13)
A refreshable braille display is an electro-mechanical device to
translate information from the computer display into braille
characters. It uses round-tipped pins in a flat surface that are
raised through holes to convey information to blind users. These
devices are available in different sizes (different number of
characters that can be displayed in a line simultaneously, e.g., 18,
40, 80) based on the user’s needs. In this paper, several
participants (n = 8) indicated that they use a refreshable braille
display with a screen reader to perform various programming
activities (see Figure 1). For example, P24 preferred to use a
braille display when working with Python codebases, mainly to
understand the level of indentation as its difficult to understand
when using a screen reader alone:
“Braille display is much better than screen reader when it comes
to detecting indentation level. [The] screen reader will say
‘space’, ‘space’, ‘space’, etc. Which is too much to handle with
complex code.” (P24)
Some participants (n = 6) explained that they preferred to use a
refreshable braille display to navigate through a codebase because
it was quicker than a screen reader. Others (n = 2) tend to use
braille displays because it reduced their “hearing load,” i.e. the
stress they experience from attending too much information
conveyed on the audio channel in an interface. For example, P28
discussed how a screen reader creates significant hearing load
when performing programming activities at work:
“I read texts and software code using braille display, [it] helps
reduce [the] hearing load and makes me aware of the
surrounding, especially in work settings.” (P28)
Other participants (n = 2) explained that they used a multi-line
braille display. (Most braille displays present a single line of
characters, but some are capable of presenting multiple rows of
characters simultaneously.) Participants indicated that this device
helped them to read several lines of code to get a better overview
of the code structure, rather than using a screen reader or a single-
line braille display, which presents information linearly:

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

96

“Navigating code [is] difficult with screen reader, you feel
isolated to one line at a time, I use multi-line braille display which
helps me read more than one line at a time.” (P16)

5.2.2 Development Languages & Tools
Our participants’ knowledge and experience in programming
languages and development tools varied. Some (n = 15) were
proficient in more than one programming language, and others (n
= 13) were experienced in a single language only. This variation
was mainly due to their specific job requirements or constraints
that are presented by the structure of the programming language.
Participants were asked to the list the programming languages and
tools that they use to develop software (see Table 2). Our results
showed that Python was the most used language among all
participants. In fact, 18 participants (n = 64%) indicated that they
use Python to write software code for several reasons, including:
its simplicity, its rising popularity, and the fact that can be used as
an interpreted language – thereby providing users with the ability
to dynamically inspect and change their programming code.
Although Python was the most used language among all
participants, other participants (n = 10) preferred to use Java,
again, mostly for job requirements. For example, P27 developed
several applications that run on computers, smart cards, and cell
phones for the company:
“I developed the company clients support application with other
colleagues that was written in Java. [We] choose Java because
[of] its well-written libraries. [We] use other languages as well,
but mostly Java.” (P27)

Operating
Systems

Assistive
Technology

Programming
Languages

Programming
Editors

Windows 23 NVDA 12 Python 18 Notepad++ 18
Linux 8 JAWS 10 Java 10 PyCharm 16

Mac OS 4 ORCA 5 C++ 10 Visual Studio 12
 VoiceOver 4 SQL 7 NetBeans 8
 LSR 3 C 6 Notepad 6
 Windows-Eyes 1 Swift 4 Notepadqq 5
 Braille Display 8 Ruby 3 Eclipse 4
 C# 2 Xcode 4
 Objective-C 2 CODA 4
 PHP 2 Atom 2
 Perl 1 IDLE 1
 TextMate 1
 Padre 1

Table 2. Number of participants in our study using various
operating systems, assistive technologies, programming

languages, and programming editors.

In regard to development tools, all participants preferred to use
simpler editors rather than current IDEs. Participants explained
that simpler editors (e.g., Notepad, Notepad++, Notepadqq, etc.)
were popular due to their simplicity and flexibility with assistive
technologies and programming languages. Notepad++, for
example, was especially popular among users of the Windows
operating system as it available for free. P4 explained that his
reason for using Notepad++ was due to its wide range of plug-
ins, that helped facilitate writing software code. While some
participants (n = 7) favored plug-in features to install tools that
had previously been developed by the blind programming
community, others (n = 8) find it useful to write their own plug-
ins. For example, P15 worked with several blind programmers to
develop a plug-in that allows screen reader users to navigate
through autocomplete functionality, mainly to make it more
accessible. Autocomplete is a common feature in most IDEs in

which the system displays a pop-up menu of predictions of what
the programmer is about to type next, based on the first few
characters of the word they have typed. But this feature is not
fully accessible to screen reader users, mainly because it appears
on the screen as a pop-up which the screen reader does not
recognize. Although most participants preferred to use simpler
editors when performing various programming activities, all
participants agreed that IDEs are necessary at times, despite
accessibility problems.

5.3 RQ3: Programming Strategies
In the midst of a discussion about navigation difficulties with our
participants, it would have been easy for participants to forget to
mention positive information, such as navigation workarounds or
strategies. For this reason, we specifically asked participants to
demonstrate or explain some examples of these. Our participants
discussed a myriad of strategies to overcome various
programming challenges, mainly code navigation difficulties. Due
to length constraints, this section will summarize some key points,
along with illustrative examples and quotations from participants.

Simple Editors: As discussed above most participants (n = 26)
indicated that they rely on simple editors to write software code;
we highlight here how several of our participants reported using
simple editors in concert with IDEs – to overcome inaccessible
features in existing IDEs. For example, several participants (n = 8)
explained how they use simple editors to record code errors, bugs
status, and where variables located to enhance navigation. Other
participants (n = 7) use them to avoid losing their current spot
while reviewing other code statements. For example, P18
demonstrated how to use Notepad to navigate through a complex
codebase that was written by other programmers:

“The code I am showing is large and long. I work with other
programmers to maintain it and mostly to modify it. I use Notepad
to record code errors while reviewing other statements for
reference.” (P18)

Custom Scripts: Our participants expressed mixed feeling about
the use of assistive technologies, mostly screen readers. In this
work, most participants (n = 19) modified screen reader settings to
match their own personal needs. Others (n = 9) wrote custom
scripts to overcome many issues including programming
difficulties. Participants explained that creating a custom script is
not a perfect solution, yet it still provides an alternative method to
solve some of the problems they experience when interacting with
current IDEs. For example, P11 showed a script that was designed
to force the screen reader to locate elements on the PyCharm
(IDE) which was not fully accessible. P9, on the other hand,
reported that his screen reader will not read line numbers on some
of the IDEs, mainly because line numbers was not designed to be
readable by a screen reader. Therefore, he wrote a custom script to
force the screen reader to read line numbers:

“I wrote many custom scripts to help do my job faster. My screen
reader will not catch line numbers on some of the IDEs, so I
coded [a] script to force my screen reader catch line numbers.
(P9)

Shortcut Keys: as researchers, we were interested to know how
blind programmers get a high-level overview of the entire
codebase for navigation purposes. Screen readers navigate
through codebase linearly, forcing the user to read the entire
codebase one line at a time. To overcome this problem, several
participants (n = 9) indicated that they use shortcut keys as a
navigation strategy. For example, P4 relies on shortcut keys to

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

97

locate specific code statements without scrolling through the
entire codebase. Other participants (n = 12) use them to get
structural information about their codebase. However, P1 argues
that shortcut tools like find comment (to search for text strings)
can help programmers find content in the codebase using
keywords, but often a single keyword is not enough to jump
through all the associated content (for e.g. in programming
languages like Java and C++, jumping through all the functions in
a code using a single search keyword can be ineffective as all
related functions might not use those specific keywords).

However, P12 said that the use of shortcut keys was inefficient
since it forces users to jump between code blocks, which is
difficult for someone who is blind, especially for unfamiliar
codebases:

“Depending on the language, the start of the block may not be
easy to follow without reading through all lines. In cases like that,
shortcut keys may not be [a] helpful strategy at all.” (P12)

P19, on the other hand, was annoyed that various IDEs make use
of specific shortcut key combinations that are also used by his
screen reader, leading to conflicting functions:

“I rely on shortcut keys to navigate through code, but there are
overlapped keys between several applications. I had to write a
custom script to control overlapped shortcut keys for me.” (P19)

Code Comments: In software development, commenting
involves placing different readable descriptions inside code blocks
to detail the purpose of each block. Most blind developers rely on
them to make code maintainable and debugging easier.
Commenting is an important technique, especially when a project
involves other programmers. In this work, most participants (n =
16) used commenting, not in the traditional manner (to make
source code readable or document how a certain function works),
but rather to overcome navigation barriers. For example, P3 used
commenting to locate software bugs that need to be addressed
immediately with other software programmers. Although some
participants (n = 6) used commenting to locate code errors or
bugs, others (n = 9) use it to highlight code statements that require
further review:

“When modifying some of my code function, I use comments to
locate them fast, especially while checking other statements so I
can get back to them fast.” (P22)

Sighted Help: Our participants indicated that seeking help from
others, especially from those who are sighted, is avoided by many
blind individuals in workplace settings, often due to
embarrassment about the amount of time they take to accomplish
certain tasks. Additionally, many participants indicated that they
wanted to demonstrate that their visual loss had no impact on their
ability to fulfill their job requirements. Although most participants
(n = 16) tended to avoid seeking help from sighted co-workers,
others (n = 10) found it necessary. For example, P25 seeks sighted
help to get an overview of the entire codebase when a new
implementation takes place. This helps reduce the amount of time
a blind programmer takes to get an overview of the entire
implementation. P7 agreed that requesting sighted help is
understandable since blind programmers are unable to simply
glance at codebase due to the linear nature of the screen reader:
“Reviewing another programmer’s code with a screen reader
takes longer than someone who is not blind, I seek help sometimes
to get [a] quick overview of the new implementation.” (P7)

P13 shares a similar opinion about the importance of requesting
sighted help whenever needed:

“I enjoy working with sighted programmers, you always learn
many tips.” (P13)

5.4 The Need for Better Navigation
As part of our interview, we also discussed with participants some
possible future features that could be added to IDEs to improve
their accessibility. In some cases, the participants requested
features prior to being prompted. For all participants, we included
a section in the interview in which we briefly described several
possible future enhancements to IDEs – to gauge the interest our
participants had in each option. Overall, 82% of our participants
(n = 23) showed interest in using these various features (listed
below), while 18% said that they might be willing to try them.
The set of possible future enhancements to IDEs discussed during
our interviews included the following:

Tree View: Most participants expressed the need to have an
alternative feature to navigate through codebase, mostly to avoid
going through it line by line. For example, several participants
suggested a hierarchical navigation feature in which codebase
could be presented as a tree, mainly to hide code complexity.
(This is in agreement with prior findings of Baker et al. [2].) In
fact, 18 participants (64%) showed interest in using such a feature.
Tree view (or tree list) is already available feature in some of the
IDEs but is not fully accessible to screen readers:
“Going through code line by line is very difficult with [a] screen
reader, especially when you deal with complex software code. As
blind programmers, we discuss many ideas about accessibility in
programming. In fact, we thought to program [a] tool that
presents the software code as tree instead of navigating through
line code, which takes forever.” (P14)

“I would love to see a tool that shows code in a different way, not
line by line.” (P27)

Auditory Feedback: Several participants (n = 7) suggested that
sounds should become a core integration component when
interacting with programming activities, especially for blind
programmers. For example, some participants (n = 3) indicated
that sounds would help them monitor background processes in
development tools while attending other tasks. One advantage is
that auditory cues can help blind programmers split their attention
between an immediate task and waiting for the result of some
background process. Participants also suggested that sounds could
be used to help provide additional information regarding syntax
errors, invalid statements, and current location in code in order to
reduce programming difficulties. (This is in agreement with
findings of Vickers and Alty [25].) In fact, 19 participants were
interested in using auditory feedback (68%), while 9 (32%)
participants said that they would be willing to try it:

“It would be nice to have audio feedback when we make code
mistakes. It will help locate errors while navigating through code
or maybe highlight any syntax error.” (P8)

“The way how programming relies on visual representation is the
major impact in almost all difficulties that we face as blind
individuals. We need another way of programming, maybe with
audio or something else as I can’t think of different way that could
help us.” (P24)

Bookmarks or Tags: Our participants described how they used
comments to leave keywords at particular locations in their code,

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

98

which they could then jump to more easily by using a search
feature. Participants also reported that they tend to remove all of
these comments before sharing their code with others, especially
sighted people, mainly because they feel embarrassed. Several
participants expressed the need to have a bookmark feature in
which they could tag specific line of code and return to it later for
further modification (without making use of comments and
searching to accomplish this task). Participants cautioned that the
bookmark feature should be designed to jump to a specific code
statement, rather than to a specific line number (which may shift
when additional code is inserted or deleted). Bookmark or Tag
features are already available in Visual Studio and other IDEs,
further investigation may indicate whether such tools are fully
accessible and beneficial for non-visual users. In fact, 24
participants (86%) showed interest in using bookmark feature,
while 4 (14%) participants said that they might try it:

“I always wanted to build [a] tool that tags code for personal use.
You could build it in [a] way that any line can be tagged either for
private or public comments. You could also use shortcut keys to
locate each tag to quickly find them. I guess I did not find the
right time to develop it.” (P22)

Nesting & Scope Level: Nested code is commonly used in
software development where various programming logic
structures are combined to one another (e.g., embedded within one
another). Deeply nested code can pose challenges for blind users
because it is harder to read. When nested code goes beyond three
levels of indention, it can be difficult to understand and navigate.
To handle nested code, sighted programmers tend to use code
folding in software editors. This feature allows them to collapse
an entire code block (visually hide the full text of the code and
replace it with a small visual placeholder instead), which allows
programmers to have a better view of the surrounding code
statements. Several of our participants also suggested that it would
be valuable to have a scope and nesting level indicator feature.
This would read aloud the current cursor location when a special
shortcut key combination is pressed. We are not aware of any
similar study or tool in this regard. In fact, 19 (68%) of our
participants were interested in having nesting and scope level
indicators, while 9 (32%) participants said that they might try it:

“I find it difficult to know my location when working with nested
code block. You can’t tell with a screen reader unless you read
the entire block. I think a good solution is to have a tool that gives
[me] the location and how deep I am within the nested code.”
(P5)

Class Relationships: In object-oriented programming, a class is
used to describe one or more objects, mainly to serve as a
template for creating various objects within a program. Each
object is created from a single class – this one class could be used
many times, mostly to instantiate multiple objects. It can be also
used by software developers to isolate specific objects so that their
internal variables or methods are not accessible from all parts of
the program. This prevents the programmer from changing
internal implementation details of some code, which might break
other parts of the codebase. Programmers tend to use classes to
help create more structured programs that can be easily modified.
The inheritance relationships for classes can become complex,
especially when there are multiple subclasses that inherit all or
some of the characteristics of the main class. To understand class
relationships, sighted programmers often rely on diagrams (e.g.,
how components are interrelated). Diagrams can be difficult to
understand by blind programmers. Our participants expressed the
need to have some method of conveying class relationship

features, e.g. audio cues as they navigate through classes or
subclasses in order to provide an overview of classes in a
codebase. We are not aware of any similar study or tool in this
regard. In fact, 17 (61%) of our participants expressed interest in
using a class relationship feature, while 11 (39%) participants said
that they might use it:

“It would be interesting to have class relationship tools where you
get instant feedback through audio. Maybe [by] pressing shortcut
keys to get audio feedback whenever I need to know all the
subclasses of a class.” (P18)

6. CONCLUSION AND FUTURE WORK
In this paper, we presented our exploratory study aimed at
understanding code navigation challenges encountered by blind
programmers when using various development tools. We
illustrated and discussed our methodology for learning about code
navigation difficulties from our participants: blind software
developers. Our study offers a new perspective into the use of
common development tools (e.g., Eclipse, NetBeans, etc.)
alongside assistive technologies by developers who are blind.
Most previous studies have based their findings on a small
number of participants [2, 11, 19]. Our results arose from
observing and interviewing a much larger sample, and our
findings highlight various code navigation difficulties based on
different programming languages and tools.

Our findings indicated that participants struggled to navigate
through codebases using existing development software alongside
assistive technologies (e.g., screen reader). Although accessibility
tools provided benefits, they failed to give enough support for
blind programmers to navigate through codebases quickly and
comfortably. Since navigation options in IDEs are restricted to
sighted users, blind programmers prefer simpler editors (e.g.,
Notepad, Notepad++). Participants explained and demonstrated
how diverse programming environments, in combination with
assistive technologies, lead to various challenges, often because
these IDEs were designed without accessibility in mind.

Most of our participants preferred to use a screen reader (despite
its limitations) to write software code. Others found this difficult,
and therefore, favored using a braille display instead. However,
several of our participants indicated that they could not afford to
purchase a braille display. While most IDEs were not fully
accessible, blind programmers still rely on them to accomplish
their work. Moreover, some blind programmers may seek sighted
help for various reasons, mostly to access content that is not
accessible with assistive technologies. Although some blind
programmers seek sighted help, others prefer writing custom
scripts to overcome many programming challenges. For example,
several blind programmers wrote custom scripts to enhance
navigation in indentation-based languages. Others wrote scripts
for each IDEs, mainly to access features difficult to use with a
screen reader.

There were some limitations of our study: First, we only explored
navigation difficulties encountered by experienced developers,
who were totally blind, actively engaged in programming either as
a job or hobby, and used assistive technologies to access the
computer display (e.g., screen reader, braille display, or both). It
was beyond our scope to study novice programmers or individuals
with greater diversity in their visual acuity. A further investigation
into such an important user group may reveal different findings.
Secondly, while the qualitative design of this study allowed us to
gather firsthand comments and experiences from our user group,
and to discover new issues that arose, in future work, it may be

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

99

important to follow up this study with a survey administered to a
larger group of participants, to verify some of our findings.

The navigation challenges identified in this study illustrate the
need for further research on improving the usability and
accessibility of current IDEs. For example, participants showed
interest in using a new forms of code navigation, e.g. using
hierarchical navigation approaches. Participants also indicated a
desire for bookmarks (or tags) features that would allow blind
programmers to tag specific line of code and return to it later for
further modification. They also expressed interest in scope and
nesting level indicator, auditory additional feedback, and methods
for conveying class relationships, which could make programming
more accessible for these users.

Finally, while the participants in our study expressed interest in
various technology interventions to address their needs, it would
be necessary in future work to conduct formal evaluations of the
efficacy of such technology in studies with blind developers. In
fact, we are specifically planning, in our future work, to explore
some form of auditory feedback which could help convey
important information while users are navigating through lengthy
codebases. Several participants expressed interest in this
technology. Participants also suggested that audio cues could be
used in various other programming activities. We plan to conduct
participatory design research to understand how to best use
auditory cues in a code navigation system.

In summary, the results of this study provide future accessibility
researchers a foundation for understanding the needs of blind
programmers, which may support their work in creating and
evaluating new technologies to address those needs.

7. ACKNOWLEDGMENTS
We acknowledge scholarship support from the King Salman
Scholarship Program. We would like to thank our participants and
our anonymous reviewers for their valuable feedback and insights.

8. REFERENCES
[1] K. Albusays and S. Ludi. Eliciting programming challenges faced by

developers with visual impairments: exploratory study. In Proceedings of
the 9th International Workshop on Cooperative and Human Aspects of
Software Engineering, pages 82–85. ACM, 2016.

[2] C. M. Baker, L. R. Milne, and R. E. Ladner. Structjumper: A tool to help
blind programmers navigate and understand the structure of code. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, pages 3043–3052. ACM, 2015.

[3] H. Beyer and K. Holtzblatt. Contextual design: defining customer-centered
systems. Elsevier, 1997.

[4] D. B. Boardman, G. Greene, V. Khandelwal, and A. P. Mathur. Listen: A
tool to investigate the use of sound for the analysis of program behavior.
In Computer Software and Applications Conference, 1995. COMPSAC
95. Proceedings., Nineteenth Annual International, pages 184–189.
IEEE, 1995.

[5] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola Jr. Code bubbles: a working
set-based interface for code understanding and maintenance. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 2503–2512. ACM, 2010.

[6] S. A. Brewster. Using nonspeech sounds to provide navigation cues. ACM
Transactions on Computer-Human Interaction (TOCHI), 5(3):224–259,
1998.

[7] J. M. Francioni and A. C. Smith. Computer science accessibility for
students with visual disabilities. In ACM SIGCSE Bulletin, volume 34,
pages 91–95. ACM, 2002.

[8] A. Z. Henley and S. D. Fleming. The patchworks code editor: toward faster
navigation with less code arranging and fewer navigation mistakes. In
Proceedings of the 32nd annual ACM conference on Human factors in
computing systems, pages 2511–2520. ACM, 2014.

[9] M. Konecki, A. Lovrenčić, and R. Kudelić. Making programming
accessible to the blinds. In MIPRO, 2011 Proceedings of the 34th
International Convention, pages 820–824. IEEE, 2011.

[10] J. Lamping, R. Rao, and P. Pirolli. A focus+ context technique based on
hyperbolic geometry for visualizing large hierarchies. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages
401–408. ACM Press/Addison-Wesley Publishing Co., 1995.

[11] S. Mealin and E. Murphy-Hill. An exploratory study of blind software
developers. In Visual Languages and Human-Centric Computing
(VL/HCC), 2012 IEEE Symposium on, pages 71–74. IEEE, 2012.

[12] National Science Foundation, National Center for Science and Engineering
Statistics. 2017. Women, Minorities, and Persons with Disabilities in
Science and Engineering: 2017. Special Report NSF 17-310. Arlington,
VA. Available at www.nsf.gov/statistics/wmpd/.

[13] D. K. Palladino and B. N. Walker. Learning rates for auditory menus
enhanced with spearcons versus earcons. Georgia Institute of
Technology, 2007.

[14] C. Parnin and A. Orso. Are automated debugging techniques actually
helping programmers? In Proceedings of the 2011 international
symposium on software testing and analysis, pages 199–209. ACM,
2011.

[15] J. Saldaña. The coding manual for qualitative researchers. Sage, 2015.
[16] J. Sánchez and F. Aguayo. Blind learners programming through audio. In

CHI’05 extended abstracts on Human factors in computing systems,
pages 1769–1772. ACM, 2005.

[17] J. Sánchez and F. Aguayo. Apl: audio programming language for blind
learners. Computers Helping People with Special Needs, pages 1334–
1341, 2006.

[18] R. M. Siegfried. Visual programming and the blind: the challenge and the
opportunity. ACM SIGCSE Bulletin, 38(1):275–278, 2006.

[19] A. C. Smith, J. S. Cook, J. M. Francioni, A. Hossain, M. Anwar, and M. F.
Rahman. Nonvisual tool for navigating hierarchical structures. In ACM
SIGACCESS Accessibility and Computing, number 77-78, pages 133–
139. ACM, 2004.

[20] A. C. Smith, J. M. Francioni, and S. D. Matzek. A java programming tool
for students with visual disabilities. In Proceedings of the fourth
international ACM conference on Assistive technologies, pages 142–148.
ACM, 2000.

[21] A. Stefik, R. Alexander, R. Patterson, and J. Brown. Wad: A feasibility
study using the wicked audio debugger. In Program Comprehension,
2007. ICPC’07. 15th IEEE International Conference on, pages 69–80.
IEEE, 2007.

[22] A. Stefik, C. Hundhausen, and R. Patterson. An empirical investigation
into the design of auditory cues to enhance computer program
comprehension. International Journal of Human-Computer Studies,
69(12):820–838, 2011.

[23] A. M. Stefik, C. Hundhausen, and D. Smith. On the design of an
educational infrastructure for the blind and visually impaired in computer
science. In Proceedings of the 42nd ACM technical symposium on
Computer science education, pages 571–576. ACM, 2011.

[24] S. F. A. Szpiro, S. Hashash, Y. Zhao, and S. Azenkot. How people with
low vision access computing devices: Understanding challenges and
opportunities. In Proceedings of the 18th International ACM
SIGACCESS Conference on Computers and Accessibility, pages 171–
180. ACM, 2016.

[25] P. Vickers and J. L. Alty. When bugs sing. Interacting with Computers,
14(6):793–819, 2002.

[26] B. N. Walker, A. Nance, and J. Lindsay. Spearcons: Speech-based earcons
improve navigation performance in auditory menus. Georgia Institute of
Technology, 2006

9. ONLINE APPENDIX
Supplemental materials have been uploaded to the ACM Digital
Library to accompany this paper, including two comma-separated
value (CSV) files: (1) a table of additional quotations from
participants and (2) a table listing the operating system, assistive
technologies, programming languages, and programming editor
uses by each participant (complementing the summarized
information found in Table 2 in this paper). In addition, these
materials are also available online at our laboratory website at the
following URL: http://latlab.ist.rit.edu/assets2017code

Session: The Future of Work and the Web for People with VI ASSETS'17, Oct. 29–Nov. 1, 2017, Baltimore, MD, USA

100

	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1 Design Interventions: Audio Cues
	2.2 Design Interventions: Code Navigation
	2.3 Programming Challenges

	3. RESEARCH QUESTIONS
	4. METHODOLOGY
	4.1 Interview Design
	4.2 Participants
	4.3 Procedure
	4.4 Data Analysis

	5. RESULTS
	5.1 RQ1: Code Navigation Challenges
	5.2 RQ2: Tools in Software Development
	5.2.1 Assistive Technologies
	5.2.2 Development Languages & Tools

	5.3 RQ3: Programming Strategies
	5.4 The Need for Better Navigation

	6. CONCLUSION AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES
	9. ONLINE APPENDIX

Accessibility Report

		Filename:

		fp105-albusaysEemb.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 1

		Passed: 29

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

