
Automated malware detection using artifacts in
forensic memory images

Rayan Mosli∗† Rui Li∗ Bo Yuan∗ Yin Pan∗
∗College of Computing and Information Science

Rochester Institute of Technology

Rochester, New York

Email:{rhm6501, rxlics, bo.yuan, yin.pan}@rit.edu

†Faculty of Computing and Information Technology

King Abdul-Aziz University

Jeddah, Saudi Arabia

Abstract—Malware is one of the greatest and most rapidly
growing threats to the digital world. Traditional signature-based
detection is no longer adequate to detect new variants and highly
targeted malware. Furthermore, dynamic detection is often
circumvented with anti-VM and/or anti-debugger techniques.
Recently heuristic approaches have been explored to enhance
detection accuracy while maintaining the generality of a model
to detect unknown malware samples. In this paper, we investigate
three feature types extracted from memory images – registry
activity, imported libraries, and API function calls. After evalu-
ating the importance of the different features, different machine
learning techniques are implemented to compare performances
of malware detection using the three feature types, respectively.
The highest accuracy achieved was 96%, and was reached using
a support vector machine model, fitted on data extracted from
registry activity.

Index Terms—Malware, Cuckoo Sandbox, Memory Forensics,
Machine Learning

I. INTRODUCTION

The threat of malware to the digital world is continuously

growing. According to a report by Mcafee Labs, 40 million

new malware samples were introduced in the Mcafee Lab

malware zoo in the first quarter of 2015, bringing the total

number of malware to a staggering 400 million samples as of

that quarter [1]. Traditionally, malware detection depended on

signatures found in samples and stored in databases. However,

as extracting those samples is labor intensive, traditional

signature scanning techniques are struggling to keep up with

the rapid growth of malware we are seeing today. Furthermore,

signature scanning only works with known malware samples

whose signatures were already extracted, and is therefore

ineffective against unknown malware. Another approach is

detecting malware according to their behavior. This approach

involves running the samples and observing their run-time

actions. Although it improves the detection of unknown mal-

ware, the approach is obstructed by samples that employ

virtual-machine evasion techniques. Additionally, running each

suspected specimen is resource intensive in both time and

computing resources. As a result of the weaknesses observed

in the two detection techniques, researches resorted to heuristic

approaches that employ machine learning models, trained to

learn malware features in order to enhance both malware

detection accuracy and speed [2] [3] [4] [5] [6].

A recent venue in the realm of malware detection is memory

images. Memory forensics is the branch of computer forensics

that analyzes a computers memory dump in order to extract

evidence of malicious activity. It is gaining popularity in the

forensics community due to the wealth of information found

in images, which, when compared to the size of disks, are

significantly smaller [7] [8] [9] [10] [11]. It is especially

beneficial when a threat incorporates stealth measures against

disk forensics. As stated by Ligh, ”Evidence is more likely to

exist on memory then on disk because all malicious code must

be loaded into memory to execute” [12]. There are two main

stages in performing memory forensics. The first stage is the

acquisition of memory, and it involves acquiring a memory

image through the use of acquisition tools such as Memoryze

[13] and WinPMEM [14]. A usable memory image is also

produced in the form of crash dumps when a system crash

occurs. However, crash dumps contain less information in

the image when compared to raw dumps. After an image

is acquired, it is analyzed in the second stage of memory

forensics using tools such as Volatility [15] and Rekall [16].

The current challenge in memory forensics is the lack of

automation. Yara rules is the only option for automated

malware detection in memory images [17]. However, similar

to signature detection, it requires the rules for a sample to

be included in order to be able to detect that sample. To

automate malware detection in memory images, we propose

a heuristic approach based on malware artifacts found in

memory images. In this paper, we discuss three artifacts that

we analyzed and built models for, achieving an accuracy

of up to 96%. The artifacts we explored are registry keys

modified by the malware, imported DLLs, and called API

functions. Although other malware-detecting artifacts exist,

such as network activity and metadata, they either do not

comprehensively exist in memory, or are easily manipulated

by malware. There are several benefits to detecting malware

in a memory image. First, it is more robust against anti-

forensic techniques employed by malware. According to the

rootkit paradox [18], rootkits must be active in order to fight

back when being investigated. As memory images represent a

frozen state of a live system, rootkits are inactive, thus unable

978-1-5090-0770-7/16/$31.00 ©2016 IEEE

to tamper with an investigation. Another benefit is the large

number of candidate artifacts in a memory image. As images

represent a live system, numerous artifacts can be extracted

and used to build a model. Finally, with the advancements

in memory forensic technologies, in both acquisition and

analysis, extracting artifacts is becoming simpler and more

reliable, paving the way for machine learning models that

enhance both the accuracy and speed of malware detection.

The rest of the paper is organized as follows: Section II

presents the related work; our methodology is set forth in

section III; analysis and results are presented in section IV;

and, finally, our conclusion and future work are discussed in

section V and VI, respectively.

II. RELATED WORK

Current research in heuristic malware detection are based on

two types of malware features, namely static features, such as

binary n-grams and opcode sequences, and dynamic features,

such as DNS requests, accessed files, and modified registries.

As memory images contain both types of features, as well as

residual artifacts from malware operations, it is important to

review works concerning both feature types.

Santos et al. used term frequency to extract opcode sequences

from malware samples, and, building a Support Vector Ma-

chine (SVM) classifier based on a normalized polynomial

kernel, they achieved an accuracy of 95.9% [19]. Markel et

al., on the other hand, focused on metadata found in PE file

headers to build their machine learning model, in which they

achieved a 97.9% accuracy with a Decision Tree classifier [20].

Masud et al. combined binary n-grams, opcode sequences, and

DLL function calls in a hybrid feature set acquired with hybrid

feature retrieval techniques [21]. Saxe et al. used PE imports,

PE metadata, and byte entropy to build a deep neural network

classifier with dropout method to avoid overfitting [22]. They

were able to achieve a 95% accuracy with their model.

Although using static features has its advantages, it is still

vulnerable to packed and encrypted samples. As pointed out in

[23], packing, encryption, k-ary code, and multistage loaders

are challenges to the static feature-based machine learning

approaches. However, applying a machine learning model

on static features extracted from a memory image is less

vulnerable to encryption, as samples must decrypt in memory

before running.

Dynamic features were also explored in the literature. Pirscov-

eanu et al. used DNS requests, accessed files, mutexes, registry

keys, and API calls to build a random forest classifier [2].

They acquired the data using Cuckoo Sandbox [24] on virtual

machines running INetSim to simulate an internet connection.

They achieved 96% accuracy with a weighted average of

89.9% across all malware types. Using virtual machines to

analyze malware could be vulnerable to anti-VM technology,

and, unless each sample was guaranteed to behave naturally,

the data might be skewed towards benign behavior.

AMAL is a behavioral-based malware analysis and clas-

sification solution that characterizes samples according to

filesystem, registry, network activity, and memory behavioral

artifacts [5]. However, the memory portion of the solution

depends on Yara rules, so it is not capable of detecting

unknown malware in memory images. The system consists of

two subsystems, one to run samples and extract features, called

AutoMal, and the other to vectorize the extracted features and

build the classifier, called MaLabel. According to the authors,

AMAL achieves an accuracy of 99.5%.

Using both feature types simultaneously was also explored. Lu

et al. used both content-based and behavioral-based features, in

addition to multiple classifiers, to improve performance [25].

Association rules were combined with an SVM classifier to

reduce false positives. Furthermore, other classifiers, such as

decision trees, neural networks, naive bayes, and K-Nearest

Neighbor, were also tested, along with ensemble learning,

which includes voting, decision tree bagging, decision tree

boosting, stacking, and grading.

Memory structures were explored in [26], specifically, Virtual

Address Descriptors (VADs), mapped files, and registry. Sev-

eral machine learning models were tested, with Naive Bayes

performing best of all with an accuracy of 98%. In the case

of VAD structures, due to their vulnerability to Direct Kernel

Object Manipulation (DKOM) attacks, using them as a feature

might not be robust in a hostile environment.

Finally, a system for identifying rootkit samples, based on

automated analysis by capturing changes to data structures

and memory regions commonly targeted by malware, was

proposed in [27]. The system requires the sample to be run

in a sandbox to decide on its maliciousness. The memory

changes are detected through differential analysis between a

clean baseline snapshot and an infected image. The malware

sandbox tool, Cuckoo, was used to examine kernel structures,

such as drivers, modules, SSDT, IDT, and callbacks.

Our approach, on the other hand, extracts artifacts from

memory because it offers several advantages. First, encrypted

and packed malware must first decrypt or unpack in memory

before running, thereby bypassing anti-static analysis tech-

niques employed by malware. Second, memory contains both

behavioral and content-based artifacts, thus enabling the ex-

traction of artifacts without using a virtual environment, over-

coming anti-dynamic analysis techniques. Finally, memory-

based detection can also detect memory-only malware, which

does not have any presence on hard-drives.

III. METHODOLOGY

Our approach is a reactive one, in that it detects malware

that is already on the system. There are several use cases for

such an approach. First, anti-virus software will fail with un-

known malware; therefore, applying our model on a memory

image will either confirm or dispute an AV’s claim of a clean

system. Second, forensic investigators may find this approach

useful when searching for malware in memory images. As

stated in [28], ”Analysts of the real world are often constrained

by budgets and billable hours”; therefore, automating the

process of malware detection might save forensic investigators

time when analyzing memory images. Once the models are

trained, artifacts can be extracted from a memory image using

978-1-5090-0770-7/16/$31.00 ©2016 IEEE

Volatility [15], and used to apply the model on. The following

subsections discuss our process, starting from data acquisition

to model training:

A. Data Acquisition

Our data acquisition environment consisted of a machine

running Ubuntu and a target system running Windows 7. The

Ubuntu machine was responsible for running the necessary

components, Cuckoo sandbox [24], Fog [29], and InetSim

[30], for automating the malware analysis and data acquisition

process. The Windows machine was the target system infected

by malware samples obtained from VirusShare [31] and VX-

Heaven [32]. We analyzed 400 malware samples and 100

benign software. Cuckoo was used to automate the analysis of

the samples, which were used to infect a bare-metal machine.

Our choice of using a bare-metal system was intended to avoid

the anti-VM techniques employed by malware.

To ensure the successful execution of the malware samples,

several components were set in place. First, as many malware

samples check for internet connectivity before running, we

ran InetSim to simulate an internet connection. Furthermore,

as malware samples come in different extensions, we installed

software to run the most common extensions on the target

system, such as Adobe Reader and Google Chrome. We

also disabled default Windows security mechanisms, such as

Windows Defender, User Account Control (UAC), and the

firewall. Moreover, Fog is used to revert the infected machine

to a clean state after running a malware sample. Finally, as

Cuckoo by default does not handle Blue Screens of Death

(BSOD). BSODs are caused by bugs in device drivers, a

component common to kernel-level rootkits. Therefore, to

accommodate rootkits in our data-set, we had to modify the

Cuckoo source code and make it more robust against BSODs.

Cuckoo sandbox produces a report in the form of a JSON file

of both dynamic activities and static features. Furthermore,

Cuckoo scans each sample using VirusTotal [33] and includes

the results in the report. We used the Python JSON library

to extract the data from the report and write it to a text file.

Doing so with the reports of both the malware samples and

the benign software, our data-set was ready for the next stage.

B. Feature Extraction

The feature extraction and selection stages, in addition to

model training, was performed using Scikit Learn [34], the

Python machine learning API. We assigned labels to the doc-

uments to differentiate between the benign and the malicious

ones. Furthermore, we used cross-validation to determine the

model complexity, and used the test data to evaluate and

compare the performances. The data we chose to use for our

model consist of registry activity, API calls, and DLL imports,

all of which are in the form of text. Therefore, before training

our model, we first had to transform the data into feature

measurements. To do so, we chose to implement the Term

Frequency (TF) approach, which assigns each term a unique

ID, and counts the occurrence of the term in a each document.

Each individual term’s occurrence frequency is considered

a feature. By creating a feature vector for each document,

where terms not in the document are represented by zeros, and

combining all the vectors into a matrix, we get a matrix that

represents all the features in our data-set. Applying the term

frequency approach to our data-set, we obtained 1,642 DLL

features, 19,532 registry features, and 38,096 API function call

features.

C. Feature Selection

The number of features produced by the feature extraction

stage must be reduced before training the model to avoid

overfitting. To do so, we performed Term Frequency - Inverse

Document Frequency (TF-IDF). TF-IDF reweighs the feature

set, giving higher weights to terms that occur less frequently

across all the documents. Features that occur in the majority

of the documents provide less information about the sample,

and are therefore safer to remove from the data set. The IDF

of a term t is calculated as following [35]:

idft = log
N

dft
(1)

Where dft is the number of samples containing the term t, and

N is the total number of samples. After the IDF score of a term

is calculated, the weight is assigned to the term by multiplying

the term frequency by the IDF score. By assigning each term

in the corpus a weight, we created a means to select a subset

of the best features. However, deciding on the optimal number

of features is influenced by the model currently being trained.

Therefore, we utilized the pipeline and exhaustive grid search

functions in Scikit-Learn [34] to test a different number of

features with each machine learning model we trained, thus

finding the optimal number of features to select when training

a specific model.

D. Model Training

As mentioned in the previous section, we utilized the

pipeline and exhaustive grid search functions in Scikit Learn

for feature selection and model training. The pipeline function

groups several pre-processing steps along with the final step

of training a model. The exhaustive grid search, on the other

hand, provides a mechanism for searching a parameter space

for the optimal parameters for a given pipeline. Parameters, in

this context, refers to hyperparameters. Moreover, the exhaus-

tive grid search allows specifying the evaluation metric to be

used when testing different parameters. Classification metrics

that can be set in the exhaustive grid search function include

accuracy, Area Under the Receiver Operating Characteristic

Curve (AUROC), and average precision.

We trained and compared the following techniques for classi-

fication for all three feature types:

• Support Vector Machine

• Stochastic Gradient Descent on several loss functions

• Decision Tree

• Random Forest

• K-Nearest Neighbor

• Bernoulli Naive Bayesian

978-1-5090-0770-7/16/$31.00 ©2016 IEEE

• Multinomial Naive Bayesian

The following is a brief description of each model, along

with their respective hyperparameters:
1) Support Vector Machine: Support Vector Machines

(SVMs) are supervised machine learning models that are

trained on feature vectors representing data points in space.

It separates the data points from different classes with a

hyperplane that is made as wide as possible. New data points

are classified based on the side of the hyperplane they fall

on. The first parameter we need to determine when training

the SVM is the kernel type, which comes in the form of a

linear function, a polynomial function, a radial basis function,

or a sigmoid function. In the case of polynomial kernels,

different degrees of polynomials were also tested. Finally,

several parameter values for the penalizing term needed to

be determined to find the optimal penalty value.
2) Stochastic Gradient Descent: Stochastic Gradient De-

scent (SGD) is an optimization method used to minimize

a target loss function. SGD works by minimizing the error

of the underlying classifier through model parameter tuning.

In Scikit Learn, SGD can be used to optimize hinge loss

functions which produce linear SVMs, log loss functions for

logistic regression, modified Huber loss functions, squared

hinge loss functions, and the linear loss function used by the

perceptron algorithm. In optimizing the aforementioned loss

functions, several parameters could be modified to produce

a better classification performance. Those parameters include

the regularization term and the alpha constant that multiplies

the regularization term to indicate its severity.
3) Decision Tree and Random Forest: Decision tree clas-

sifiers map features to class labels, where tree interior nodes

represent features and tree leaves represent class labels. A tree

is learnt by recursively splitting sets of features into smaller

subsets until each subset represents a class label. When a

new data point is to be classified, it starts at the root node

and follows a path down to one of the leaves, according to

which features best represents the data point. There are several

metrics that can be used in the splitting process of creating

the decision tree. Gini impurity is a metric that measures

the probability of misclassification, and accordingly splits to

minimize the impurity. Splitting is stopped when the impurity

reaches zero, or in other words, when nodes map to a single

class. Another metric is information gain, which uses the

entropy of the parent minus the weighted sum of the children’s

entropy to decide on the split.

Random forest is an ensemble learning method that utilizes

multiple decision trees to improve classification. The classifi-

cation decision is made by choosing the class produced by the

majority of the decision trees. Choosing the number of trees

in the forest is a hyperparameter we tested using exhaustive

grid search.
4) K-Nearest Neighbor: One of the simplest machine learn-

ing models, K-Nearest Neighbor (KNN) classifies new data

points according to the majority class of the k nearest neigh-

bors to the data point. The value of k is used as an input to

KNN and can be modified to produce more accurate classifiers.

Furthermore, weights can be assigned to the neighbors, where

closer neighbors have higher weights. Another approach is to

uniformly assign weights to all the neighbors. Methods to find

the nearest neighbors include kd-trees, ball trees, and brute

force search.

5) Bernoulli Naive Bayesian and Multinomial Naive
Bayesian: Bernoulli Naive Bayesian (BernoulliNB) and Multi-

nomial Naive Bayesian (MultinomialNB) are two similar

classifiers with subtle differences. BernoulliNB is used to

model data that follows the Bernoulli distribution, where

features are required to have a binary value. Considering the

textual nature of our dataset, the data can be binarized to

represent the presence or absence of features, thereby meeting

the prerequisite of a BernoulliNB classifier. MultinomialNB,

on the other hand, applies Bayes’ theorem on multinomially

distributed data with frequency of occurrence as features. Both

BernoulliNB and MultinomialNB apply Bayes’ theorem with

the assumption that the features are independent; thus, the term

Naive. However, the difference between the two is the penal-

ization of absent features by BernoulliNB, which is otherwise

ignored by MultinomialNB. The binarization of input data to

BerounlliNB can be done either before training the classifier,

or by setting a hyperparameter to specify a threshold that

would be used to map features values to binary representation.

Both options were tested in training the BernoulliNB model.

IV. ANALYSIS AND RESULTS

As previously mentioned, applying the exhaustive grid

search on a pipeline can be done using several evaluation

metrics. For all three feature types, we searched for the models,

and their respective hyperparameters, that produced the best

accuracy and AUROC scores separately. The accuracy of the

model is calculated by using the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Where TP are true positives, TN are true negatives, FP

are false positives, and FN are false negatives. Furthermore,

AUROC is calculated by first plotting the true positives over

all positives against the true negatives over all negatives, and

then calculating the area under the produced curve. Tables 1

and 2 summarize the performance of all the models in terms

of accuracy and AUROC scores, respectively. The following

is our findings of the search:

A. Registry

When calculating the term frequency of malware registry

activity, we found that the most frequent terms are related

to tracing, which is used for network troubleshooting and

remote access services. This suggests that the malware is

preparing the environment for data exfiltration and for remote

access by the malware developers. Furthermore, log file sizes

of tracing operations were modified through registry values

to minimize the footprint of the malware operations. Access

to Microsoft Explorer’s security zone map settings were also

included among the malware’s registry activities.

978-1-5090-0770-7/16/$31.00 ©2016 IEEE

In regards to model training, we found that SGD on a

hinge loss function performed best in terms of both accuracy

and AUROC, although with different parameters. Only 200

features were sufficient to achieve an accuracy of 96%; how-

ever, for lowest false positives, 1000 features were required.

Furthermore, to obtain the best AUROC score, the data was

transformed to binary representation. The highest AUROC

score achieved was 0.983.

B. DLLs

There are a limited number of DLLs that can be loaded by

software, and that are not custom built libraries. Therefore,

the classifiers trained on DLL features depend on the different

combinations of loaded libraries in order to discriminate be-

tween malicious and benign software. There were 64 different

DLLs loaded by the malware portion of our dataset. 22 of

those libraries were only loaded by a single sample, which

indicates a custom library. The remaining 42 libraries produce

4.3980465× 1012 different combinations of DLLs to load.

Random forest classifier produced the best results when trained

on DLL features. The best accuracy of 90.5% was achieved

when Gini Impurity was used as a criterion to split. Fur-

thermore, 15 trees were used to create the forest, using 500

features. For the AUROC, on the other hand, 10 trees were

used to create the forest, with entropy as a criterion to split.

200 features were sufficient to obtain the best AURC score of

0.922.

C. APIs

Among the most occurring APIs in the malware dataset

is the sleep API. This API is often used by malware to

evade automated analysis systems [36]. Luckily, Cuckoo has

a feature that overcomes sleep cycles. Another frequent API

is the gettickcount API, which is used to detect debuggers. As

debuggers often place breakpoints when executing software,

they significantly slow down runtime. Therefore, malware

utilize the gettickcount API to determine if a debugger is

present. Overall, numerous anti-analysis APIs were seen in

the malware dataset; these occurrences help enhance the

discrimination between malicious and benign software, as anti-

analysis is not as common in legitimate software.

SGD on a hinge loss functions provided the best results in

terms of accuracy, after reducing the number of features from

38,096 to 11,000. On the other hand, the highest AUROC score

was achieved when using SGD on a log loss function without

any feature reduction. The highest accuracy and AUROC

scores are 93% and 0.958, respectively.

V. CONCLUSION

Malware is one of the greatest and most rapidly growing

threats to the digital world. With approximately 40 million

new samples each year, traditional detection approaches are

struggling to keep up. Researchers have resorted to heuristic

approaches to enhance detection rates, and to be able to

generalize to unknown malware samples. In this paper, we

demonstrated how memory images can be used as a venue for

TABLE I
SUMMARY OF ACCURACY SCORES

Classifiers Registry DLLs APIs

SVM 94.4 88.7 92.3

SGD 96 87.8 93

Random Forest 94.9 90.5 91.5

Decision Tree 94.9 88.7 90.7

KNN 93.9 89 90.7

BernoulliNB 93.4 89.6 89.2

MultinomialNB 92.9 85.7 89.7

TABLE II
SUMMARY OF AUROC SCORES

Classifiers Registry DLLs APIs

SVM 0.975 0.919 0.955

SGD 0.983 0.903 0.958

Random Forest 0.969 0.922 0.948

Decision Tree 0.954 0.861 0.877

KNN 0.969 0.903 0.93

BernoulliNB 0.972 0.915 0.906

MultinomialNB 0.968 0.897 0.922

heuristic malware detection. Furthermore, we explored three

malware features that can be extracted from a memory image

and used to detect the presence of malware on a system.

VI. FUTURE WORK

The road ahead includes exploring more memory arti-

facts that are commonly targeted by malware. Specifically,

we plan to explore kernel structures, such as the System

Service Dispatch Table (SSDT), Interrupt Descriptor Table

(IDT), Global Descriptor Table (GDT), and kernel drivers. In

order to successfully capture malware modification to kernel

artifacts, we must employ a trigger-based acquisition system,

as proposed by Teller [37]. After we determine the best

performing techniques that best fit each feature type, we plan

to merge those features and create a multi-layer model that

both enhances accuracy and minimizes false positives.

REFERENCES

[1] McAfee Labs, “Threat report,” 2015. [Online]. Available: http:
//www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf

[2] R. Pirscoveanu, S. Hansen, and A. Czech, “Analysis of malware behav-
ior: Type classification using machine learning,” in Proceedings of the
2015 International Conference on Cyber Situational Awareness, Data
Analytics and Assessment (CyberSA), 2015.

[3] M. Z. Mas’ud, S. Sahib, M. F. Abdollah, S. R. Selamat, and R. Yusof,
“Analysis of features selection and machine learning classifier in android
malware detection,” in Proceedings of the International Conference on
Information Science & Applications, 2014.

[4] K. Berlin, D. Slater, and J. Saxe, “Malicious behavior detection using
windows audit logs.”

[5] A. Mohaisen, O. Alrawi, and M. Mohaisen, “Amal: High-fidelity,
behavior-based automated malware analysis and classification,” Com-
puters & Security, 2015.

[6] Y.-D. Lin, Y.-C. Lai, C.-N. Lu, P.-K. Hsu, and C.-Y. Lee, “Three-
phase behavior-based detection and classification of known and unknown
malware,” Security and Communication Networks, 2015.

978-1-5090-0770-7/16/$31.00 ©2016 IEEE

[7] J. Stuttgen and M. Cohen, “Anti-forensic resilient memory acquisition,”
Digital Investigation, pp. 105–115, 2013.

[8] I. Korkin and I. Nesterov, “Applying memory forensics to rootkit
detection,” in Proceedings of the 9th Annual ADFSL 2014 Conference
on Digital Forensics, 2014, pp. 115–141.

[9] S. Vomel and H. Lenz, “Visualizing indicators of rootkit infections
in memory forensics,” in Proceedings of 2013 Seventh International
Conference on IT Security Incident Management and IT Forensics, 2013,
pp. 122–139.

[10] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin, “Robust
signatures for kernel data structures,” in Proceedings of 16th ACM
conference on Computer and communications security, 2009, pp. 566–
577.

[11] H. Pomeranz, “Detecting malware with memory forensics,” 2013.
[12] M. Ligh, A. Case, J. Levy, and A. Walters, The Art of Memory Forensics.

Wiley, 2014.
[13] Mandiant, “Memoryze,” 2011. [Online]. Available: https://www.fireeye.

com/services/freeware/memoryze.html
[14] M. Cohen. (2012) Winpmem. [Online]. Available: https://github.com/

google/rekall/tree/master/tools/windows/winpmem
[15] Volatility, “Volatility framework,” 2012. [Online]. Available: https:

//code.google.com/p/volatility/
[16] Google, “Rekall,” 2013. [Online]. Available: http://www.rekall-forensic.

com/
[17] V. M. Alvarez. The pattern matching swiss knife for malware researchers

(and everyone else). [Online]. Available: https://plusvic.github.io/yara/
[18] J. Kornblum, “Exploiting the rootkit paradox with windows memory

analysis,” International Journal of Digital Evidence, 2006.
[19] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. Bringas, “Opcode se-

quences as representation of executables for data-mining-based unknown
malware detection,” Information Sciences, pp. 64–82, 2013.

[20] Z. Markel and M. Bilzor, “Building a machine learning classifier for
malware detection,” 2014 Second Workshop on Anti-malware Testing
Research (WATeR), 2014.

[21] M. Masud, L. Khan, and B. Thuraisingham, Data Mining for Detecting
Malicious Executables, 2011, pp. 109–147.

[22] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in Proceedings of the
10th International Conference on Malicious and Unwanted Software
(MALWARE), 2015.

[23] H. Nath and B. Mehtre, “Static malware analysis using machine learn-
ing methods,” Communications in Computer and Information Science
Recent Trends in Computer Networks and Distributed Systems Security,
2014.

[24] Cuckoo Foundation. (2014) Automated malware analysis - cuckoo
sandbox. [Online]. Available: https://www.cuckoosandbox.org/

[25] Y.-B. Lu, S.-C. Din, C.-F. Zheng, and B.-J. Gao, “Using multi-feature
and classifier ensembles to improve malware detection,” Journal of
Chung Cheng Institute of Technology, 2010.

[26] M. Aghaeikheirabady, S. Farshchi, M. Iran, and H. Shirazi, “A new
approach to malware detection by comparative analysis of data structures
in a memory image,” in Proceedings of the 1st International Congress
on Technology, Communication and Knowledge, 2014.

[27] A. Zaki and B. Humphrey, “Unveiling the kernel: Rootkit discovery
using selective automated kernel memory differencing,” in Proceedings
of the 2014 VIRUS BULLETIN CONFERENCE, 2014.

[28] B. Blunden, The rootkit arsenal escape and evasion in the dark corners
of the system, second edition. Jones & Bartlett Learning, 2013.

[29] C. Syperski and J. Zhang. (2015) The fog project. [Online]. Available:
https://fogproject.org/

[30] T. Hungenberg and M. Eckert. (2007) Inetsim: Internet services
simulation suite. Accessed: 11 10 2015. [Online]. Available: http:
//www.inetsim.org

[31] Roberts, J-Michael. Virusshare. [Online]. Available: https://virusshare.
com/

[32] Vx heaven. [Online]. Available: http://vxheaven.org/
[33] Virustotal. Accessed: 11 15 2015. [Online]. Available: https://www.

virustotal.com/
[34] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,

V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
2013, pp. 108–122.

[35] C. Manning, P. Raghavan, and H. Schutze, An Introduction to Informa-
tion Retrieval. Camridge University Press, 2008, ch. 6. Scoring, term
weighting and the vector space model, pp. 117 – 120.

[36] A. Lakhani. (2015, 5) Malware sandbox and
breach detection evasion techniques. Accessed: 9
23 2015. [Online]. Available: http://www.drchaos.com/
malware-sandbox-and-breach-detection-evasion-techniques/

[37] T. Teller and A. Hayon, “Enhancing automated malware analysis ma-
chines with memory analysis,” 2014.

978-1-5090-0770-7/16/$31.00 ©2016 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

