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ASL Facial Expressions 

CPM (Listgarten et al., 2004) can align a set of time series data while 
simultaneously accounting for changes in their amplitude. 
With the assumption that a noisy, stochastic process 
generates the observed time series data, CPM infers the 
underlying noiseless representation of the data (latent trace).  

Continuous Profile Model (CPM) 

Example of CPM Modeling for Rhetorical_B 

                   Metric Evaluation 

dDTW(latent trace, gold standard) vs. dDTW(centroid, gold standard)  
 

Centroid: example with min cumulative DTW distance. 
Gold standard: recordings from another ASL signer. 

                   User Evaluation  

Compare ASL signers’ subjective responses to neutral-head/face 
animations and animations driven by latent trace and centroid.  

Continuous Profile Models  
in ASL Syntactic Facial Expression Synthesis 

Hernisa Kacorri Matt Huenerfauth 
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watch short ASL sentences of three types of stimuli: a) animations with a static neutral face (as 

a lower baseline), b) animations with facial expressions driven by the centroid, and c) 

animations with facial expressions driven by the CPM latent trace. Figure 79 illustrates 

screenshots of each stimulus type for YesNo_A facial expressions. 

a  b  c  

Figure 79: Screenshots of YesNo_A stimuli of three types: a)  neutral, b) centroid, and c) latent trace.  

In Part I of this thesis, we investigated key methodological considerations in conducting a 

study to measure comprehension of sign language animations with deaf users, including the use 

of appropriate baselines for comparison, the appropriate method for presenting comprehension 

questions and instructions, demographic and technology experience factors influencing 

acceptance of signing avatars, and other factors that we have considered in the design of this 

current study. 

During our study, after participants answered the demographic and technology-

experience questions that were established as screening criteria in Chapter 7, they viewed a 
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a.  

b.  

c.  

Figure 74: Rhetorical_B per head/face-feature time series in the a) training examples before CPM, and b) training 

examples after CPM, and c) obtained latent trace.  

12.3 Comparison of CPM Latent Trace and Training Data with DTW 

In this thesis we propose to use the latent trace, obtained from training a CPM model on 

multiple recordings of an ASL facial expression, as a representative of that facial expression.  
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Given a set ! of observed time series, !! = !!! , !!!! ,… , !!! ! , CPM assumes there is a 

latent trace ! = !!, !!,… , !! .  While not a requirement of the model, the length of the time 

series data is assumed to be the same !  and the length of the latent trace used in practice is 

! = 2+ ! !, where the ideal ! would be very large relative to ! or infinite to allow precise 

mapping between observed data and an underlying point on the latent trace.  The higher 

temporal resolution of the latent trace also accommodates flexible alignments by allowing an 

observational series to advance along the latent trace in small or large jumps (CPM, Listgarten, 

2007).  

For each observed time series !! the state sequence !! determines the subsampling and 

local scaling of the latent trace to generate this observation.  A hidden state !!! maps to a state 

pair: time state and scale state !! ,!! , as illustrated in Figure 72.  The time states have 

transition probabilities !! !! !!!!  and the scale states have transition probabilities ! !! !!!! .  

Therefore the state transition probability for a hidden variable in CPM is given as ! !! !!!! =

! !! !!!! !! !! !!!! .  Each !!! in Figure 72 is assumed to be emitted by a Gaussian 

distribution with mean !!! and standard deviation !: !!!~! !!! ,! .  The mean is estimated by 

!!! = !!!!!!!!, where !! is a real-valued scale parameter specific to a time series ! to allow 

for a global scaling between time series ! and the latent trace. 

While CPM covers a class of generative models, in this dissertation when referring to 

CPM we actually refer to a specific type of CPM, the single-class EM-CPM where the training 

is performed on data from the same class using the expectation-maximization (EM) algorithm 

(Dempster et al., 1977).  
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Rutgers) as part of the “Corpora Through the American Sign Language Linguistic 

Research Project” (ASLLRP) and the NSF-funded collaborative project “Generating 

Accurate Understandable Sign Language Animations Based on Analysis of Human 

Signing.”  

While the video collection and linguistic-annotation aspects of these projects are 

still in progress, we expect to have about 200-300 annotated video recordings from 2-3 

native ASL signers (2 male and 1 female, Figure 56).  Since the MPEG4 standard ensures 

normalized features by the face proportions of each signer, we are able to mix and use 

this data from different signers to drive the models of facial expressions that will be 

animated in our avatar.  We are currently processing 153 videos of the female signer for 

which the annotation process is complete.  

     

Figure 56: Neutral facial poses to be used for the signers’ profile in Visage. (Neutral videos of signers were 

provided by Boston and Rutgers University teams.).  

Based on linguistic insights from the Boston University team, such as observation 

of motion curves from different recordings of each category of ASL facial expressions, 

we intend to group the dataset into categories and sub-categories, as shown in Table 6.  

For each of the subcategories, we will train a model and use it to synthesize the 
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stimuli passages.  Such a character could be displayed as a baseline for comparison in an 

experimental evaluation study. 

a    b  

Figure 54: Native signer’s a) fitted face shape mask and b) tracking screenshot in Visage software. 

For optimal results, the Visage software was used in offline mode.  The quality of 

the results is bounded by the performance of the software on the video recordings and the 

initial manual process of mask fitting to the face as shown in Figure 54a.  For example, 

the tracker (a screenshot is shown in Figure 54b) may lose the face if the head movement 

is too fast or if large parts of the face are covered, e.g. by the hands.  We observed that 

this is happening for 0%-7.6% (avg. 1.6%) of the story duration in our stimuli collection.  

In this case, the lost frames are indicated with a tracking status other than “OK” in the 

CSV file, and all the extracted head and facial features would normally have the value 0.  

We processed the data and filled in the values of the lost frames using spline interpolation 

(smoothing degree 1) while maintaining the tracking status information.  Although 

interpolation may work well for the facial feature values, it can sometimes be problematic 

for head rotation, because it is currently represented in the form of Euler angles (pitch, 

yaw, roll).  We advise future researchers to consider first converting the head rotation 

into another representation (e.g. quaternions) before applying interpolation techniques to 

fill in the rotation values for the lost frames. 
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To create accessible content for deaf users, 
we investigate automatically synthesizing 
animations of American Sign Language 
(ASL). Based on recordings of humans 
performing various types of syntactic 
face and head movements, we evaluate 
the efficacy of Continuous Profile Models 
at identifying an essential “latent trace” of 
the performance, for use in producing 
ASL animations. The effectiveness of the 
approach is supported by a metric-based 
evaluation and a study with deaf users.  

k observed time series: 	



Assume there is a latent trace: 	




