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Abstract—In the increasingly connected world, cyber-physical
systems (CPS) have been quickly adapted in many smart city
applications, such as smart grids or healthcare. There will be
more and more highly sensitive data important to the users being
collected and processed in the cloud computing environments.
Homomorphic Encryption (HE) offers a potential solution to
safeguard privacy through cryptographic means while allowing
the service providers to perform computations on the encrypted
data. Throughout the process, only authorized users have access
to the unencrypted data. In this paper, we provide an overview
of three recent HE schemes, analyze the new optimization
techniques, conduct performance evaluation, and share lessons
learnt from the process of implementing these schemes. Our
experiments indicate that the YASHE scheme outperforms the
other two schemes we studied. The findings of this study can help
others to identify a suitable HE scheme for developing solutions
to safeguard private data generated or consumed by CPS.

I. INTRODUCTION

The rise of ubiquitous connectivity, Internet of Things (IoT),
cloud computing and big data analytics have boosted the
rapid growth of CPS. In this increasingly connected world,
everyday IoT objects collect and analyze vast amounts of
information about us in order to tailor their services to better
suit our needs and intentions. While the advantage of this new
computing era is prominent, it poses serious privacy concerns
due to the sensitivity of the data being collected, and how and
where this data is processed [1], [2]. In typical CPS systems,
private data is transmitted and processed in a cloud computing
environment. This means our private data is vulnerable to
various attacks and security breaches [3], which are quite
common.

Classical cryptography techniques, such as public-key cryp-
tosystems or the AES (Advanced Encryption Standard), are
commonly used for protecting this sensitive data in net-
work transmission and cloud storage. Data encrypted under
these classical methods cannot be processed further without
decryption. This limits the potential benefit of aggregating
crowd-sourced data to derive critical information, for example,
dynamic power distribution based on demands [4]. Recent
advances in Homomorphic Encryption (HE) [5] may provide
a solution to this problem. HE is a cryptographic technique
that preserves privacy through encryption while supporting
computations over encrypted data. In a nutshell, for messages
m and m′ we want the following properties to hold for

encryption using a key k:

Enc(m, k) + Enc(m′, k) = Enc(m+m′, k),

Enc(m, k) ∗ Enc(m′, k) = Enc(m ∗m′, k),

where applying addition + and multiplication ∗ to ciphertexts
has the same effect as applying these operations to plaintexts
and then encrypting the results. Since all functions can be bro-
ken down into these basic operations, we could theoretically
construct Fully Homomorphic Encryption (FHE) schemes that
perform arbitrary computations on encrypted data. The state of
the art FHE schemes are mostly constrained by performance
issues and large ciphertext size [6]. Hence, we focus our
discussion on SomeWhat Homomorphic Encryption (SWHE)
schemes, which support computations on encrypted data up to
certain number of multiplications. In recent years, a number of
SWHE schemes were proposed [7]. In this paper, we share our
experiences and lessons learnt from prototyping three recent
HE schemes: NLV [8], FV [9] and YASHE [10]. They are
based on the same theoretical construction and share important
features such as key switching [11], [12]. We develop an
evaluation framework that allows us to conduct experiments
using the same set of parameters as described in [8]. The eval-
uation focuses on the performance of homomorphic primitives
provided by these three schemes.

Our work is motivated by the lack of appropriate approaches
to perform secure computations in the cloud computing en-
vironments. Using those homomorphic primitives, such as
addition and multiplication, one can develop applications in
other domains, including secure information aggregation for
smart grids [4], or secure friend finding in social networks
[13].

The remainder of this paper is organized as follows. Section
II gives a brief overview of homomorphic encryption schemes.
We present a performance evaluation of the proposed solutions
in Section III. Section IV provides an overview of related work
on HE and its applications. Section V concludes the paper and
discusses possible future work.

II. OVERVIEW OF HOMOMORPHIC ENCRYPTION SCHEMES

In this section, we discuss three recent SWHE schemes.
They base security on the same mathematical hardness and
share common feature to control the noise growth after every
homomorphic operation. From the original theoretical con-
struction BV [11], [12] to the first implementation NLV [8]



based on BV, and to FV [9] and YASHE [10], we will provide
an overview of these schemes.

A. Notation
The most important structure is the ring R. Given a positive

integer d, we define R = Z[x]/(Φd(x)) as the ring of poly-
nomials with integer coefficients modulo the d-th cyclotomic
polynomial Φd(x) ∈ Z[x]. Φd(x) = xn+1 when d is a power
of 2. For clarity, we fix on this cyclotomic polynomial and
denote as Φ(x) throughout our discussions. An element in this
ring is a polynomial of the form v0 + v1x+ . . .+ vn−1x

n−1

where each coefficient vi is an integer. In order to distinguish
between plaintexts and ciphertexts, we use R as the underlying
ring structure to define two finite rings: the plaintext space is
defined as Rt = Zt[x]/(Φ(x)), where Zt are integers modulo
t, and the ciphertext space is Rq = Zq[x]/(Φ(x)), where q
is a prime and t is much smaller than q. The messages are
encoded as coefficients of polynomials that live in Rt which
are of the form v0 +v1x+ . . .+vn−1x

n−1 where vi ∈ Zt. For
example, if t = 2, then the message is in binary format, say
if m = 1011 then the polynomial form of m is 1 + x2 + x3.
We can similarly describe the ciphertexts to be elements of the
form v0+v1x+. . .+vn−1x

n−1, where vi ∈ Zq for 0 ≤ i < n.
We also define a Gaussian distribution χe on R which we use
to introduce noise (error term) into the ciphertexts. For the
error term, which is in the form of a polynomial, we sample its
coefficients from χe independently for each coefficient. Note
that the error term should be small, hence we use a Gaussian
distribution that is centered at zero and has a small standard
deviation. Finally, we represent modulo operations, such as (v
mod t) as [v]t.

B. Ring-Learning with Error (Ring-LWE)
Cryptographic schemes typically base their security on some

kind of mathematical hardness problems, like approximate
greatest common divisor (GCD) [14], [15] and LWE [16].
The SWHE schemes that we are dealing with are based on
the assumption that the Ring-LWE problem is as hard as
certain lattice problems [16], [17]. The Ring-LWE assumption
is stated as follows:

If we uniformly sample s and ai from a ring Rq =
Zq[x]/(Φ(x)) and ei from a Gaussian distribution χe, such
that bi = ais + ei for i ∈ N, then bi is computationally
indistinguishable from elements that are uniformly sampled
from Rq . In layman terms we hide secret element s covering
it with normal distribution of elements in Rq .

C. Recent SWHE schemes
In this paper, we review three recent SWHE schemes: NLV

[8], FV [9] and YASHE [10]. We prototype these schemes to
construct HE primitives for performing homomorphic prox-
imity computations. For each of these schemes we explain
the three main cryptographic components: key generation,
encryption and decryption. In addition, we describe how
homomorphic operations are achieved in these schemes. Note
that we focus on the asymmetric scheme, hence we need a
secret key SK and the corresponding public key PK.

1) NLV scheme: The NLV scheme [8], proposed by
Naehrig, Lauter and Vaikuntanathan, is one of the construc-
tions based on the BV SWHE scheme [11], [12]. It is a
straightforward construction as many operations are based on
the Ring-LWE assumption we have discussed.

a) Key Generation: For a secret key SK = s, we sample
its coefficients from a Gaussian distribution χk, denoted by
s ← χk, a random element a1 ∈ Rq and an error e ← χe.
This way we only need to keep a relatively small private key.
To improve security, χk is different from χe in mean and/or
standard deviation. We set the public key to be PK = (a0, a1),
where a0 = −(a1 ·s+t·e) and t is the modulus of the plaintext
space. Note that s, a0, a1 and e are all elements of ring Rq .

b) Encryption: Given a plaintext m ∈ Rt =
Zt[x]/(Φ(x)) and a public key PK = (a0, a1), we construct
an encryption function Enc(m,PK) = (c0, c1) = (a0e1 +
te2 +m, a1e1 + te3) ∈ (Rq)

2, where ei, i = 1, 2, 3 are noises
sampled independently from the Gaussian distribution χe.

c) Decryption: While any fresh encryption will produce
a ciphertext with two components C = (c0, c1) ∈ (Rq)

2,
homomorphic multiplication (described below) will increase
the number of elements in the ciphertext beyond two. Hence,
we represent the ciphertext as C = (c0, . . . , cξ) ∈ (Rq)

ξ+1.
The decryption function is defined as Dec(C, SK) = m̃ =∑ξ
i=0 cis

i ∈ Rq .
To understand its correctness, we show the following proof

for a ciphertext with two elements C = (c0, c1):

1∑
i=0

cis
i = (a0e1 + te2 +m) + (a1e1 + te3)s

= −a1e1s− te1e+ te2 +m+ a1e1s+ te3s

= t(−e1e+ e2 + e3s) +m.

The coefficients of the resulting expression must be converted
from (0, q] to (−q/2, q/2] in order to properly represent the
error terms, since they are drawn from Gaussian distribution
χe. We should then be able to decrypt the plaintext m from
[m̃]t, given that the noise terms are small.

d) Homomorphic Operations: Given two ciphertexts
C = (c0, . . . , cξ) and C ′ = (c′0, . . . , c

′
η), the homomorphic

addition is a straightforward component-wise addition.

C + C ′ = (c0 + c′0, . . . , cξ + c′η) ∈ (Rq)
max(ξ,η)+1,

where we might need to pad the ciphertexts by 0’s in order to
match the length of the longer ciphertext.

Homomorphic multiplication is more difficult, because of
the growth of elements,

C ∗ C ′ = (ĉ0, . . . , ĉξ+η).

where ĉi are appropriate convolutions defined in [11], [12]. In
a nutshell, homomorphic multiplication introduces terms with
si, for i > 1. Take the case of multiplying two ciphertexts
of length two: C = (c0, c1) and C ′ = (c′0, c

′
1). We want

C ∗ C ′ = mm′ + temult so that we get back mm′ (mod
t) where m and m′ are the corresponding messages, and



emult is the error resulting from multiplying two ciphertexts.
Working backwards, since we know that m = c0 + c1s and
m′ = c′0 + c′1s, we have:

mm′ + temult = (c0 + c1s)(c
′
0 + c′1s)

= c0c
′
0 + (c0c

′
1 + c1c

′
0)s+ c1c

′
1s

2.

Thus we have C ∗ C ′ = (ĉ0, ĉ1, ĉ2) = c0c
′
0 + (c0c

′
1 +

c1c
′
0)s + c1c

′
1s

2, where ĉ0 = c0c
′
0, ĉ1 = c0c

′
1 + c1c

′
0 and

ĉ2 = c1c
′
1. A new term with s2 is introduced. There is

a technique, called “relinearization”, to reduce the number
of ciphertext terms. To reduce this three-element ciphertext
back to a two-element ciphertext, we construct a set of
evaluation keys Evali = (bi = −(ais + tei) + tis2), ai)
for i = 0, . . . , dlogtqe − 1 (i.e., when t = 2, dlogtqe is the
bit length of q, or Bit-Decomposition). The evaluation keys
introduce the term s2 for converting the ciphertext back to a
two element ciphertext; so that, the ciphertext is decryptable
by the original secret key s. Interested readers can find more
information in [8].

2) FV scheme: Based on the NLV construction, Fan and
Vercauteren [9] proposed the FV scheme with scale invariance
∆ = bq/tc to control the noise growth after every homomor-
phic multiplication. Since we have q = ∆ · t+[q]t, we remark
that q and t do not have to be prime, nor that t and q are
coprime.

a) Key Generation: The key generation is almost the
same as in the NLV scheme. We generate a secret key
SK = s ← χk. For a random element a1 ∈ Rq and an
error e ← χe, we set the public key to be PK = (a0, a1),
where a0 = [(−a1 · s+ e)]q .

b) Encryption: The encryption is also similar to the
NLV scheme. Given a plaintext m ∈ Rt and a public
key PK = (a0, a1), we construct an encryption function
Enc(PK,m) = (c0, c1) = (a0 ·e1 +e2 +∆ ·m, a1 ·e1 +e3) ∈
(Rq)

2, where ei, i = 1, 2, 3 are noises sampled independently
from the Gaussian distribution χe. It should be noted that ∆
is only applied to message m.

c) Decryption: The decryption function is defined as
Dec(C, SK) = m̃ = [bt/qe ·

∑ξ
i=0[cis

i]q]t for ciphertext
C = (c0, . . . , cξ) ∈ (Rq)

ξ+1. Here, we reduce all noise terms
by a factor approximate to bt/qe, which is the inverse of ∆.
This scaling down will not have effect on message m since
we scale it up by ∆ in encryption.

d) Homomorphic Operations: The homomorphic addi-
tion and multiplication are the same as in the NLV scheme.
The same relinearization technique is used in FV to make
ciphertext decryptable by the original secret key s. The only
difference is that each resulting ciphertext component is mul-
tiplied by bt/qe after each homomorphic operation to scale
down the noise. Interested readers can find more information
in [9].

3) YASHE: In [18], Stehlé and Steinfeld modified NTRU-
Encrypt scheme to reduce security to standard problem in ideal
lattices. López-Alt, Tromer and Vaikuntanathan constructed a
Fully HE scheme based on this modified system [19], however

a non-standard assumption is required to allow homomorphic
operations and prove security. Bos et al. [10] proposed YASHE
(Yet Another Somewhat Homomorphic Encryption) scheme in
which this non-standard assumption is removed via a tensoring
technique introduced by Brakerski [20]. YASHE is a new Fully
HE scheme based on standard lattice assumption and a circular
security assumption.

a) Key Generation: In YASHE, the key generation is
based on NTRU system. The noise elements f ′ and g are
sampled from χk, we find f = [tf ′ + 1]q such that f is
invertible modulo q. If we find a f satisfied by f ′, we define
SK = f , and we then define PK = h = [tgf−1]q .

b) Encryption: Given a plaintext m ∈ Rt, sample e1, e2
from χe. The corresponding ciphertext is given by

Enc(PK,m) = C = [∆[m]t + e1 + he2]q

.
c) Decryption: Given a ciphertext C ∈ Rq , we decrypt

by computing Dec(C, SK) = m̃ =
[
b tq · [fc]qe

]
t
∈ Rt.

d) Homomorphic Operations: The homomorphic opera-
tions are very straightforward in YASHE since the encryption
will produce one ciphertext component as a result of the
NTRU key generation. However, multiplying two ciphertexts
still results in a quadratic expression. A technique, called key
switching (similar to relinearization) is applied after each ho-
momorphic multiplication to make the ciphertext decryptable
by the secret key f . The evaluation key in YASHE is generated
as Evali = f−1P (D(f)⊗D(f)) + e1 +h · e2 for error terms
ei, i = 1, 2. In this equation, P (x) and D(x) are PowerOfTwo
and BitDecomposition for the plaintext space t = 2. ⊗ is
scalar product of the vectors. For more details, refer to the
next section or in [10].

D. Discussion

When comparing these three schemes, scale invariance was
introduced in FV and YASHE for controlling the noise growth
after every homomorphic multiplication. Relinearization (or
key switching) is used by all schemes to convert the quadratic
component as a result of the multiplication. The use of NTRU
key generation reduces the space requirement on public and
private key pair in YASHE. Subsequently, the encryption in
YASHE produces one ciphertext element instead of two in
NLV and FV. This reduce the ciphertext size to almost half
assuming the message is relatively smaller than the ciphertext
space Rq . It has been shown that although the noise growth is
smaller in FV, YASHE is faster in performance than FV [6].
In the later section, we conduct experiments to evaluate their
performance on three platforms.

III. EVALUATION AND DISCUSSION

In this section, we describe our SWHE framework in which
we implemented the three SWHE schemes. This follows by
the evaluation of main homomorphic operations.



A. Implementation and evaluation platforms

To conduct performance evaluation of these SWHE
schemes, we have developed a HE prototyping framework that
provides functionalities such as time measurement, parameter
recording and playback. We implemented the three schemes
in C++ with the support for polynomial operations from the
Number Theory Library (NTL) version 9.4.0, which depends
on the GNU Multiple Precision Arithmetic Library (GMP)
version 6.1.0 to handle large integers. Main functionalities
of the individual schemes were implemented. We verified the
correctness of our implementation through extensive validation
tests, and we compared our performance results with the data
reported in the original papers. Computation time measure-
ments were done on a 2.6 GHz Intel Core i5 computer.

B. Evaluation results and discussion

In HE schemes, parameter selection is an important process
that determines the correctness, security and performance of
the schemes. We conduct experiments using the parameters
described in Table 1 in [8]. The range of parameters selected
for the experiments cover different degree of strength against
the distinguishing attack [21].

Figure 1 shows the performance of the NLV scheme. We
use these results as the baseline for the performance evaluation
of two other HE schemes. As mentioned in Section II, While
the NLV is the first implementation of the BV scheme, the
FV scheme adds scale invariants to reduce noise growth, and
YASHE carries on the use of scale invariants and makes use of
the NTRU key generation to reduce the number of ciphertext
element. As shown in the Figure, the computation times grow
when the parameters increase. But multiplication with relin-
earization and the processes for generating the evaluation key
for relinearization substantially increase the computation time.
The evaluation key is a set of logtq sub-keys; each of such
sub-keys is a partial encryption of the secret key with different
noises. Hence, generating the evaluation key takes substantial
time. Each homomorphic multiplication takes approximately
4.5 times longer than encryption. However, the relinearization
step add significant longer time to multiplication. We note
that time for decryption after a relinearization step does not
increase. These results highlight the needs of new method to
improve or replace the relinearization step.

Figure 2 shows how FV and YASHE perform when com-
pared with NLV. One obvious observation is FV has similar
or worser performance than the NLV scheme. This indicates
that the scale invariants may not provide much of the perfor-
mance gain over NLV. We will conduct further experiments
to investigate this issue in the future work. But it is certain
that the scale invariants do add significant computation times
when performing multiplication with relinearization. In fact,
this technique is applied after every multiplication.

Another observation is that YASHE takes significant longer
time in generating the secret key comparing to NLV and FV.
This is because NLV and FV sample the secret key terms from
the Gaussian distribution χe, whereas YASHE’s NTRU key
generation will try to find suitable f ′ such that f is invertible

SK PK Eval_k Enc	 Dec.deg1 Add Mult Mult+Relin Dec.deg2 	Overall
ms ms ms ms ms ms ms ms ms s

1 512 19 0.15 1.23 35.12 1.55 1.21 0.05 - - - 0.111
2 1024 38 0.24 3.38 164.21 4.00 2.79 0.11 15.33 379.08 2.74 0.576
3 2048 64 0.48 7.89 783.35 11.61 7.69 0.24 43.42 1957.93 7.14 2.833
4 2048 89 0.50 8.64 1256.50 12.93 9.18 0.23 51.34 3466.72 8.15 4.823
4 4096 94 0.95 17.69 2903.32 28.74 18.31 0.49 104.59 7759.26 17.22 10.840
5 4096 120 1.02 20.59 4337.59 37.08 19.89 0.50 138.68 13590.35 22.74 17.711
10 8192 264 2.07 91.92 45951.80 156.12 93.58 1.42 645.06 121468.00 82.18 164.753
15 16384 423 4.84 294.64 228059.00 542.52 265.35 4.08 1923.99 636690.00 291.21 849.121
1 1024 27 0.24 2.25 14.39 3.19 3.09 0.11 - - - 0.075
2 2048 52 0.49 6.96 86.62 10.30 6.44 0.32 40.91 144.92 6.44 0.316
3 2048 82 0.49 7.77 157.05 15.22 7.44 0.22 45.93 271.95 7.56 0.521
3 4096 86 1.01 17.85 384.04 32.44 17.62 0.53 112.41 608.45 16.64 1.229
4 4096 118 1.03 20.44 636.59 41.69 22.38 0.49 135.30 939.78 19.96 1.861
5 4096 150 1.04 26.15 892.10 39.56 23.04 0.49 150.92 1316.59 21.57 2.522
10 8192 324 2.10 113.11 8865.39 207.10 106.52 1.57 788.32 12518.00 102.25 22.807
10 16384 338 4.30 252.37 21317.95 461.26 245.71 4.42 1795.20 29099.55 285.58 53.558
15 16384 513 5.20 352.57 45387.65 651.98 313.58 6.96 2481.60 60672.40 331.09 110.583
1 1024 30 0.28 2.82 11.65 5.21 3.69 0.10 - - - 0.072
2 2048 58 0.60 6.96 62.29 9.37 7.31 0.22 37.46 115.17 6.05 0.259
3 2048 91 0.56 8.56 143.86 13.21 8.24 0.22 57.90 222.22 8.66 0.482
3 4096 95 0.94 19.00 294.79 31.67 17.25 0.45 111.09 510.52 23.07 1.047
4 4096 130 0.98 22.20 476.71 34.40 23.23 0.72 141.06 726.70 19.31 1.484
5 4096 165 1.07 27.97 876.07 49.64 26.75 0.54 183.16 1185.75 27.30 2.426
5 8192 171 2.02 60.39 1825.48 101.31 57.95 1.15 391.72 2596.47 55.19 5.214
10 8192 354 2.08 113.49 6837.88 185.85 102.33 1.93 785.03 9213.68 101.98 17.541
10 16384 368 4.79 257.20 16706.90 462.41 241.67 5.08 1772.87 21488.45 241.25 41.520
15 16384 558 5.46 389.85 39562.15 715.41 380.39 6.42 2988.03 48260.75 346.22 92.859

1024

t	 D n log	q

2

128

Fig. 1. Computation times of different homomorphic operations in the NLV
scheme. [t] plaintext space; [D] number of multiplications supported plus one,
D=1 implies no multiplication can be performed; [n] degree of a polynomial;
[log q] size of the ciphertext space; [SK] secret key; [PK] public key; [Eval k]
evaluation key for relinearization; [Enc] encryption; [Dec.deg1] decryption
without relinearization; [Dec.deg2] decryption after one relinearization; [Add]
addition; [Mult+Relin] multiplication with relinearization; [Overall] overall
time. All values of the individual operations are represented in milliseconds,
while overall time is in seconds.

modulo q, as described in Section II. In general, YASHE
outperforms the other two schemes in computation times,
except generating the secret key and performing decryption.
The use of NTRU keys produces single ciphertext element
instead of two in NLV and FV. For this reason, we conjuncture
that YASHE will be a better choice if ciphertext size does
matter.

IV. RELATED WORK

There are many theoretical constructions of HE schemes,
among which only some have practical implementations. Per-
formance evaluation of such schemes so far has been limited.
In [6], Lepoint and Naehrig implemented two HE schemes,
FV and YASHE, using the FLINT library. Their focus was
on the performance of these two schemes on evaluating the
operations of a lightweight block-cipher SIMON [22]. The
authors compare and contrast the noise growth in homomor-
phic multiplication both theoretically and experimentally. This
paper differs from their work twofolds: (i) analysis of new
techniques, such as scale invariants and NTRU key generation,
that arguably make FV and YASHE better than the NLV
scheme, and (ii) performance evaluation of three schemes
implemented in NTL library with focus on improvement
provided by the new techniques.

V. CONCLUSION

The growing popularity of IoT and CPS systems has paved
the way for computers to “disappear” in the background of
our life and provide services that suit our needs in smart
environments. Large amount of sensor data is collected and
processed in the cloud to derive better understanding about the



FV YASHE FV YASHE FV YASHE FV YASHE FV YASHE FV YASHE FV YASHE FV YASHE FV YASHE
1 512 19 0.01 -7.55 -0.24 0.55 1.12 21.00 -0.17 0.77 -0.31 -0.25 -0.03 0.03 - - - - -0.041 0.042
2 1024 38 -0.01 -24.84 0.47 1.24 -15.92 90.11 -1.15 1.50 -1.08 -0.79 -0.05 0.08 -72.62 378.81 -0.64 -0.46 -0.174 0.194
3 2048 64 -0.05 -72.48 0.03 2.20 -96.57 399.90 0.05 6.02 -1.76 -0.86 -0.11 0.16 -372.04 1956.45 -14.82 -1.19 -0.675 1.355
4 2048 89 0.01 -81.50 -0.69 0.39 -88.51 663.44 -1.22 6.38 -0.62 -0.08 -0.11 0.15 -534.10 3464.09 -1.61 -1.95 -0.783 1.485
4 4096 94 -0.12 -185.05 -2.56 2.64 -2.51 1523.37 0.70 14.81 -4.21 -1.97 -0.19 0.33 -1650.81 7752.25 -2.50 -4.15 -2.417 2.201
5 4096 120 -0.08 -283.84 -1.91 1.89 -185.79 2022.99 4.80 18.00 -4.13 -4.89 -1.17 0.34 -350.25 13580.03 -35.03 -5.62 -1.723 4.697
10 8192 264 -0.02 -1243.03 -1.60 14.42 3728.75 26058.40 -3.75 76.45 -2.49 -0.12 -1.00 0.99 -7345.50 121378.80 -149.98 -5.27 -8.200 54.078
15 16384 423 -2.95 -4360.76 -232.14 50.95 10344.00 122910.00 -34.08 304.89 -57.96 -3.63 -10.30 2.87 -36438.00 636229.59 -488.81 -22.54 -54.469 278.133
1 1024 27 -0.01 -17.53 -0.13 0.77 -0.91 7.27 -0.01 - -0.85 - -0.05 - - - - - -0.138 0.011
2 2048 52 -0.02 -70.41 -2.22 0.24 6.21 48.16 -0.21 5.11 -2.46 -1.29 -0.09 0.16 -251.06 - -10.51 - -0.486 0.044
3 2048 82 0.01 -74.81 0.15 2.54 13.95 54.70 3.59 8.23 -1.73 -1.22 -0.12 0.15 -194.19 271.79 -12.40 -2.85 -0.436 0.143
3 4096 86 -0.03 -185.10 0.90 4.88 -156.97 205.14 4.25 17.27 -18.94 -1.49 -0.44 0.36 -1273.44 607.96 -63.57 -3.79 -2.425 0.299
4 4096 118 -0.36 -235.36 -0.64 4.89 27.71 350.72 6.00 25.02 -2.84 -0.77 -0.38 0.19 -995.00 939.10 -36.75 -6.08 -1.950 0.584
5 4096 150 -0.12 -304.85 0.46 7.70 -79.66 455.45 -4.69 17.96 -14.79 -2.07 -0.77 0.32 -1013.45 1315.76 -43.23 -3.18 -2.148 0.860
10 8192 324 0.06 -1601.23 -8.53 21.92 316.03 4360.60 20.61 114.40 -1.82 -3.42 -1.51 1.13 -3651.45 12512.43 -177.21 -8.99 -7.170 10.722
10 16384 338 -1.16 -3763.31 -5.21 42.21 -265.90 10735.75 -30.59 248.37 -32.28 10.49 -1.53 3.40 -20508.80 29084.62 -384.05 32.20 -40.011 23.369
15 16384 513 -0.43 -5401.17 -193.54 42.00 -1803.30 22892.25 -28.97 336.70 -29.16 -53.82 -3.35 5.62 -31357.65 60643.35 -577.41 -19.28 -60.183 52.285
1 1024 30 0.04 -19.42 -0.10 0.93 1.21 6.66 0.93 3.61 -0.25 -1.22 -0.05 0.07 - - - - -0.142 0.002
2 2048 58 0.09 -60.03 -0.01 2.76 4.71 31.23 0.67 4.89 -0.68 -0.21 -0.13 0.15 -226.28 115.06 -9.68 -1.31 -0.459 0.027
3 2048 91 0.08 -87.87 -0.10 2.36 8.64 78.21 0.30 6.70 -1.99 -1.34 -0.12 0.09 -228.45 222.04 -12.68 -0.83 -0.456 0.113
3 4096 95 -0.09 -235.40 1.31 -6.46 4.61 155.36 -2.93 5.88 -3.36 -4.97 -0.46 0.29 -878.19 510.10 -21.99 3.09 -1.831 0.152
4 4096 130 -0.05 -238.13 -4.26 4.97 30.50 166.32 1.17 -5.67 -0.46 -4.82 -0.04 0.53 -1020.68 726.09 -43.30 19.12 -1.918 0.213
5 4096 165 0.03 -377.73 -4.09 3.34 83.68 476.98 5.16 26.61 -5.34 -3.39 -0.41 0.35 -1070.33 1184.90 -52.86 -2.64 -1.901 0.687
5 8192 171 0.07 -766.21 1.54 9.79 -2.98 840.33 0.43 43.21 -10.74 -67.99 -0.77 0.79 -3961.58 2594.46 -100.67 -7.68 -7.752 1.155
10 8192 354 -0.03 -2637.15 3.65 20.87 -609.77 3161.30 -3.28 85.48 -12.56 -15.87 -1.25 1.34 -4344.53 9205.46 -13.62 -89.12 -8.291 2.504
10 16384 368 -0.43 -3641.10 -62.17 46.90 -275.30 8731.47 -44.85 250.34 -19.17 1.86 -2.78 4.02 -19773.20 21476.73 -426.31 -26.48 -39.202 17.247
15 16384 558 -0.74 -9667.39 -11.45 -54.07 1006.35 18268.85 -50.39 289.20 -150.12 10.88 -3.92 4.94 -39445.80 48235.82 -712.75 -47.84 -63.008 35.331

1024
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Fig. 2. Difference in computation times using NLV against FV and YASHE. All values shown in this table are calculated using NLV as the baseline. For
example, the values for FV columns are calculated as V alueNLV − V alueFV . Hence, larger the values are the better.

environments and users. Concerns around privacy is a major
barrier before this computing era to reach its full potential.
Homomorphic Encryption has be considered as a potential
tool to address this problem. In this paper, we provided an
overview of three recent HE schemes and conducted perfor-
mance evaluation of main homomorphic operations. We shared
the lessons learnt from implementing these schemes.
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