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a b s t r a c t

Dissemination of spatio-temporally valid content from content providers to consumers is
critical in certain application contexts as data items could lose their validity across time
and space. Content sharing in challenged opportunistic environments remains a research
challenge as existing solutions fail to exploit dissemination patterns across spatio-temporal
limits. In this paper, we propose spatio-temporal reachability graphs to depict reachability
of time- and space-sensitive content in opportunistic mobile environments. Furthermore,
we develop an analytical framework to estimate content distribution in such environments
and validate its feasibility over long-term datasets. We perform extensive trace-driven
simulation studies to determine content dissemination properties of environments with
known mobility patterns. The analytical framework estimates dissemination ratio, opti-
mizes parameter setting, and tests transmission capacities of opportunistic environments.
Proposed scheme is useful to content providers as well as receivers.

© 2017 Published by Elsevier B.V.

1. Introduction

The proliferation of mobile and wearable devices has created opportunities for disseminating information/contents via
peer-to-peer communication when devices encounter each other. This type of data transmission relying on a series of
spatiotemporally distributed contacts is called opportunistic networking [1]. Opportunistic communication is a low-cost,
high-bitrate alternative method for disseminating content on a massive scale; for example, crowd-sensing of air quality
data (measuring multiple polluting gases) every minute by sensors mounted on nearly 13000 taxis in the city of New
York. Aggregation of data from large numbers of sensors can lead to air quality assessment in a given area. In such crowd
sensing applications, a single measurement can be lost or delayed without introducing deviation or distorting the outcome.
Hence, it is preferred to gather this type of data cost-effectively using opportunistic communication instead of the expensive
cellular networks. Data is typically shared among each other by opportunistic forwarding and uploaded when WiFi is
available. Furthermore, the rapid growth of Internet-of-Things (IoT) has created an opportunity for extractingmore variety of
information about a place, an object, and a person. But, data produced by IoT devices (e.g., augmenting taxis with air quality
sensors) will significantly increase demand for bandwidth which makes existing infrastructure networks hard to cope. Data
may also have validity limits across time and space domains. A more effective design of opportunistic content sharing is
needed to address the ever-increasing demand for bandwidth.

We introduce the notions of time-to-live (TTL) and space-to-live (STL) to opportunistic data/content dissemination in
mobile environments so that data is forwarded only within a predefined time and space boundary. When considering TTL
and STL in content dissemination, it is important to determine the appropriate values tomaximize reachability andminimize
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overheads due to data caching and transmission. However, it is often difficult to identify these boundaries appropriately if the
mobility pattern of users in a given area is unknown. Prior work investigates opportunistic forwarding in simulation using
synthesized mobility models (e.g., randomwalk) [2,3]. For example, Han and Srinivasan [3] studied influential mobile users
in a social network context for content distribution, and evaluated their models through simulation using randomwalk. The
results of this type of research are meaningful in general cases when we assume user mobility. Hence their opportunistic
contacts conform to a normal distribution. While the random walk mobility model has been used in many opportunistic
networking studies [2,4–6], the results often represent system performance in most general cases. However, despite the
diversity in individual mobilities, humans tend to follow simplemobility patterns with a high degree of temporal and spatial
regularity [7,8]. By capturing and modeling the regularity of human mobility, we can leverage this insight to significantly
improve data forwarding algorithms and predict data dissemination in more realistic opportunistic networking settings.
In the context of opportunistic content sharing, the state-of-the-art has offered some insights into opportunistic content
dissemination [9], spatiotemporal information dissemination [10], and temporal reachability [11]. However, none of the
existing approaches quantify the influence of changes of spatiotemporal property on reachability in different application
scenarios and provide a way to adapt parameter settings to the different application contexts. Investigations on the impact
of spatiotemporal property, file size, bandwidth, and other parameters on dissemination ratio and dissemination capacity
are needed. Without a priori knowledge about dissemination capability of opportunistic environments, there would be no
motivation for producers and service providers of opportunistic content sharing.

In this paper, we develop spatiotemporal reachability graphs (STRG) to model spatiotemporal dissemination in mobile
environments where content is distributed using opportunistic forwarding. STRG captures available source–destination
node pairs that satisfy end-to-end delay and geographic distance requirements. Based on STRG, we develop an analytical
framework to make following types of estimations in a given scenario: expected success in content dissemination and
expected transmission capacity. In particular, the framework comprises three functions: (i) estimate dissemination ratio, (ii)
test transmission capacities, and (iii) optimize parameter setting. Extensive trace-driven simulation studies are performed
on two large taxicab traces collected in urban areas for a period of one month. Distinguishing weekdays/weekends and
time windows, our analysis reveals spatiotemporal patterns of contact opportunities. There is a high correlation between
trajectories and contacts. Leveraging the patterns, the framework aims to predict content distribution parameters based on
only historical mobility traces. To demonstrate the robustness of our framework, we also test the predictability by adding
different degrees of variations in mobility traces. Our simulation results show the effectiveness, that is, the framework
achieves more than 75% accuracy and reduces prediction error by nearly 50%, compared to a random method. Also, the
analytical framework addresses above questions for an any opportunistic environment.

The paper makes three main contributions:

• Spatiotemporal Reachability Graphs (STRG). A graph model has been developed to capture spatiotemporal dissemina-
tion in opportunistic environments;
• Analytical framework for content dissemination. Analytic functions are developed based on STRG to estimate content

distribution parameters; and
• Extensive trace-based simulations. Applicability of the framework is demonstrated with long-term empirical datasets

collected in urban areas.

The novelty of this paper lies in a generic analytical framework that can provide guidance to application developers,
service providers and users in opportunistic environments. With the use of our methodology, it is possible to achieve
acceptable levels of prediction of opportunistic content dissemination in such uncertain environments. The framework
would be useful for opportunistic content sharing in any mobility scenario and also enable effective dissemination with
fine-tuned parameter settings.

The remainder of this paper is structured as follows. First, Section 2 presents the state-of-the-art approaches to oppor-
tunistic content sharing. Section 3 discusses network models, including the introduction of the spatiotemporal reachability
graph which is an extension of the time-varying graph. Section 4 introduces an analytical framework which discusses how
user mobility data can be collected and fed into systems that compute the relevant estimation on spatiotemporal property
and reachability in the environment. Section 5 elaborates the predicting scheme for content dissemination. Section 6
presents results trace-based simulations and discusses the effectiveness of the proposed framework. The final section
concludes the paper.

2. Related work

This section presents the state-of-the-art regarding content sharing and dissemination analysis in opportunistic environ-
ments.

For opportunistic content sharing, Hyytiä et al. [9] have proposed the concept of floating content to improve performance
of geo-caching within a specific region, where nodes store and distribute local spatiotemporal floating information.
Information dissemination is geographically limited within the area of interest, whereas nodes are free to delete the
information outside the area. They determined the length of time information remains available in the area of interest in
such synthetic mobility models as Manhattan road network model and random waypoint model. The authors showed that
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the expected lifetime of the information depends on two properties of contact frequency and node arrival rate in the area of
interest via a numerical simulation study. They do not consider temporal and spatial contexts simultaneously.

Wang et al. [10] investigated the inherent properties of tempo-spatial information dissemination in order to understand
space and time limitations. In particular, they tried to answer two questions: (i) given a region, what is the distribution of the
minimum time needed to spread information over the region? and (ii) what is theminimum time needed for the information
to arrive in a region from a remote source? In the adoption of the Lévy Walk mobility model, they derived theorems on the
time bounds to spread information to a given region. They validated the theoretical model via a numerical simulation study.
This paper is perhaps the most closely related work to our study because the model considers TTL and STL requirements.
However, themodel does not estimate content distribution parameters aswe do in our algorithm. LévyWalkmobilitymodel
is far from real-world mobility traces. Typically, real-world traces possess sparse/dense regions of trajectories in a reference
area. There is also a significant difference in population between daytime/midnight and weekdays/weekends. Since such
heterogeneous patterns are neglected in the mobility model, there remain unrealistic assumptions on the predictability of
node movements.

As an analysis of temporal property, Tang et al. [12] have proposed temporal distance metrics to capture the temporal
characteristics of time-varying graphs, e.g., how fast information spreads to all nodes. Comparing the static and temporal
connected components, the trace-based simulation showed that the static model overestimates the connectedness of the
network, since the model ignores time order of contacts. Whitbeck et al. [11] have proposed the concept of temporal
reachability graphs (TRGs) to characterize multi-hop connectivity. Given edge traversal time and the maximum journey
delay, a TRG captures such temporal structures of time-varying graphs as temporal connectivity, temporal asymmetry,
and temporal dominating set. Applying the concept to synthetic and real-world mobility traces, they showed bounds on
communication capabilities, i.e., delivery ratio, which is very sensitive to increasing transmission time between two nodes.
Pietiläinen et al. [13] have proposed a methodology to break down traces of opportunistic social networks into temporal
communities, i.e., clusters of people who meet periodically during an experiment. The trace-driven analysis demonstrated
that efficient content dissemination is made by the mobile nodes with high contact rate and movement among temporal
communities. Kim et al. [14] have proposed an analytical framework based on continuous-time Markov chain to provide
probabilistic guarantees on the time of information spread. They demonstrated efficacy of the framework by applying it to
vehicular mobility traces obtained from more than a thousand taxis in Shanghai. Zhu et al. [15] have proposed temporal
capacity graphs to characterize the maximum amount of data that can be transmitted between any two nodes within a
specific timeframe. Applying the graph model to synthetic and real-world mobility traces, they showed the fundamental
relationships and tradeoffs between network setting and system performance, e.g., transmission delay vs. amount of
transmitted data and data size vs. delivery ratio. However, the focus of the above work is on the temporal property rather
than on the spatial property.

On deploying mobile applications of opportunistic content sharing, there are several important issues: social centrality
of users [3,16], user preferences [17,18], privacy concerns [19], incentive mechanism [20], content popularity [21], traffic
offloading [22], and real-world implementation [23]. However, the above work is not closely related to this paper.

3. Spatiotemporal reachability graphs

This section defines a network model and details spatiotemporal reachability graphs. After showing an example of
spatiotemporal dissemination, we define the graph model and then develop an algorithm to build the graphs.

3.1. Network model

Opportunistic environments can bemodeled based on thewell-known time-varying graphs [24,25]. The graph is suitable
for networks, where mobile users move around freely and contacts between users appear or disappear over time.

Figs. 1a–1d illustrate instantaneous graph snapshots at four time slices, t = 1, . . . , 4. Nodes correspond to mobile users,
whereas edges represent contacts between users. Node 3 has a contact with Node 4 at t = 1, and then Node 4 has a contact
withNode 1 at t = 3 since they satisfy the spatiotemporal constraints. If the contact betweenNodes 3 and4 remains available
until the data is transferred, the transmission starts at t = 1 and completes at t = 1+ tt , where tt is the transmission time.
Then, if the contact between Nodes 4 and 1 at t = 3 remains available during the data transmission, the communication
from Node 3 to Node 1 via Node 4 is available over time.

Time-Varying Graphs (TVG). A graph snapshot is described as Gt = (Vt , Et , ζ ), where t is time instance. A set of nodes at
time t is denoted by Vt , and Et ⊆ Vt × Vt is the set of edges between nodes at time t . A latency function, denoted by ζ ,
indicates edge traversal time (i.e., transmission time) it takes to cross a given edge at a given time. G = {G1,G2, . . . ,Gn} is a
set of all graph snapshots for a lifetime of a system.

Journey. A journey from a source node s to a destination node d, denoted by Js,d, is described as a sequence of tuples
⟨eu,v, t⟩, each of which represents a contact between nodes u and v at time t . In the above example, the communication from
Node 3 to Node 1 is J3,1 = {⟨e3,4, 1⟩, ⟨e4,1, 3⟩}.

Temporal length of journey. Temporal length is an end-to-end duration, given by Js,d(t) = td− ts, where ts is the departure
time at source and td is the arrival time at destination. In the above example, J3,1(t) = 3, where td = 4 and ts = 1. When
there are multiple journeys from a source node to a destination node at time ts, the earliest journey is given by the earliest
arrival time at the destination node.
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(a) t = 1. (b) t = 2. (c) t = 3. (d) t = 4.

Fig. 1. An example of time-varying graphs, where (x, y)-coordinates are in units, the edges represent pair-wise contacts, the shaded nodes represent nodes
that have data originated from Node 3, and the dotted circle represents the spatial-validity area that Node 3 declares when it first forwards data to Node 4
at t = 1.

Spatial length of journey. Let source position be the position where a source node initiates dissemination. The farthest
point on the earliest journey is given by the maximum distance from a source position to each node on the earliest journey.
Spatial length is the farthest distance from a source to the farthest destination. In the above example, the spatial length of
J3,1 = {⟨e3,4, 1⟩, ⟨e4,1, 3⟩} is obtained as follows. A source position is at coordinates (5, 3). The distance between two nodes
u and v is given by

√
(ux − vx)2 + (uy − vy)2. For the first contact e3,4 at t = 1, the distance from the source position to Node

3 at (5, 3) is zero unit, whereas the distance to Node 4 at (5, 2) is one unit. For the second contact e4,1 at t = 3, the distance
from the source position to Node 4 at (4, 1) is 2.236 units, whereas the distance to Node 1 at (3, 2) is 2.236 units. Thus, the
farthest point is Node 4 or Node 1 at t = 3, and then the spatial length of J3,1 is 2.236 units.

3.2. Spatiotemporal dissemination

In spatiotemporal dissemination, data is distributed within space and time limits.
Time-to-live (TTL). Let δ be the TTL, that specifies a temporal-validity of data by limiting the maximum delay from

departure time ts.
Space-to-live (STL). Let γ be the STL, that stipulates a spatial-validity of data with the radius γ from a source position

by restricting the maximum distance from the source position. If needed, other area specifications (e.g., line, rectangle, and
polygon) are also available with minor change of this definition.

These parameters can be easily implemented as timestamp (date and time), source position (geo-coordinates) and
coverage distance, attached in data headers. Data is discarded once TTL/STL expires. When two nodes get in contact, data
is forwarded only if the position of the receiving node satisfies STL limit. Spatiotemporal dissemination can be regarded as
journeys from a source node to all other destination nodes such that for all journeys, temporal and spatial lengths do not
exceed TTL and STL.

Using the example scenario shown in Fig. 1, spatiotemporal dissemination is exemplified as follows. Suppose a source
node is Node 3, departure time is ts = 1, TTL and STL are three units, and edge traversal time is one unit for each edge.
Note that edge traversal time can be arbitrary for each edge over time. In the figure, dotted circles correspond to the spatial-
validity areawith the radius γ , STL = 3 units, from the source position at coordinates of the point (5, 3), whereas filled nodes
indicate presence of data. At t = 1, Node 3 begins forwarding data to Node 4. The transfer is completed at t = 2, after one
unit of traversal time. At t = 2, Nodes 3 and 4 have the data, and Node 4 has a contact with Node 2. However, the data is
not forwarded because this spatial length becomes greater than the STL. At t = 3, Node 3 has a contact with Node 5, and
Node 4 has contacts with Nodes 1 and 2. Node 4 forwards the data to Node 1. The data arrives at Node 1 at t = 4. Data is not
forwarded to Node 5 as the temporal length of journeys are greater than the TTL.

3.3. Definition of STRG

Spatiotemporal reachability graphs capture end-to-end connectivity across space and time. In Fig. 1, the subgraphswithin
the dotted circle depict spatio-time-varying graphs (STVG) focusing on the spatial-validity area. Some edges may exist in TVG
but not in STVG. In Fig. 2, the edges are represented by a tuple ⟨LT , LS⟩, where LT is the temporal length and LS is the spatial
length. Fig. 2a depicts an example of reachability graph for the scenario shown in Fig. 1. Fig. 2b is an example of temporal
reachability graph for the same scenario. This graph satisfies that temporal length of journeys do not exceed TTL. Fig. 2c
depicts an example of spatial reachability graph for the same scenario. The graph is derived from STVG in Fig. 1. In this graph
scenario, spatial length of journeys do not exceed STL. Fig. 2d is an example of spatiotemporal reachability graph (STRG) for
the same scenario. In this graph, temporal and spatial lengths of journeys do not exceed TTL and STL, respectively. Each edge
corresponds to a source–destination node pair that can communicate within TTL and STL.

Spatiotemporal Reachability Graphs (STRG). Given departure time, TTL, and STL, let Gδγ

R = (V δγ

R , Eδγ

R ) be STRG, where δ and
γ represent TTL and STL. A directional edge es,d corresponds to the earliest journey from a source node s to a destination node
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(a) Reachability graph. (b) Temporal reachability graph. (c) Spatial reachability graph. (d) Spatio-temporal reachability
graph.

Fig. 2. Reachability graphs for the example scenario in Fig. 1 (from ts = 1), where TTL and STL are each three units. Due to the limitation on space, we put
the ⟨LT , LS⟩ values near the destination nodes (i.e., near the arrow for every edge).

Algorithm 1 journey_search(G, ts)
Input: TVG G = {V , E} and departure time ts
Output: A list edgelist , which gives all source–destination node pairs with the spatiotemporal length
1: for s ∈ V do
2: LT [s] ← ts; LS[s] ← 0
3: for {v ∈ V | v ̸= s} do
4: LT [v] ← ∞; LS[v] ← ∞
5: Q ← {s}
6: while Q ̸= ∅ do
7: pull u from Q
8: for {v ∈ V | eu,v ∈ E)} do
9: tearliest , d← select(eu,v, LT [u])

10: if tearliest + ζ < LT [v] then
11: LT [v] ← tearliest + ζ

12: if LS[v] = ∞ then
13: LS[v] ← d
14: else
15: LS[v] ← max(LS[v], d)
16: if v /∈ Q already then
17: push v into Q
18: sort(Q , LT )
19: for {v ∈ V | v ̸= s} do
20: edgelist ← s, v, LT [v] − ts, LS[v]
21: return edgelist

d at departure time ts such that for each journey, the temporal length is less than or equal to TTL, and the spatial length is
less than or equal to STL. Let E inv

R be the set of invalid edges whose temporal length is greater than TTL, or the spatial length
is greater than STL. STRG is built up by removing the set of invalid edges from a reachability graph, GR.

Gδγ

R = GR − E inv
R (1)

STRG is the intersection of two graphs—the temporal reachability graph, Gδ
R, and the spatial reachability graph, Gγ

R .

Gδγ

R = Gδ
R ∩ Gγ

R (2)

For example, when TTL and STL are each equal to 3 units for the reachability graph in Fig. 2a, the set of invalid edges is
described as E inv

R = {e1,3, e1,5, e2,3, e2,4, e2,5, e3,2, e3,5, e4,2, e5,3}. STRG in Fig. 2d is obtained by removing the set of invalid
edges from the reachability graph. STRG in Fig. 2d comprises the common edges to both of the temporal reachability graph
in Fig. 2b and the spatial reachability graph in Fig. 2c.

3.4. Algorithm for building STRG

The algorithm first derives a reachability graph from TVG. Based on the reachability graph, STRG is constructed by
satisfying space and time requirements.
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Fig. 3. Workflowof the analytical framework. Themain contribution of this paper focuses on the spatio-temporal analysis as highlighted. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Algorithm 1 details how to find available journeys with the spatiotemporal length. Given TVG containing all graph
snapshots for the lifetime of a system and the departure time, the algorithm finds the earliest journeys and then returns
an edge list, comprising all source–destination node pairs and corresponding spatiotemporal length. In Line 1, a source node
is iteratively picked. Lists of spatial and temporal lengths and a min-heap priority queue are initialized in Lines 2–5. In the
while loop of Lines 6–18, the algorithm finds journeys from the source node to all the other destination nodes and ends
this loop when the queue becomes empty. In Line 7, a node u is pulled from the top of the queue, which has the minimum
temporal length in the queue. In the for loop of Lines 8–18, each neighbor v of u is traversed. In Line 9, select function returns
the earliest time when nodes u and v contact after the arrival time of u. The function also returns the longer of two distances
between the source position and u or v at the earliest time.When nodes u and v do not have any contact after the arrival time
of u, the function returns infinite values for both of them. If the earliest time plus edge traversal time is less than the temporal
length to node v, then the length is updated with the time in Lines 10–11. Furthermore, if the spatial length to node v is the
initial value, then the length is updated with the distance returned by select function in Lines 12–13; otherwise, the length is
updated with the longer of the spatial length and the distance in Lines 14–15. In Lines 16–18, if node v was not in the queue
already, then node v is pushed into the queue and the queue is sorted in ascending order of temporal length. After subtracting
the departure time from each temporal length, the edge list is obtained in Lines 19–20. Last, the algorithm returns the edge
list in Line 21. A reachability graph is derived from the edge list with the spatiotemporal length. Once the reachability graph
is built up, STRG can be constructed by removing the set of invalid edges for any TTL and STL. This algorithm works like the
well-known algorithm of Dijkstra, additionally considering time-varying nodes/edges and temporal/spatial length.

STRG can be constructed with any opportunistic routing protocol such as epidemic [2], Spray-and-Wait [26], PRoPHET
[27], BUBBLE Rap [4], and so on. Different routing protocols construct STRG with different spatio-temporal length. In TVG,
there are some routing metrics: minimum number of hops, earliest arrival time, and shortest time span between departure
time and arrival time [24]. In this paper, STRG utilizes the metric of earliest arrival time, called the earliest journey, whose
dissemination process is similar to a simple epidemic routing algorithm. In the epidemic routing, when a node having data
comes in contactwith another node not having the data, the former node transmits the data to the latter. Eventually, the data
is delivered to all reachable destinations. Although the epidemic routing is expensive for network resources (e.g., bandwidth
and energy), it maximizes the chances of connectivity and minimizes latency. In many cases, it can serve as an upper-bound
for any other routing protocols.

4. Analytical framework

In opportunistic environments,mobile nodes can act as data ferries betweendisconnected domains of a highly partitioned
network. Content is distributed by store-carry-forward mechanism as follows. Content generated by a producer is stored
in its buffer and carried forward. When a producer node is within communication range of another node, the content
can be forwarded to the latter and stored in its buffer. This process is repeated until the content is delivered to all other
consumers through a series of opportunistic contacts betweenpairs ofmobile users. In effect, themechanism realizes content
dissemination in opportunistic environments.

Fig. 3 illustrates a workflow of analytical framework for spatiotemporal content dissemination. The contribution of this
article is on the ‘‘spatial–temporal Analysis’’ as highlighted in red box in the figure. In an opportunistic environment, mobile
usersmove around freely. GPS data is sent frommobile-user devices to a data collection serverwhich constructs themobility
traces ⟨1⟩. Contact data are derived frommobility traces by comparing distance between two devices and their transmission
ranges. With the mobility traces and contact data, user mobility and device connectivity are modeled ⟨2⟩, which is detailed
in Section 3.1. Then, the framework performs spatiotemporal analysis for content dissemination ⟨3⟩, which is detailed in
Section 3. Based on the analysis, the framework predicts content distribution parameters in the mobility scenario ⟨4⟩, the
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novel contribution of the paper is detailed in Section 5. To obtain such parameters, a content producer creates and requests
a query to the analytical framework, and then the producer receives the response with the predicted parameters from the
framework ⟨5⟩. The producer canmake a decision to spread content over the opportunistic environment or not ⟨6⟩. Also, the
producer can use the optimal parameter setting to spread content over the opportunistic environment.

As a key metric on spatiotemporal content dissemination in opportunistic environments, dissemination ratio is defined
as the number of consumers that receive content within the given TTL and STL to the total number of consumers. The goal
of this paper is to estimate content distribution parameters for the following queries:

• Query 1. Given TTL and STL, what is the estimated dissemination ratio?
• Query 2. Given file size, TTL and STL, is it possible to successfully deliver the file to consumers andwhat is the estimated

dissemination ratio?
• Query 3. What are the optimal TTL and STL values to achieve a given dissemination ratio?

For these queries, we present some examples of application scenario that will be supported by the proposed framework:
geographic notification for weather forecast in a theme park (Scenario A), geographically-restricted video file sharing on
campus (Scenario B), and location-targeted advertisement for marketing in a city (Scenario C).

In Scenario A, a producer generates content regarding severe thunderstorm warning that says it will appear over the
theme park an hour later. The producer wants to know the ratio of visitors in the park to receive the content. Query 1 is
made by the producer, where parameters such as content generation time, TTL, and STL can be automatically determined
by the application context. Receiving the estimated dissemination ratio from the framework, the producer spreads content
out in the opportunistic environment if it is acceptable; otherwise, the producer might choose an alternative way, e.g., via
cellular networks.

In Scenario B, a producer generates a 15MB video file of a keynote speech at an academic conference. The producer wants
to know the ratio of students that receive the content and the possibility of successful dissemination. Query 2 is made by the
producer. In this case, STL is determined so that dissemination covers the entire campus area, whereas TTL is determined
freely by the producer. Receiving the estimated transmission capacity and dissemination ratio from the framework, the
producer can disseminate the content if the file size is less than the capacity; otherwise, the producer might give up doing
that.

In Scenario C, a producer generates content advertising 30% saving at Restaurant XYZ in the city. The advertisement cost
might rise up with increasing TTL and STL in order to avoid extra traffic. The producer decides to spread the content to 40%
of visitors in the city and wants to know the optimal parameter setting for the desired dissemination ratio. Query 3 is made
by the producer. Receiving the optimized parameter setting from the framework, the producer can use the parameter for
content dissemination, which prevents the producer from setting too long/short TTL and STL.

Prediction accuracy depends on the collected mobility datasets and the mobility traces of entities used. However, similar
to othermachine learning algorithms our algorithm focuses on themobility pattern rather than specific coordinates within a
trajectory. Thus, themodel learned can tolerate variations in the input dataset.We are conducting separate experiments [28]
as part of our ongoing work to study impact of variation in mobility dataset on prediction accuracy.

5. Predicting scheme for content dissemination

This section details a predicting scheme for content dissemination. First, analytic functions are developed based on the
spatiotemporal property captured by STRG. Then, a predicting scheme is elaborated to infer future parameters of content
distribution based on only historical parameters.

5.1. Estimating dissemination ratio

A spatiotemporal property of dissemination is captured byAlgorithm1 for building STRG. The algorithm can find available
source–destination node pairs (s–d pairs) with the spatiotemporal length at any departure time in any mobility scenario.

For the example scenario shown in Figs. 1, 4 depicts the spatiotemporal length distribution at departure time ts = 1. For
each s–d pair, temporal and spatial lengths are plotted on the graph. Thus, each dot represents an available s–d pair, which
can communicate at the estimated temporal and spatial lengths. If s–d pairs have infinite temporal or spatial length, the s–d
pairs are not plotted on the graph. For example, as described in Section 3.1, the temporal and spatial lengths of J3,1 are three
units and 2.236 units. Some s–d pairs overlap, e.g., two dots at (1.0, 1.0). As seen in the figure, some dots are in a line on the
temporal length. In opportunistic networks, data are disseminated by store-carry-and-forward mechanism. Let us consider
the following example,where there arennodeswithin the same cluster and one isolated node in an area. At initial time t = ts,
all source nodes disseminate their data at different source positions. During some time period, these n nodes exchange data
within the same cluster, whereas the isolated node has no contacts with anyone. Then, one node, say nk, collects n− 1 data
from the other nodes within the same cluster. When nk encounters an isolated node, say ni, (n− 1) data are received at the
latter. For these n − 1 data received at ni, the temporal lengths are same, whereas the spatial lengths are different because
source positions are different at t = ts. In contrast, dots in a line on the spatial length are fewer. It happens only when
maximum distances traveled by data from source positions are same but their arrival times are different. However, this case
is less frequent compared to the former.
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Fig. 4. Spatiotemporal length distribution for the example scenario in Fig. 1, where each dot corresponds to a source–destination node pair at departure
time ts = 1 and a rectangle area represents spatio-temporal frame with TTL = STL = 3 (units).

Fig. 5. Optimization criteria, where three rectangles represent three types of the optimized δ × γ STF.

To facilitate response to user queries, we develop an analytic function for content dissemination. The following function
relates to Query 1: given TTL and STL, determine the estimated dissemination ratio (R). The function can be broadly defined
as R = f (ts, TTL, STL), where ts is the start time of dissemination.

Let δ × γ be the spatiotemporal frame (STF), which is a rectangle area bounding the spatiotemporal length. Let |Pδ×γ | be
the number of available s–d pairs within δ × γ STF. For each s–d pair within STF, the temporal (spatial) length is less than or
equal to TTL (STL). The dissemination ratio is estimated as the ratio of the number of s–d pairs within the δ × γ STF to the
total number of possible s–d pairs. The total number of possible s–d pairs is given by |V |(|V | − 1), where |V | is the number
of nodes in a mobility scenario.

R =
|Pδ×γ |

|V |(|V | − 1)
. (3)

The dissemination ratio is the average value for all source nodes, instead of specifying a source node. Thus, the bottom part
in Eq. (3) is the number of possible end-to-end journeys via store-carry-forward mechanism, not via direct transmission.

A sample of spatiotemporal frame is depicted as a rectangle area in Fig. 4. For the example scenario of Fig. 1, considering
from ts = 1 where for every node TTL = STL = 3 units the reachability R of all nodes is estimated as 11/(5 × 4) = 0.55.
Note, |Pδ×γ | = 11 in Fig. 2d and there are five nodes considered in the example. Of course, this is an example of computing
R for the node pairs that satisfy the spatiotemporal constraint. We can also compute R for a specific node by changing |Pδ×γ |

to the number of available s–d pairs where s is the specific node.

5.2. Optimizing parameter setting

This analytic function relates to Query 3: determine optimal TTL and STL values to achieve a desired dissemination ratio.
The function optimizes the parameter setting at ts, where ts is the start time of dissemination.

Fig. 5 illustrates optimization criteria, where three rectangles represent three types of the optimized δ× γ STF: (i)minTTL,
(ii)minSTL, and (iii) SV , where SV = dist(O, P) such that P is the point that corresponds to the shortest vector. Temporal and
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Algorithm 2 parameter_optimization(edgelist, RD)
Input: edgelist , desired dissemination ratio RD

Output: TuplesminTTL, minSTL, and SV to be optimized by the minimum TTL, the minimum STL, and the shortest vector
1: minTTL←∞,∞; minSTL←∞,∞; SV ←∞,∞,∞

2: Lmax
T , Lmax

S ← max(edgelist)
3: L← min(Lmax

T , Lmax
S )

4: for k = 1 to L do
5: if R(k, k) ≥ RD then
6: update_parameters(k, k)
7: break
8: for i = k to Lmax

S do
9: if R(k, i) ≥ RD then

10: update_parameters(k, i)
11: for j = k to Lmax

T do
12: if R(j, k) ≥ RD then
13: update_parameters(j, k)
14: returnminTTL,minSTL, SV
15: procedure update_parameters(TTL, STL)
16: if TTL < minTTL[0] then
17: minTTL← TTL, STL
18: if STL < minSTL[1] then
19: minSTL← TTL, STL
20: if dist(O, P) < SV [2] then
21: SV ← TTL, STL, dist(O, P)

spatial lengths are normalized with their corresponding maxima, i.e., Lmax
T and Lmax

S . Then, dist(O, P) is calculated by,

dist(O, P) =

√(
TTL
Lmax
T

)2

+

(
STL
Lmax
S

)2

(4)

Algorithm 2 details how to optimize parameter setting. Given an edge list obtained by Algorithm 1 and a desired
dissemination ratio, Algorithm 2 returns three pairs of TTL and STL optimized by three criteria: minTTL, minSTL, and SV .
First, three pairs of parameter settings are initialized in Line 1, where the first and second variables are used for TTL and
STL, and the third variable of SV is used for the distance. In Line 2,max function returns the maximum spatial and temporal
lengths in the edge list, and thenmin function returns the shorter of these lengths in Line 3. In the for loop of Lines 4–13, δ×
γ STF is expanded incrementally on the diagonal of the area Lmax

T × Lmax
S . If the current R calculated by Eq. (3) is greater than

the desired dissemination ratio, then the procedure update_parameters is called with the corresponding TTL and STL in Lines
5 and 6. In the update procedure, if the current TTL is less than TTL of minTTL, then minTTL is updated with the current TTL
and STL in Lines 16 and 17. If the current STL is less than STL ofminSTL, thenminSTL is updated with the current TTL and STL
in Lines 18 and 19. If the current distance calculated by Eq. (4) is less than the distance of SV , then SV is updated with the
current TTL, STL, and distance in Lines 20 and 21. When Line 5 is true, the algorithm terminates the for loop of Lines 4–13
in Line 7 and then returns the optimized parameter settings in Line 14. In the for loop of Lines 8–10 or 11–13, δ × γ STF is
expanded incrementally to the maximum spatial or temporal length. In these for loops, if the current R is greater than the
desired dissemination ratio, then update_parameters is called in Lines 9 and 10, or 12 and 13.

5.3. Testing transmission capacity

This analytic function relates to Query 2: given file size, TTL and STL, test the possibility to successfully deliver the file
to consumers and determine the estimated dissemination ratio. The function estimates the transmission capacity within a
certain timewindow between ts and ts+TTL, where ts is the start time of dissemination. If the file size is not greater than the
capacity, the whole content is completely disseminated; otherwise, the content is partially disseminated utilizing available
capacity. The later query is estimated by Eq. (3) in Section 5.1.

In opportunistic environments, mobile devices get connected with each other intermittently. Data are transferred by
exploiting direct contact opportunities between two devices. Hence, the environments can be characterized by combined
individual mobility and pairwise-contact patterns. Contact and inter-contact times are well-known properties in oppor-
tunistic networks [29,30]. In this function, contact time is measured to estimate a transmission capacity within a specific
time window.
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Fig. 6. Contact time for the example scenario in Fig. 1, where a line corresponds to the contact time for a node pair.

Contact time. Contact time, also called link lifetime or link duration is the time interval during which a given pair of nodes
are in each other’s transmission range. The value is useful to estimate the volume of transferable data in each connection
opportunity.

Let CT be the contact time within a given time window. A transmission capacity (TC) is estimated as the product of the
contact time and the bottleneck bandwidth (BW ), which is the slowest data rate on a series of contacts between source and
destination nodes.

TC = CT × BW . (5)

In a conservative estimate, contact time is themodal valuewithin the timewindow,where the statistical term ‘‘mode’’ refers
to the most frequently occurring number found in a set of numbers. In more aggressive estimate, contact time is the mean
value within the time window.

Fig. 6 illustrates the contact time for the example scenario shown in Fig. 1. Suppose ts = 1 and TTL = 4 units. In the
given time window, there are total nine contacts. There are seven contacts of duration one unit while two contacts are of
two units. For these contacts, minimum, modal, median, mean, and maximum contact times are 1, 1, 1, 1.22, and 2 in units,
respectively. In a conservative estimate, contact time is 1 unit. In an aggressive estimate, contact time is 1.22 units.

5.4. Predicting scheme

A predicting scheme is developed to infer future parameters of content distribution based on historical parameters.
In real-world traces, contact opportunities depend highly on the mobility of individual users. The predicting scheme

distinguishes weekdays/weekends and timewindows for the historical parameters. In content dissemination, date and time
are given by applications. To infer future parameters, historical parameters are chosen according to the following history-
based methods.

• RDRT. Prediction is based on a random day of the last week at random time window.
• SDST. Prediction is based on the same day of the last week at the same time window as given time.
• PDST. Prediction is based on the previous day at the same time window as given time.
• AWST. Prediction is based on the average value of the last week at the same time window as given time.

In RDRT, differences betweenweekdays/weekends and timewindows are neglected. In this paper, RDRT serves as a baseline
in order to quantify the superiority of the proposed predicting scheme over the baseline. In PDST and AWST, weekdays and
weekends are differentiated, (e.g., the previous day of Monday is last Friday). These predicting methods use only historical
parameters and do not require any other knowledge in future.

6. Evaluation

This section assesses the predictive power of the analytical framework for opportunistic content dissemination. First,
long-term empirical datasets are introduced. Then, a basic analysis is performed to characterize a spatiotemporal pattern of
contact opportunities. After presenting a validation scheme, extensive simulations are performed to validate the predicting
scheme with three analytic functions.

6.1. Long-term empirical datasets in urban areas

We are interested in long-term mobility traces with a set of nodes to examine a spatiotemporal pattern in opportunistic
environments. We utilize two large taxicab traces collected in urban areas, San Francisco [31] and Rome [32,33] . Each
trace contains tens of million trajectory points for a period of one month, where a taxicab’s trajectory is a sequence of
positionswith the corresponding timestamps. Taxicab trajectories provide an extensive coverage on city streets, unlike other
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(a) San Francisco. (b) Rome.

Fig. 7. Taxicab counts in service on each day through entire trace durations.

transportation vehicles, e.g., buses move mainly on main streets. A taxi service also works 24/7 in shifts. A taxicab can be in
either moving to serve customers (i.e., pick up or drop off) or staying at parking spaces (i.e., idle) to wait for new customers.
Each taxicab visits locations independently according to the random nature of customer’s demand for destinations. In a
future scenario of smart city, a fleet of taxicabs could provide a service of data dissemination/collection within a specific city
without requiring big expenses.

San Francisco traces. GPS trajectories are collected from 536 taxicabs in the San Francisco Bay area, California, USA. The
dataset contains 11,219,955 trajectories (0.4 GB file size) for a period of 25 days from May 17th to June 10th in 2008. Each
trajectory includes position (i.e., GPS coordinates of latitude and longitude), occupancy (i.e., ride or idle), and timestamp
(i.e., date and time) while each file corresponds to a taxicab ID.

Rome traces. GPS trajectories are collected from a fleet of 370 taxicabs moving around the city of Rome, Italy. The dataset
contains 21,817,850 trajectories (1.6 GB file size) with fine sample rate of 7-s intervals for a period of 30 days from February
1st to March 2nd in 2014. Each trajectory includes taxicab ID, timestamp, and position.

6.2. Spatiotemporal property of contact opportunities

Different cities have different properties in area size, population, road infrastructure, and so forth. For San Francisco
and Rome traces, a basic analysis is performed to characterize spatiotemporal patterns of taxicab trajectories and contact
opportunities, e.g., how taxicabs move in the city, how contact counts change over time of the day, and how contacts are
distributed in the city. Assuming that all taxicabs are equipped with WiFi Direct to communicate with each other, their
transmission ranges are set to 75 m. The whole traces are divided into discrete time slots of 30 s to compare these traces.

Taxicab counts in service on each day through the entire trace durations are shown in Fig. 7. In San Francisco traces, there
are always around 500 taxicabs everyday except for the last day on June 10th. In Rome traces, there are around 290 taxicabs
on weekdays while there are around 170 taxicabs in weekends. Naturally, Rome traces have a significant decrease in taxicab
counts during weekends.

Samples of taxicab trajectories are shown in Fig. 8. Total trajectory counts in a day for San Francisco traces are 433,461
on Wednesday May 21st, 2008. Rome traces have 235,430 trajectories on Wednesday February 5th, 2014. San Francisco
traces are two times more than Rome traces because taxicab counts are different between these traces. In both traces,
most trajectories are concentrated on a certain region as shown in the topright (center) region for San Francisco (Rome)
traces. Froma geographic viewpoint, the degree of concentration increases from suburban regions to the city center. Taxicabs
move with somewhat random paths while geographic distributions of trajectories varies during the day and across different
weeks. Such concentrations are observed at the identical geo-locations everyday in each trace. This is because workplaces
and residential places are not frequently changed in a city.

Fig. 9 shows samples of contact counts at different times of the day. San Francisco traces show 153,207 contacts in a day
compared Rome traces that show 52,902 contacts. This is expected as there aremore taxicabs in the San Francisco traces.We
count the number of contact opportunities for every 30 s. In San Francisco traces, a peak time whenmost contacts happen is
in the evening. In Rome traces, the corresponding peak time happens at morning, noon, and evening on weekdays while it
happens in the night on weekends. In each trace, there is a significant difference in counts between daytime and midnight
becausemost people go towork onweekdays during daytime and stay at homeduring the night. Thus, density of connectivity
between nodes is changes over time, whereas the peak time depends on a specific city.

Fig. 10 shows samples of contact counts across space in a day. Considering different area sizes, we divide the entire area of
San Francisco and Rome traces into 300 × 300 and 100 × 100 regions, respectively. Then, we count the number of taxicabs
falling into the same region. As seen in the figure, we can observe a region of contact hotspots, where most contacts happen.
We find that contact hotspots are highly correlated with geo-locations of dense trajectories, e.g., around the city center in
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(a) San Francisco on Wed. May 21. (b) Rome on Wed. February 5.

Fig. 8. Samples of taxicab trajectories in a day.

(a) San Francisco on Wed. May 21. (b) Rome on Wed. February 5.

Fig. 9. Samples of contact counts according to time in a day, where the x-axis represents time of the day.

(a) San Francisco on Wed. May 21. (b) Rome on Wed. February 5.

Fig. 10. Samples of contact counts across space in a day, where dark/light-colored regions represent a small/large number of contact opportunities. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

these traces. The contact hotspots are located at popular places where people visit most frequently. From a traffic viewpoint,
such places increase the probability of contacts due to high traffic volume (i.e., traffic jam) and lower vehicle speeds.We also
observe the stability of contact hotspots within the entire period in each trace.
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(a) San Francisco from May 17 to June 9. (b) Rome from Feb 1 to March 2.

Fig. 11. Observation results of dissemination ratio with TTL = 4 (h) and STL = 16 (km) through entire trace durations, where the x-axis represents date
and time.

6.3. Validation scheme

In the following simulation, we apply analytic functions on each day to observe how content distribution parameters
change for both traces. For each day, content dissemination is generated from each source node to all other nodes at
different times of the day: 0600 h, 1000 h, 1400 h, and 1800 h. We evaluate the effectiveness of the framework, comparing
history-based predicting methods with a random method that serves as a baseline. For each method, prediction errors are
measured to examine how each method is robust against uncertain future mobility. We utilize a well-known validation
scheme inmachine learning: cross-validation andmean absolute error (MAE). In cross-validation (sometimes called rotation
estimation), the original sample dataset is split into training ad testing sets. MAE is a validationmetric tomeasure overfitting
(i.e., over/under-estimate).

MAE =
1
n

n∑
i=1

⏐⏐vpred − vtrue
⏐⏐ (6)

n is the sample size, vpred represents predicted values, and vtrue indicates ground-truth values obtained from a specific date
and time given by applications. A training set is determined by each method, whereas a testing set is randomly picked for a
pair of date and time. In San Francisco traces, date and time are chosen from a period of 21 days betweenMay 26th and June
9th. In Rome trace, the corresponding period is 15 days between February 10th and March 2nd.

This paper proposes an analytical framework to estimate content distribution parameters, where any routing protocol
is acceptable for the framework as mentioned in Section 3.4. Some performance metrics such as delivery ratio and latency
are examined as dissemination ratio and temporal length, respectively. Other metrics for routing protocols (e.g., routing
overhead and energy efficiency) are beyond the scope of this paper.

6.4. Estimating dissemination ratio

Observation results of dissemination ratio through the entire trace duration are shown in Fig. 11, where TTL = 4
h and STL = 16 km. The x-axis shows date and time while the y-axis shows dissemination ratio. Each line in 4-line
clusters corresponds to 4 different time windows: 0600, 1000, 1400 and 1800 h. In general, San Francisco traces show
higher dissemination ratios compared to those of Rome traces. The average (standard deviation) dissemination ratio is 0.57
(0.17) in San Francisco traces and 0.17 (0.07) in Rome traces. In San Francisco traces, a peak time window with the highest
dissemination ratio is between 1400 and 1800 h, everyday. In Rome traces, the corresponding peak timewindow is between
1000 and 1400 h on weekdays and between 1400 and 1800 h on weekends. In both traces, there is a significant difference
between weekdays and weekends while the peak time window is repeated. In general, Eq. (3) depicts the dissemination
ratio for any TTL and STL.

Figs. 12 and 13 show the validation results of predicting dissemination ratio in San Francisco and Rome traces. The results
are the average of 21 or 15 independent simulation runs, shown with 95% confidence intervals. San Francisco traces show
higher prediction errors than Rome traces because of different dissemination ratio. Also, the prediction error increases with
the TTL/STL values. SDST outperforms the other prediction methods in San Francisco traces while PDST outperforms the
others in Rome traces. This is because San Francisco traces exhibit a weekly-periodic behavior compared to Rome traces as
seen in Fig. 11.With the best predictingmethod, the error value at TTL=4 (h) and STL=16 (km) is 0.08 in San Francisco traces
and 0.03 in Rome traces. That means more than 80% accuracy for the average dissemination ratio in the above observation.
The predicting method achieves more than 50% reduction of prediction error, compared to RDRT.

6.5. Optimizing parameter setting

Observation results of the parameter setting optimized by the shortest vector method are shown in Figs. 14 and 15. The
desired dissemination ratio is set to 0.5 in San Francisco traces and 0.2 in Rome traces because these traces do not often
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(a) Impact of TTL on prediction errors with STL= 16 (km). (b) Impact of STL on prediction errors with TTL= 4 (h).

Fig. 12. Validation results of predicting dissemination ratio in San Francisco.

(a) Impact of TTL on prediction errors with STL= 16 (km). (b) Impact of STL on prediction errors with TTL= 4 (h).

Fig. 13. Validation results of predicting dissemination ratio in Rome.

reachmore than these values. The x-axis is date and timewhile the y-axis is TTL/STL. Each line in 4-line clusters corresponds
to 4 different time windows. Through the entire duration, Rome traces are less frequently optimized than San Francisco
traces because Rome traces cannot often achieve the desired dissemination ratio with any parameter setting within the
time window. In both traces, the optimized parameter setting exhibits a similar pattern weekly while there is a difference
betweenweekdays andweekends. In general, Algorithm 2 can optimize the parameter setting for any desired dissemination
ratio.

Fig. 16 shows the validation results of predicting optimal parameter setting in San Francisco and Rome traces. The results
are the average of 40 independent simulation runs, shown with 95% confidence intervals. For each trial, the optimized
parameter setting is predicted for a given date and time, and then dissemination ratio is obtained by applying the parameter
to the same date and time. In both traces, the prediction error gets larger according to larger desired dissemination ratio.
SDST outperforms the other prediction methods at the desired dissemination ratio of 0.6 in San Francisco traces while PDST
outperforms the others at the corresponding ratio of 0.2 in Rome traces. With the predicting method, the error value is 0.13
in San Francisco traces and 0.05 in Rome traces. That meansmore than 75% accuracy for the desired dissemination ratio. The
predicting method achieves around 50% reduction of prediction error, compared to RDRT.

6.6. Testing transmission capacity

Samples of cumulative distribution function (CDF) of aggregate contact times in a day are shown in Fig. 17. The x-axis
is the contact time while the y-axis is the probability. In San Francisco traces, almost all contact times are 30 s in every
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(a) Optimized TTL values. (b) Optimized STL values.

Fig. 14. Observation results of optimal parameter setting in San Francisco traces from May 17 to June 9, where desired dissemination ratio is 0.5 and the
x-axis represents date and time.

(a) Optimized TTL values. (b) Optimized STL values.

Fig. 15. Observation results of optimal parameter setting in Rome traces from Feb 1 to March 2, where desired dissemination ratio is 0.2 and the x-axis
represents date and time.

(a) San Francisco. (b) Rome.

Fig. 16. Validation results of predicting parameter setting with impact of desired dissemination ratio on prediction errors.

time window. This is mainly because the traces have coarse sample rate of time intervals for consecutive trajectory points
and are therefore not suitable for a contact time analysis. Thus, we focus on only Rome traces in the following simulation.
In Rome traces, the modal contact time is 30 s in every time window, whereas the mean contact time is slightly different,
e.g., around 220 s in the time window of 0600–1000 h and around 130 s in the other time windows. Based on Eq. (5), the
effect of the bottleneck bandwidth is proportional to the transmission capacity. We assume the bandwidth is 1 Mbps to
estimate the capacity, which can be arbitrary (e.g., 1, 6, and 24 Mbps) and measurable in the real-world experiments [34].
In a conservative estimate, the transmission capacity is 3.75 MB by applying the modal contact time to the equation. In
more aggressive estimate, the capacity is 27.5 MB in the morning time window and 16.25 MB in the other time windows by
applying themodal contact time to the equation. For example, the average file size for each type of files has been introduced
to assess the downloaded contents: 0.5 MB for an image file, 0.75 MB for a text file, 6.3 MB for an audio file, and 15 MB for
a video file [35]. If file size is not greater than the estimated transmission capacity, the whole content is most likely to be
disseminated completely. In general, Eq. (5) can obtain the contact time for any time window.
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(a) San Francisco on Wed. May 21. (b) Rome on Wed. February 5.

Fig. 17. Samples of CDF of aggregate contact times in a day.

Fig. 18. Observation result of contact time through the entire trace duration from Feb 1 to March 2 in Rome traces, where the x-axis represents date and
time.

Fig. 19. Validation results of predicting contact time in Rome traces, where the x-axis represents predicting methods.

In Rome traces, an observation result of contact time through the entire trace duration is shown in Fig. 18, where
contact time is obtained by the aggressive estimate. The x-axis shows date and time while the y-axis shows the contact
time. For the entire duration, the average contact time is 196 s with standard deviation of 72 s. A peak time window with
the longest contact time is between 0600 and 1000 h everyday because most taxicabs are perhaps idle at parking spaces.
The peak time window is repeated while the periodic behavior of contact time is slightly different between weekdays and
weekends.

Fig. 19 shows the validation result of predicting contact time in Rome traces. The result is the average of 40 independent
simulation runs, shownwith 95% confidence intervals. PDST outperforms the other predictionmethods and its error value is
30 s. Thatmeans around 85% accuracy for the average contact time in the above observation. The predictingmethod achieves
around 50% reduction of prediction error range, compared to RDRT. In a conservative estimate, there is almost no prediction
error because modal contact time is 30 s every day for each time window.
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Low prediction errors in our experiments indicate that the proposed method is accurate. Furthermore, the analytical
framework has been used to estimate content distribution for taxi cab traces. Each trace covers a city extensively, depicts
movement of people, exhibits varying mobility patterns over each day and across nearly 30 days.

7. Conclusion

Opportunistic content sharing among mobile users is expected to impact a number of emerging mobile applications in
the near future. In this paper, Spatiotemporal reachability graphs are developed to depict spatiotemporal dissemination in
opportunistic environments.We provide an analytical framework to estimate content distribution parameters with a goal to
identify favorable characteristics of typical opportunistic environments for effective content dissemination. The validity of
the analytical framework is investigated for known empirical datasets. The proposed frameworkwould be useful for content
sharing in any mobility scenario and enable effective dissemination in opportunistic environments.

Future work will explore other types of queries and develop necessary analytical models. Another direction of work is
to implement applications of opportunistic content sharing on smartphones and facilitate interaction with the analytical
framework. Key insights on traffic offloading can be explored through the real-world implementation. It is planned to
steer this research in two directions to further enhance the potential of opportunistic environments—distributed computing
potential and service composition.
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