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Abstract—Opportunistic network created among mobile de-
vices in challenged environments can be effectively exploited
to provide application services. However, data and services may
be subject to space and time constraints in challenged envi-
ronments where it is critical to complete application services
within given spatiotemporal limits. This paper discusses an
analytical framework that takes into account human mobility
traces and provides quantitative measures of the spatiotem-
poral requirements for service sharing and composition in
challenged opportunistic environments. The analytical results
provide estimates on feasibility of service sharing and service
compositions for various mobility models. To validate the
framework, we conduct simulation experiments using multiple
human mobility and synthesized datasets. In these experiments,
we analyze service composition feasibility, service completion
rate and time for resource utilization.

1. Introduction

Cloud computing allows resource-constrained mobile
devices to offload computation-intensive tasks (e.g., face
recognition) over last-mile connectivities (WiFi or cellular
networks). In challenged networks however, access to the
cloud may be slow or intermittent due to lack of WiFi or
cellular networks. In situations where connectivity is inter-
mittent due to coverage dead-spot or insufficient bandwidth,
exploitation of available resources in the neighborhood is
a preferred alternative. Cirrus [1] and Serendipity [2] are
examples of instantaneous cloud formed directly among
neighboring devices. In this paper, we exploit opportunistic
encountering of mobile devices for service sharing and ser-
vice composition. Modern mobile devices, including wear-
able devices, offer one or more services that can be com-
bined with other services offered by encountering devices.
To ensure efficiency of computations and data validity, the
service compositions need to consider the spatiotemporal
constraints. This is difficult since node contacts are oppor-
tunistic and data transmissions are best-effort in opportunis-
tic networks. Even though service compositions are possible,
the results could be dated if the compositions of services
rely on devices that have infrequent encountering for data
transmission. This paper discusses an analytical framework

to provide quantitative measures of the feasibility of sup-
port service compositions in the presence of spatiotemporal
constraints.

We use this analytical framework to estimate service
sharing parameters for service composition, where a rich set
of distributed services can be composed to provide mobile
users with a multitude of application-level services. First,
we develop spatiotemporal feasibility graphs (STFG) to
capture spatiotemporal service sharing in opportunistic en-
vironments. STFG captures available service compositions
that satisfy service completion time and geographic distance
requirements. Then, we develop an analytical framework
based on STFG to estimate success of service compositions
and expected computing resources. In particular, the ana-
lytical framework comprises three functions: (i) estimating
service completion rate, (ii) optimizing parameter setting,
and (iii) estimating resource utilization time. To demonstrate
applicability of the analytical framework, we extensively
perform trace-driven simulations applied to a wide range
of empirical datasets from real-world traces and synthetic
models of human walk mobility. Our simulation results
verify that the analytical framework can make the above
types of estimations in any opportunistic environment. The
estimations are validated with projected datasets to exam-
ine their tolerance against future trajectory change. Three
main contributions of this paper are summarized as, (i)
Spatiotemporal feasibility graphs (STFG) - A graph model
to capture spatiotemporal service sharing in opportunistic
environments; (ii) Analytical framework for service sharing
- Analytic functions to estimate service sharing parameters
based on STFG; and (iii) Extensive trace-driven simulations
- Applicability of the framework is demonstrated with a
wide range of empirical datasets.

The novelty of this paper lies in the development of
generic analytical framework to provide accurate guidance
for mobile users in terms of space and time. The framework
would be useful for opportunistic service sharing in any mo-
bility scenario and also enable effective service composition
in opportunistic environments.



2. Related Work

Murray et al. [3] introduced crowd computing, where
opportunistic networks can be used to spread computa-
tional tasks and collect results. They estimated computa-
tional capacity in such environments and also developed a
task-farming algorithm to exchange tasks between mobile
nodes. They analyzed real-world contact traces to show
that exploiting social structures boosts up successful task
completions. Passarella et al. [4] proposed a service provi-
sioning model for fault-tolerance. The model measures the
expected service completion time and then determines the
optimal number of parallel executions, in the presence of
multiple resource providers for a given service request. They
showed that replicated parallel executions reduce service
completion time. Ferrari et al. [5] have proposed a metric
of expected resource availability to capture the topological
impact of resources. Their analysis with real-world contact
traces showed that availability correlates well with the inter-
node contact probability. Li et al. [6] introduced mobile
cloudlets. Their trace-based analysis demonstrated that in-
termittent connections have little negative effect on optimal
performance when a task is delay-tolerant. Sadiq et al. [7]
proposed a service composition algorithm to select a service
sequence based on a service load and encounter-based timer
to measure relative distance to other nodes.

Shi et al. [2] have proposed Serendipity to enable a mo-
bile user to utilize remote computational resources available
in its mobile environment. They designed a task allocation
algorithm to disseminate tasks among mobile devices by
accounting for the available connectivity. Using the Emu-
lab emulator with real-world contact traces and synthetic
mobility models, they demonstrated the potential to speed
up computation as well as save energy for the user. Mitbaa
et al. [8], [9], [10] have proposed a power balancing algo-
rithm for computation offloading. The algorithm schedules
computational tasks among a set of mobile devices so that
no device has depleted its battery as long as possible.
Measuring the performance of power and computation be-
tween two android phones via Bluetooth/WiFi Direct, they
demonstrated that the algorithm extends network lifetime.
Wang et al. [11] have formulated an opportunistic offloading
problem to determine the amount of computation offloaded
onto other devices. They developed an optimization method
with the aid of statistic property of contact rates. Their trace-
based simulation study showed that the method achieves
high service completion rate. However, the focus of above
work is on computation offloading for computation speedup
but not on service sharing for successful service utilizations,
especially for service composition.

3. Preliminaries

3.1. Problem Statement

In opportunistic computing, each mobile device has dual
roles — provider or seeker. A seeker utilizes services on

encountered providers by exploiting direct contact opportu-
nities between the two. Service sharing includes sending
of service requests from a seeker to providers and then
the seeker receiving results from providers. In certain ap-
plication contexts, service requests could lose their time
and/or space validities. For example, if a request goes too
far away from a seeker, the seeker cannot receive the results
from providers in a timely manner. Thus, it is important
to complete service requests within spatiotemporally valid
limits. To handle spatiotemporal limits, we consider time to
live (TTL) and space to live (STL) for each service request.
As a key metric, service completion rate is defined as the
number of successful services within TTL and STL to the
total number of service requests.

In this paper, we estimate service sharing parameters for
the following queries:

• Query 1. Given TTL and STL, what is the estimated
service completion rate?

• Query 2. What are the optimal TTL and STL values
to achieve a given service completion rate?

• Query 3. Given a time window, is it possible to
successfully complete the request?

In spatiotemporal service sharing in opportunistic environ-
ments, a seeker makes Query 1 to know service completion
rate expectancy. Subsequently, in order to avoid setting too
long or too short TTL/STL, the seeker makes Query 2. The
seeker makes Query 3 to check the success likelihood of
remote service execution.

3.2. Opportunistic Networking Model

The position of mobile devices and their connectivity in
a snapshot can be modeled as a graph. A collection of these
graphs, which capture the mobility of devices and evolution
of their connectivities over a time window, are call time-
varying graphs [12].

Time-Varying Graphs (TVG). A graph snapshot is de-
scribed as Gt = (Vt, Et, ζ), where t is time instance. A set
of nodes at time t is denoted by Vt, and Et ⊆ Vt×Vt is the
set of edges between nodes at time t. A latency function,
denoted by ζ, indicates edge traversal time (i.e., transmission
time) taken to cross a given edge.

Journey. A journey from a source node src to a des-
tination node dst, denoted by Jsrc,dst, is described as a
sequence of tuples ⟨eu,v, t⟩, which represents a contact
between nodes u and v at time t.

Fig. 1 illustrates an example of mobility scenario. Node
n1 has a contact with n2 at t = 0, and then n2 has a
contact with n5 at t = 1. If the contact between these
pairs of nodes remains available until data is transferred
successfully, then there is an opportunistic communication
link from n1 to n5 over the period of two time ticks. In
this case, the communication from n1 to n5 is described as
J1,5 = {⟨e1,2, 0⟩, ⟨e2,5, 1⟩}.
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(d) t = 3
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(e) t = 4
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(f) t = 5

Figure 1. An example of time-varying graphs at six time slices: edges
represent pair-wise contacts between mobile nodes; node 1 generates a
request at t = 0; and dotted circles correspond to the spatial-validity area
of request.

3.3. Service Computing Model

A service scenario can be modeled using service
graphs [7], where multiple services can be composed based
on their input and output requirements.

Service Graph (SG). A service graph can be described
as Gs = (Vs, Es), where Vs is the set of data and Es is
the set of services. di ∈ Vs represents data. ⟨si,j , v⟩ ∈ Es

corresponds to a service si,j , where i and j are input/output
data types to/from the service supplied by a provider v, for
all i < j to avoid cyclic compositions. A directed edge from
one vertex to another exists if a service ⟨si,j , v⟩ is available
for input/output data di and dj .

Service Path. A path from a start data dsta to an end
data dend, denoted by Pdsta,dend

, is described as a sequence
of services ⟨si,j , v⟩, representing possible concatenation of
services.

An example of service scenario is depicted in Fig. 2.
Suppose s1,2 and s2,3 represent text-translation and text-
to-speech services. d3 is voice data, whereas d1 and d2
are text data in different languages, respectively. Then, s1,3
represents a composite service of both translation and text-
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Figure 2. An example service graph: nodes represent data; and edges
represent services as a tuple ⟨seeker, provider⟩

to-speech. In this case, Pd1,d3 has two possible service paths:
{⟨s1,3, n2, n4⟩} and {⟨s1,2, n3⟩, ⟨s2,3, n5⟩}, where ni is a
provider of the corresponding services.

4. Spatiotemporal Feasibility graphs

4.1. Spatiotemporal Service Sharing

Let δ be the TTL, that specifies a temporal-validity
duration of request by limiting the maximum delay from
departure time ts. Let γ be the STL, which stipulates a
spatial-validity area of request with the radius γ from a
source position by restricting the maximum distance from
the location of request generated. Spatiotemporal service
sharing can be regarded as a round-trip journey between a
seeker and providers such that temporal and spatial lengths
are within TTL and STL.

Using an example of mobility and service scenarios
shown in Figs. 1 and 2, spatiotemporal service sharing
is exemplified as follows. A seeker n1 makes a service
request for data d3 at time ts = 0. Execution time is
one unit for each service while edge traversal time is one
unit for each edge.1 With TTL = 5 units, STL = 3
units, the source node n1 at (4, 3) in Fig. 1 want to find
a service composition to convert data from d1 to d3; such
that, constructing a service path Pd1,d3

. Two possible service
paths are derived from SG in Fig. 2: {⟨s1,3, n2, n4⟩} and
{⟨s1,2, n3⟩, ⟨s2,3, n5⟩}. The second path satisfies both TTL
and STL, whereas the first path exceeds STL.

4.2. Definition of STFG

A spatiotemporal feasibility graph can be derived by
combining the corresponding TVG and SG.

Temporal Length of Journey. Temporal length, Lt, is
the difference between arrival time at a destination node
and the corresponding departure time ts at the source node.
When there are multiple journeys from a source node to a
destination node at time ts, the earliest journey is given by

1. Execution time and edge traversal time can be arbitrary for each node
and edge over time, respectively.
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Figure 3. Feasibility graphs for the example scenario in Figs. 1 and 2. The
tuple ⟨Lt, Ls⟩ on edges indicates temporal/spatial length; TTL=5; and STL
=3.

the earliest arrival time at the destination node. In a round-
trip journey, a seeker corresponds to a source/destination
node, whereas providers correspond to intermediate nodes.
When a seeker generates a service request for dend at
ts, Lt is the time needed to complete the request, Lt =
k∑

i=1

{Tuli + Tci} + Tdl, where k is the length of service

composition given by the number of services in a service
path. Tul is the time required to upload an input data to a
provider involved in the service path. Tdl is the time required
to download a final output data from the last provider to
the seeker. These upload/download times are given by the
summation of waiting time for the needed contact and edge
traversal time for the transferred data. The edge traversal
time is given by dividing the size of input/output data by
the data transmission rate. Tc is the service execution time
at a provider. The execution time is given by dividing the
workload of service by the computation speed at a provider.

Spatial Length of Journey. Let source position be the
location where a seeker generates a service request. The
farthest point on the earliest journey is given by the max-
imum distance from a source position to each node on the
journey. Spatial length, Ls, is the farthest distance from a
source position to the farthest point.

Feasibility graphs for the example scenario in Figs. 1 and
2 are illustrated in Fig. 3. To obtain these graphs, service re-
quests are generated by every source node at ts = 0 for a set
of data excluding a start data: dend = {di ∈ Vs | di ̸= dsta}.
Fig. 3(a) depicts a feasibility graph. Fig. 3(b) is a temporal
feasibility graph, where temporal length of journeys does
not exceed TTL. Fig. 3(c) depicts a spatial feasibility graph,
where spatial length of journeys does not exceed STL. Fig.
3(d) is a spatiotemporal feasibility graph (STFG), where
temporal and spatial lengths of journeys do not exceed TTL
and STL, respectively. Each edge corresponds to a pair of
start and end data that can be obtained by available service

composition within TTL and STL.

Spatiotemporal Feasibility Graphs (STFG). Given de-
parture time, TTL, and STL, let Gδγ

R = (V δγ
R , Eδγ

R ) be
STFG, where δ and γ represent TTL and STL. V δγ

R is
a set of end data dend and start data ⟨dsta, nsrc⟩, which
represents a start data dsta at a seeker nsrc. A directional
edge e⟨dsta,nsrc⟩,dend

∈ Eδγ
R corresponds to the earliest

journey from a start data dsta at a seeker nsrc to an end
data dend at departure time ts such that for each journey,
the temporal length is less than or equal to TTL, and the
spatial length is less than or equal to STL. Let Einv

R be
the set of invalid edges whose temporal length is greater
than TTL, or the spatial length is greater than STL. For
the feasibility graph in Fig. 3(a), the set of invalid edges
is described as Einv

R = {e⟨d1,n1⟩,d3
, e⟨d1,n5⟩,d2

, e⟨d1,n5⟩,d3
}.

STFG in Fig. 3(d) is obtained by removing the set of invalid
edges from the feasibility graph. STRG in Fig. 3(d) is the
intersection of two graphs: the temporal feasibility graph in
Fig. 3(b) and the spatial feasibility graph in Fig. 3(c).

Algorithm 1 journey search(G,Gs, dsta, dend, src, ts)

Input: TVG G = {V,E}, SG Gs = (Vs, Es), start/end data
dsta, dend ∈ Vs, a seeker src, and departure time ts

Output: An edge e ∈ ER, which gives spatiotemporal
length for a round-trip journey

1: Lt ←∞; Ls ← 0
2: Ps ← service paths(Gs, dsta, dend)
3: for path ∈ Ps do
4: t← ts; u← src; d← dsta; dist← 0
5: for ⟨si,j , v⟩ ∈ path do
6: if d ̸= dend then ◃ uploading
7: if u = v then ◃ local execution
8: t← t+ Tc

9: else ◃ remote execution
10: Tul, Dul ← earliest contact(G, eu,v, t)
11: t← t+ Tul + Tc

12: dist← max(Dul, dist)
13: u← v
14: d← j

15: if d = dend then ◃ downloading
16: if u ̸= src then
17: Tdl, Ddl ←

earliest contact(G, eu,src, t)
18: t← t+ Tdl; dist← max(Ddl, dist)

19: if t − ts < Lt ∨ (t − ts = Lt ∧ dist < Ls)
then

20: Lt ← t− ts; Ls ← dist

21: return e← (dsta, src, dend, Lt, Ls)

Algorithm 1 details how to find a round-trip journey
with spatiotemporal length. After deriving a feasibility graph
from a set of edge data with spatiotemporal length, STFG
is constructed by removing the set of invalid edges for any
TTL and STL.
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Table 1. DATASET INFO

dataset # nodes area size duration degree velocity
(km× km) (minutes) (m/s)

DW 41 15×18 857 0.55 0.72
NYC 39 32×20 1360 0.67 1.06

NCSU 35 15×10 1302 1.11 0.49
KAIST 92 33×25 1400 5.08 0.58
Statefair 19 1×1 207 1.26 0.45

TLW 19 1×1 207 0.28 1.20
SLAW 19 1×1 207 0.72 0.76

- degree (velocity) is the average degree (velocity) for each node

5. Analytical Framework for Service Sharing

We scope our simulations to the common scenario of
mobile pedestrian networks, where mobile devices are car-
ried by pedestrians.

Empirical Mobility Traces of Human Walks. We use
the following mobility traces obtained from real-world ex-
periments, where participants carry GPS devices [13]. The
mobility traces were observed, between September 2006
- January 2007, from five different sites: Disney World
theme park in Orlando (DW), New York city (NYC), North
Carolina State University campus (NCSU), KAIST campus
in Korea (KAIST), and North Carolina state fair (Statefair).
The participants walked most of times within the radius
of ten kilometers in these locations while they may also
occasionally use transportation such as bus, trolley, cars,
or subway trains. These traces provide us with detailed
coordinates of mobile nodes at every 30-second interval.

Synthetic Mobility Models of Human Walks. We use
the mobility models of Truncated Levy Walk (TLW) [14]
and Self-similar Least Action Walk (SLAW) [15]. TLW
generates mobility patterns for each single node, explicitly
taking parameters such as distance to move, direction to
follow, the amount of time to take pause, and speed of move-
ment. Most nodes move around homogeneously in an area.
SLAW produces heterogeneity of mobility patterns in an
area, utilizing self-similarity in geographical dispersion of
a set of locations visited by humans. Some of the locations
are very common for most of people and some others are
unique for each other.

Table 1 summarizes the basic information of datasets.
Parameters of TLW and SLAW—such as the number of
nodes, area size, and trace duration—are set to the compara-
ble values to Statefair. Assuming that all nodes are equipped
with WiFi Direct, transmission range is set to 75 meters.

For each analytic function, estimation is validated with
modified datasets to examine how tolerance the estimates
are with regard to future trajectory change.

Service sharing parameters are estimated based on his-
torical mobility traces. In the future, mobility patterns could
be repeated in the same mobility scenario, whereas node
trajectories would not be exactly same. For example, a
student’s trajectory from one class room to another may vary
from day to day depending on traffic and events happening
in the hallways. To incorporate the trajectory change into
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Figure 4. Characteristics of all node pairs.

estimation validation, original datasets are modified as fol-
lows. In the original datasets, each trace file corresponds to
a node and has the following data format: time instance, x-
coordinate, and y-coordinate. For every time instance, node
coordinates are displaced to any point within the circle
determined by the original position and a displacement
parameter. The displacement parameter is set to 50, 100,
150, or 200 in meters. The percentage of node changes is set
to 5, 10, 15, or 20, indicating how many nodes are modified
for the original dataset.

5.1. Opportunistic Networking Properties

In opportunistic environments, mobile devices get con-
nected with each other intermittently. Data are transferred by
exploiting direct contact opportunities between two devices.
Hence, the environments can be characterized by combined
individual mobility and pairwise-contact patterns. Contact
and inter-contact times are measured as well-known prop-
erties in opportunistic networks [16], [17].

Contact Time. Contact time, also called link lifetime or
link duration, is the time interval during which a given pair
of nodes are in each other’s transmission range. The value is
useful to estimate the possible amount of transferrable data
in each connection opportunity.

Inter-Contact Time. Inter-contact time is the time interval
elapsed between two successive contact periods for a given
pair of nodes. The value is helpful to predict the likelihood
that a node will be encountered again in a given time period.

Fig. 4 shows the cumulative distributed function (CDF)
of aggregate contact and inter-contact times for all pairs
of nodes. We concentrate on the time range between zero
to 30 minutes to clearly see the difference among mobility
scenarios. Inter-contact time has more significant variation
among the scenarios than contact time. In most cases, i.e.,
more than 50%, contact time is less than three minutes,
whereas inter-contact time is less than 17 minutes. At the
extreme cases, 20% of contact times for NCSU are more
than 30 minutes while 30% of inter-contact times for SLAW
are more than 30 minutes.

5.2. Service Scenarios

Each mobile device has heterogeneous services. A ser-
vice may be offered by more than one device. For service
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Figure 5. Successful service requests during time window zero to one hour.

deployment, the number of input/output data types is four.
The number of unique services is 6. Each service is provided
by 10% of the nodes. Let us suppose that s1,2, s2,3, and
s3,4 are single services such as text translation, text to
speech, and time stretch (i.e., speaking speed), respectively.
Other services are composite services for the above services.
The average link delay is set to one second.The average
execution time for s1,2, s2,3, s3,4, s1,3, s1,4, and s2,4 are 10,
15, 5, 25, 30, and 20 in seconds, respectively. The service
execution time follows normal distribution to incorporate
randomness. The distribution is determined by the average
execution time and its standard deviation, which is given
by 5% of average execution time. Service requests are gen-
erated as follows. First, twenty time instances are selected
randomly within a time window from zero to one in hours.
For each time instance, service requests are generated by
random seekers for random end data di, for all i ≥ 2. For
every request, start data is d1. The total number of requests
for DW, NYC, NCSU, KAIST, Statefair, TLW, and SLAW
are 400, 400, 363, 926, 193, 182, and 197, respectively.

5.3. Estimating Service Completion Rate

In Fig. 5(a), when TTL is three hours, the NYC trace
exhibits a service completion success probability of 0.75,
whereas the corresponding probability is 1.0 for Statefair,
TLW, and SLAW. This is because the inter-contact time
for NYC is very long, whereas Statefair, TLW, and SLAW
have shorter inter-contact time. When STL is one kilometer,
NYC is less than 0.6 while Statefair, TLW, and SLAW
are 1.0 as shown in Fig. 5(b). NYC is a large area size
while Statefair, TLW, and SLAW are small as seen in
Table 1. For successful service requests, service composition
length and contact counts are shown in Fig. 5. Composition
length is given by the number of services in a service path,
whereas contact counts are given by the number of contacts
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Figure 6. (a) The spatiotemporal property of nodes in SLAW, where
each dot represents an available service composition and a rectangle area
corresponds to the spatiotemporal frame with TTL = 120min and
STL = 500m. (b) Estimated SCR.

exploited to complete a given request. Composition length
comprises at least one edge: (s1,dend

, v), where s1,dend
is a

service and v is its provider. Composition length of one
implies that functionality needed for a given request is
provided by one service. Composition length of more than
one implies composition of two or more services. 20–30%
of requests are achieved by service composition, depending
on the mobility scenarios. For exploiting contacts, most
of contact counts are one, whereas some are zero, two,
three, or four as shown in Fig. 5(d). A contact count of
one implies that a service request is completed during a
single contact, including service execution and input/output
data forwarding. A contact count of two implies use of
two providers whose services are composed, and so on.
Zero contacts imply that the seeker has the service needed,
resulting in its local execution. More than half of the services
are achieved by exploiting just one contact.

To facilitate response to user queries, we develop an an-
alytic function for opportunistic service sharing. The follow-
ing function relates to Query 1: given TTL and STL, deter-
mine the estimated service completion rate (SCR). The func-
tion can be broadly defined as SCR = f(tw, TTL, STL),
where tw is the time window.

Spatiotemporal property of journey is captured by Algo-
rithm 1 for building STFG. The algorithm finds successful
service compositions with spatiotemporal lengths at any
time window in any mobility scenario. Fig. 6(a) depicts
an example of spatiotemporal property in SLAW. Each dot
represents a successful service composition, which can com-
plete a service request at the estimated temporal and spatial
lengths. If the request is not completed, it is not plotted on
the graph. Let δ×γ STF be the spatiotemporal frame (STF),
which is a rectangle area bounding the spatiotemporal length
in Fig. 6(a). For each service composition within STF,
temporal (spatial) length is less than or equal to TTL (STL).
Service completion rate is estimated as q1/q2, where q1 is
the number of successful service compositions within δ×γ
STF and q2 is the total number of service requests.

Fig. 6(b) shows an example of validation for estimated
service completion rate (SCR). The difference in SCR values
is calculated by subtracting SCR values for the projected
dataset from SCR values for the original dataset. The results
are the average of 10 independent simulation runs, shown
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with 95% confidence intervals. The difference value tends
to increase with increase in the percentage of node changes.
However, the maximum difference is 0.12, which is not
so large and would be acceptable for estimating service
completion rate. For other datasets, the difference value is
less than 0.1.

5.4. Optimizing Parameter Setting

This analytic function relates to Query 2: determine
optimal TTL and STL values to achieve a given service
completion rate. The function optimizes the parameter set-
ting at the time window tw.

In the function, the spatiotemporal frame (STF) is op-
timized such that the distance, denoted by dist(O,P ), is
minimized as the shortest vector from the origin (O) to the
opposite corner of δ×γ STF at coordinates of the point (P ).
dist(O,P ) is calculated by,

dist(O,P ) =

√
(
TTL

Lmax
t

)2 + (
STL

Lmax
s

)2 (1)

where temporal and spatial lengths are normalized with their
corresponding maxima, i.e., Lmax

t and Lmax
s .

Algorithm 2 parameter optimization(Eδγ
R , SCRD)

Input: a set of edges Eδγ
R , desired service completion rate

SCRD

Output: a tuple SV to be optimized by the shortest vector
1: SV ← (∞,∞,∞)
2: Lmax

t , Lmax
s ← max(Eδγ

R )
3: L← min(Lmax

t , Lmax
s )

4: for k = 1 to L do
5: if SCR(k, k) ≥ SCRD then
6: update parameters(k, k)
7: break
8: for i = k to Lmax

s do
9: if SCR(k, i) ≥ SCRD then

10: update parameters(k, i)

11: for j = k to Lmax
t do

12: if SCR(j, k) ≥ SCRD then
13: update parameters(j, k)

14: return SV
15: procedure update parameters(TTL, STL)
16: if dist(O,P ) < SV [2] then
17: SV ← (TTL, STL, dist(O,P ))

Algorithm 2 details how to optimize parameter setting.
Given a set of edges obtained by Algorithm 1 and a desired
service completion rate, the algorithm returns a pair TTL–
STL optimized by the shortest vector.

In the same way as the previous section, we examined
the validation for optimizing parameter setting. The desired
SCR is set to 0.4 at the time window zero to one in hours.
The parameter setting optimized for the original dataset
is applied to the projected datasets. For every dataset, the
difference in SCR values is less than 0.12.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180A
vg

. #
 o

f u
ni

qu
e 

en
co

un
te

rs
 n

or
m

al
iz

ed

time window size (minutes)

DW
NYC

NCSU
KAIST

Statefair
TLW

SLAW

(a) Number of unique encounters.

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120  140  160  180

A
vg

. l
ife

tim
e 

(m
in

ut
es

)

time window size (minutes)

DW
NYC

NCSU
KAIST

Statefair
TLW

SLAW

(b) Lifetime.

Figure 7. Resource size (normalized by the total number of nodes) and
lifetime according to the length of time window.

5.5. Estimating Resource Utilization Time

In opportunistic environments, service resources are dy-
namically formed by providers that a seeker encounters over
time. Service requesting, computing, and retrieving can be
performed after the first contact between a seeker and a
provider and before their last contact. As computational
properties [6], resource size and lifetime are measured to
estimate how many and how long such resources are avail-
able in the environment.

Resource Size. The size of potential resources is given
by the number of nodes that a seeker encounters within a
time window. The value is useful to estimate the number of
potential resources for computing.

Resource Lifetime. A provider’s resource lifetime is
given by the time duration from its first contact to its last
contact with a seeker. The resource lifetime should be within
a given time window. In the worst case, a seeker can utilize
a provider’s whole lifetime to execute services. For example,
a provider receives a service request at its first contact; then
disconnects and computes the request off-line; and sends
back the result to the seeker during its last contact. This
value is helpful to predict the possible time duration for
resource utilization.

Fig. 7 shows the resource size and lifetime. The average
number of unique encounters is shown in Fig. 7(a), normal-
ized by the total number of nodes in the network to compare
the mobility scenarios. A large increase rate implies that a
seeker frequently encounters resource providers and then uti-
lizes a large pool of potential resources. In contrast, a small
increase rate indicates that a seeker rarely meets providers
and then exploits only a mall portion of resources. At 60
minutes, a seeker in SLAW can encounter more than half the
available providers (i.e., 10 nodes), whereas a seeker in NYC
encounters less than 10% of providers (i.e., 4 nodes). This
is because SLAW has short inter-contact times compared to
NYC. In Fig. 7(b), the average lifetime increases linearly as
the window size increases. Both resource size and lifetime
increase with the window size, whereas their growth rates
depend on mobility scenario.

Based on the above observations, we develop the follow-
ing analytic function that relates to Query 3: given a time
window, estimate the possibility of successfully completing
the request. The function estimates the possible resource
utilization time within a certain time window. If the longest
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Figure 8. Estimated resource utilization time in TLW.

execution time needed by a service request is less than the
resource utilization time, the whole service is likely to be
executed; otherwise, the service would not be completed.

Let RS be the resource size and LT be the lifetime
in a given time window. A seeker can utilize a resource
supplied by its provider, where the maximum time duration
is given by LT . The resource provider encounters different
nodes, where the number of unique encounters is given by
RS. The resource can be shared with such encounters in the
time window. Thus, the possible resource utilization time is
estimated as RS

LT . This is the average time duration that each
seeker can utilize a resource for computing.

An example of validation for the estimated resource
utilization time in TLW is shown in Fig. 8. The difference
in the resource utilization time is calculated by subtracting
the time for the projected dataset from the time for the orig-
inal dataset. The results are the average of 10 independent
simulation runs, shown with 95% confidence intervals. The
difference value increases as the percentage of node changes
and distance of displacement increase. The maximum differ-
ence is 33 seconds. For other datasets, the difference value
is less than 30 seconds.

6. Conclusion

Opportunistic computing leveraging nearby mobile de-
vices is expected to facilitate a number of emerging mobile
applications in the near future. In this paper, we provide an
analytical framework to estimate service sharing parameters
with a goal to identify favorable characteristics of typi-
cal opportunistic environments for effective service com-
position. Spatiotemporal feasibility graphs are developed
to depict spatiotemporal service sharing in opportunistic
environments. The validity of the analytical framework is
investigated for a wide range of empirical datasets. The pro-
posed framework would be useful for opportunistic service
sharing in any mobility scenario and enable effective service
composition in opportunistic environments.

In future work we will develop mechanisms to estimate
service completion rates and resource utilization times. Fur-
thermore, a systemic overview of the analytical framework
will be developed for application scenarios.
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