Pervasive and Mobile Computing 38 (2017) 60-76

. . . . X e
Contents lists available at ScienceDirect = Gna mobile
computing

Pervasive and Mobile Computing

journal homepage: www.elsevier.com/locate/pmc e ‘

Advancing Android activity recognition service with Markov @ CrossMatk
smoother: Practical solutions”

Mingyang Zhong **, Jiahui Wen ¢, Peizhao Hu", Jadwiga Indulska **

2School of ITEE, The University of Queensland, Australia
b Department of CS, Rochester Institute of Technology, USA
€ NICTA, Australia

ARTICLE INFO ABSTRACT

Article history: Common use of smartphones is a compelling reason for performing activity recognition
Received 15 June 2015 with on-board sensors as it is more practical than other approaches, such as wearable sen-
Received in revised form 19 May 2016 sors and augmented environments. Many solutions have been proposed by academia, but

Accepted 11 September 2016

Available online 22 September 2016 practical use is limited to experimental settings. Ad hoc solutions exist with different de-

grees in recognition accuracy and efficiency. To ease the development of activity recogni-
tion for the mobile application eco-system, Google released an activity recognition service

i?t’iv\\/’iot;rd:écognition on their Android platform. In this paper, we present a systematic evaluation of this activ-
Android ity recognition service and share the lesson learnt. Through our experiments, we identified
Markov smoother scenarios in which the recognition accuracy was barely acceptable. We analyze the cause
Signal strength of the inaccuracy and propose four practical and light-weight solutions to significantly im-

prove the recognition accuracy and efficiency. Our evaluation confirmed the improvement.
As a contribution, we released the proposed solutions as open-source projects for develop-
ers who want to incorporate activity recognition into their applications.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

According to the latest Cisco report [1], almost half a billion (497 million) mobile devices and connections were added
in 2014. Smartphones accounted for 88% (439 million) of that growth. These compact, yet powerful, multi-functional
smartphones have boosted the market shift from desktop to ‘thin’ mobile devices. Along with their slim design, smartphones
are typically equipped with various sensors that can sense location, acceleration, orientation and biometric data, and this
kind of context/intelligence provided by mobile devices is able to provide context information to various applications [2].

These added capabilities enable activity recognition to be performed directly with data gathered from the on-board
sensors [3], rather than depending on wearable sensors [4,5] or environment augmentation [6,7]. For example, Kwapisz
et al. [8] made use of smartphone’s accelerometer data to recognize five common activities (including walking, jogging).
Typical activity recognition procedures include data collection, feature extraction and training of classifiers, as a result of
these processes a model is produced for detecting meaningful patterns. Various machine learning techniques (e.g., Hidden
Markov Model, Support Vector Machine) have been used to map patterns to the desired activities. There are also hybrid
models [9,10], which combine multiple simple models to improve recognition accuracy.

“ This paper has been substantially extended from our CoMoRea 2015 paper (Zhong et al. 2015).
* Corresponding author at: School of ITEE, The University of Queensland, Australia.
E-mail address: mingyang.zhong@ug.net.au (M. Zhong).

http://dx.doi.org/10.1016/j.pmcj.2016.09.003
1574-1192/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.pmcj.2016.09.003
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2016.09.003&domain=pdf
mailto:mingyang.zhong@uq.net.au
http://dx.doi.org/10.1016/j.pmcj.2016.09.003

M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76 61

The accuracy of recognition depends greatly on how developers handle each step in the above processes. These skills are
often not a must have for most mobile application developers. To ease the development of mobile applications that need
the activity recognition feature, Google released its Android activity recognition (AR) services in 2013. Through the service
API, developers can request for recognition results based on an interval, much like the Android location service. Initially,
four types of activities were supported: Stationary, On Foot, Cycling, In Vehicle and Unknown. In the 2014 update, three more
activities were added: Walking, Running and Tilting. It has to be noted that the Google AR service recognizes activities based
on on-board smartphone sensors without any additional input from wearable or environmental sensors so its ability to
recognize additional new activities is limited. According to the documentations,' the Google AR service makes use of low-
power, on-board smartphone sensors to recognize user’s activity with efficient energy consumption. In our attempt to study
this service, we discovered inaccuracy that has a significant impact on millions of mobile applications that could be using
this service to trigger certain application behaviors or adaptation.

In this paper, we present a systematic qualitative and quantitative evaluations of this AR service, with a goal to investigate
its accuracy, latency and complexity. Based on other referenced sources, together with our experiments, we demonstrate
scenarios in which this AR service will perform poorly. We then propose four practical solutions: (i) ARshell [11], a post-
processing step which uses a Markov smoother to improve the overall accuracy of all recognition categories up to 15.2%;
(ii) ARshell HMM, similarly with ARshell, a post-processing method applying Hidden Markov smoother to avoid some
manual settings of ARshell, and it improves the accuracy by 1.2%; (iii) ARsignal, a lightweight cellular signal based method
using Support Vector Machine (SVM) [12] that shows a strong discriminative power on classifying stationary class; and
(iv) ARshell+, a hybrid approach that integrates the advantages of both ARshell and ARsignal, and it further enhances overall
accuracy to 91% (21.2% improvement compared with the accuracy of the AR service). We released ARshell+ as an open-
source project on GitHub as a contribution to researchers and developers who might be interested in this improvement
of the Google AR service. In addition, the ARshell+ API eases the integration of AR service in research projects and mobile
application development.

There are three main contributions presented in the paper:

e A systematic evaluation of the Google AR service;
o Effective and lightweight practical methods to significantly improve the AR accuracy;
e A cost analysis of our proposed solutions, regarding CPU usage, memory occupancy, and power consumption.

The remainder of this paper is organized as follows. Section 2 presents related work on activity recognition. Section 3
describes evaluations of the Google AR service. This is followed by our proposed solutions and their evaluation in Section 4.
We conduct experiments to analyze the cost in terms of CPU load, memory usage and power consumption in Section 5.
Section 6 concludes the paper, followed by the Appendix on how we map our approach to HMM.

2. Related work

In the literature, there exist many works on activity recognition. In this section, we will focus on work that are closely
related to the scope of this paper.

In one of the pioneering work, Bao et al. [13] proposed a method to recognize physical activities with multiple sensors
attached at different positions of a human subject. The participants were asked to perform daily activities. Sampling data
of these activities were recorded and annotated manually. The authors then extracted features, such as mean, energy
and frequency-domain entropy for the training processes. Through the testing of multiple classifiers, the authors found
that Decision Tree performs reasonably well and achieves the highest accuracy. Since then, other similar approaches
with attaching multiple sensors to human subject were proposed. For example, Quwaider and Biswas [14] proposed a
method to classify specific movements of a region of the human body. Wang et al. [15] constructed common models with
human knowledge to minimize labeling overhead and improve the recognition accuracy. As unsupervised and supervised
approaches require estimating many parameters and the manual labeling, respectively, Palmes et al. [16] simplified the
activity modeling process by mining the web to extract the most relevant objects. However, it is proposed for smart
environments, and cannot be applied to activity recognition based on smartphones. Using application-specific and custom
built wearable sensors may lead to high recognition accuracy [17,18], however it is obtrusive to the users and cumbersome
to apply in a large scale [19].

With smartphones spreading rapidly, there is an increasing interest to perform activity recognition using on-board
sensors of these smartphones. There are abundance of proposals on performing activity recognition with smartphones. In
one of them, Kwapisz et al. [8] presented an activity recognition system that uses accelerometer data from 29 participants
engaged in physical activities (such as walking, jogging, climbing stairs, sitting and standing) to recognize activities with
a single device in their pocket. They segmented the sensor data into 10 s sampling windows. Features, such as mean,
standard deviation, average absolute difference, average resultant acceleration, time between peaks and binned distribution,
were extracted from the collected data for constructing the model. Multiple predictive models (e.g., decision tree, logistic
regression, multi-layer neural networks) have been explored for activity recognition. The authors concluded that their

1 http://developer.android.com/training/location/activity-recognition.html.

http://developer.android.com/training/location/activity-recognition.html

62 M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76

solution can recognize walking and jogging with high accuracy. Unfortunately, walking downstair and upstair are the
most difficult activities to be distinguished due to their similar patterns in acceleration. Shoaib et al. [20] explored the
role of gyroscope and magnetometer on smartphones for activity recognition. They experimented on four body positions
using seven classifiers while trying to recognize six physical activities. They concluded that accelerometer and gyroscope
complement each other in general, however magnetometer is not so promising due to its dependency on directions.
Dernbach et al. [21] investigated the ability to recognize not only locomotion activities, but also high level activities, such
as cooking and cleaning. In general, the recognition accuracy using on-board sensors alone is lower than other approaches
in which specific sensors are attached to targeted areas of human body. However, activity recognition using smartphones is
still a promising way to enable some levels of application adaptation and situation awareness [22].

While there are works on exploring activity recognition using smartphones, other work focus on ways to improve
recognition accuracy and efficiency. For example, Hemminki et al. [23] proposed a method to eliminate the influence of
gravity (vertical acceleration), while maintaining high accuracy on recognizing horizontal acceleration. They confirmed that
the method improves the accuracy of recognizing modes of transportation by 20%. Maekawa et al. [24] proposed the idea of
finding a model for recognition based on the similarity in user profiles, rather than constructing specific model for individual
users. The idea is to minimize the complexity in data collection and training processes. Also, it encourages model reuse. On a
similar idea, Cvetkovic et al. [25] proposed the idea of a general classifier for users that are alike. Then, individual differences
are incorporated to be the user-specific classifier. There are also approaches focused on energy efficiency. Gordon et al. [26]
proposed a predictive method to activate subset of sensors based on the likelihood of future activities. Yan et al. [27]
proposed an approach to dynamically adjust the sampling rate and classify features in realtime to balance the trade off
between accuracy and energy consumption. In [28], Zappi et al. proposed to balance the trade-off between accuracy and
power consumption by dynamically selecting the best set of sensors that have the discriminative power to meet the desired
minimum recognition accuracy. Whereas in [29], Keally et al. developed a method to choose a subset of the sensors for
activity classification in order to save energy and minimize training overhead. They put a constraint so that no two selected
sensors have a correlation coefficient that is greater than or equal to a pre-defined threshold, the basic idea is that sensors
with zero-decision-correlation tend to achieve higher recognition accuracy than otherwise. The authors of [30] proposed an
energy-efficient context monitoring framework, in which only a subset of the context sources are needed to be monitored.
Juetal. [31] proposed an efficient dataflow execution method for mobile context monitoring application. The observation
is that multiple application running on the mobile devices may consume the same context, and then energy can be saved
if the context could be processed uniformly and provided to multiple application through a middleware. In these solutions
that improve energy efficiency, there are generally two ways—using a subset of sensors and adjusting the sampling rate.
However, on-board sensors of smartphones are limited, such as accelerometer and gyroscope, using a subset of the sensors
may not be able to achieve a reasonable accuracy. Furthermore, to guarantee the accuracy, a minimum sampling rate is
required, and it also depends on the frequency of recognition updates required by the application. Thus, a basic amount of
energy cost is inevitable.

Although a substantial amount of research has been carried out on activity recognition on mobile devices, there was no
activity recognition service available for Android application developers before the Google AR service. This service has the
potential to revolutionize the development of mobile applications that offer better user experience. The following section
provides insights of the AR service regarding its accuracy, latency and complexity.

3. Evaluation of Google activity recognition service

Through the service API, developers can support activity recognition in their applications, without dealing with complex
pattern analysis of sensor data. According to the documentation, the AR service is bundled together with the location services
and is part of the Google Play services APK. However, our experiment results (when we remove SIM card and disable WiFi
and GPS) suggest that the AR service performs activity recognition based on readings from the on-board sensors, for example,
accelerometer, gyroscope and compass.

To access the AR service, a mobile application must be granted with a special permission.> To receive update on
recognized activities, applications define a callback function and specify an interval for receiving updates of recognized
activity. The intention of this update interval is to provide developers the control of freshness of measurements and power
consumption. Also, the Android OS uses this interval to optimize efficiency by merging queries from different applications.
When time is up, the system will trigger the callback function with the last recognized activity. In addition to the activity
update logic, mobile applications define methods for starting and stopping of the service and error handling. We perform
our evaluations using a demo code provided, with an additional code for recording measurements.

3.1. Experimental setup

All of the experiments are carried out on actual Android devices. The details of a setup are as follows:

2 com.google.android.gms.permission.ACTIVITY_RECOGNITION.

M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76 63

Table 1

Definition of activity classes.
Activity class Definition
Stationary The device is stationary (not moving).
On Foot The device is on a user who is walking or running.
Walking The device is on a user who is walking (a sub-class of On Foot).
Running The device is on a user who is running (a sub-class of On Foot).
Cycling The device is on a bicycle.
In Vehicle The device is in a vehicle, such as a car.
Tilting The device angle relative to gravity changed significantly.
Unknown Unable to detect the current activity.

1 1
0.8r 0.8r 1
0.6r 0.6 1
[y [z
a a
O O
0.4r 0.4r 1
Overall
0.2} 0.2} Stationary - 4
Walking
Y T S U N ol In vehicle -
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Warm-up time (s) Delay between recognitions (s)
(a) Delay before 15 data point. (b) Delay between consecutive data.

Fig. 1. CDF of two aspects of delay.

e Android devices: HTC Desire C with 600 MHz processor and 512 MB memory, Samsung Galaxy Nexus with 1.2 GHZ dual-
core processor and 1 GB memory, and Samsung NOTE Il with 1.6 GHz quad-core processor and 2 GB memory. These
devices represent three distinctive classes of device capability,

e Experiment duration: the experiments were carried out by the authors over one month period, and over six thousand
minutes of data have been collected using the aforementioned devices in various scenarios: Stationary, Walking, Running,
Cycling, In Vehicle and Tilting, and the definition of these activities provided by Google is shown in Table 1. Note that the
collected data has also been used for the comparison studies on different schemes in Section 4. All the experimental data
was recorded with a human label (as the ground truth). We sampled the data outputted from the Google AR service every
second, and we collected data for two hours for each activity.

3.2. Delay

The update interval parameter is designed to be a trade-off to balance between freshness of the measurement values and
power consumption. Developers should choose an appropriate value according to their application requirements. To better
understand the delay characteristic of the AR service, we conducted experiments to investigate the warm-up time, which is
the delay before the first recognized event from the AR service, and the delay between two consecutive recognized events
reported by the AR service.

Fig. 1 shows the Cumulative Distribution Function (CDF) of the two aspects of delay. As for the warm-up time, we
conducted multiple experiments to measure the average warm-up time and standard deviation. The results are 18.3 s and
13.9 s, respectively. Furthermore, Fig. 1(a) shows that the warm-up time can be as long as 30 s or more in about 10% of our
experiments, and the reason is that the AR service is not able to generate recognition result when the confidence values of
all possible activities are below a threshold, detailed in Section 4.1.1. Tens of experiments have been carried out for testing
the minimum waiting time from starting the service to receiving the first recognition, and the averaged value of that is 3 s.

Typically, a sampling window is used in most activity recognition, either with fixed window size or dynamic size [12],
and pattern matching is applied on the sensor data with respect to this window. Because of the lack of access to the source
code of the AR service, we cannot determine the exact window size. Rather, we try to measure the time delay between
two consecutive recognized events to approximate the minimum interval software developers can use for receiving activity
updates. We conducted experiments with the interval fixed to 0 s (notify whenever update is available), and collected data
samples over an hour (roughly one thousand measurements). In our experiments, regarding the delay between receiving
two consecutive updates over all activities, the absolute minimum delay was around 0.5 s. As shown in Fig. 1(b), slightly over
80% of the overall data samples show a delay less than 3.5 s. Furthermore, the minimal delays below 3.4 s are rare cases that
happen with the probability less than 4%. In some extreme cases, the time between two consecutive recognitions can take as
long as 37 s. To explore the impact of delay on different activities, Fig. 1(b) shows the CDF of delay of three example activities
(Stationary, Walking and In Vehicle). We can see that Walking and In Vehicle show quicker response time than Stationary in

64 M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76

Table 2
Average delay between consecutive recognitions.
Activity Average delay (s)
Stationary 9.7
Walking 39
Running 4.2
Cycling 11.3
In Vehicle 5.6
Overall 6.9
Table 3
Confusion matrix and accuracy of Google AR service.
Classified to: Agggr
S W R F C \'% T u
S 39% 2% 0 6% 0 21% 3% 29% 39%
w 0 75% 4% 6% 0 0 4% 11% 81%
R 0 7% 45% 28% 10% 0 4% 6% 73%
C 0 0 0 0 68% 0 22% 10% 68%
Vv 3% 0 0 1% 1% 88% 2% 5% 88%
Aavg 69.8%

Note: S—Stationary, W—Walking, R—Running, F—On Foot C—Cycling, V—In vehicle, T-Tilting, U-~Unknown.

around 20% cases. Similarly to the warm-up delay, we also noticed large delay between two consecutive recognitions when
the AR service is not able to generate recognition result if the confidence values of all possible activities are below the
threshold, such as standing users using their smartphones or vehicles frequently stopping. We also calculated the average
delay between consecutive recognitions when performing different activities as shown in Table 2. Note that there are two
forms of the stationary scenarios: (i) the device is on a stationary user who is sitting or standing, and (ii) the device is on a
stationary structure such as a desk. As the AR service preforms well on both, accuracy (described in Section 3.3.1) and delay
for the latter case, which incurs 3.1 s of the average delay, the Stationary in Table 2 and Fig. 1(b) only states the results of the
former case.

In another set of experiments, we investigate the relationship between update interval and accuracy of recognition.
According to our results, different interval settings have no affect on the accuracy. Thus, we use 0 s as the update interval
for the rest of our experiments.

3.3. Accuracy

Accuracy is a direct measure of the usefulness of the recognition algorithm. In this subsection, we evaluate the
performance of the Google AR service with various scenarios. Similar to the most proposed AR solutions, after collecting
enough data samples over the sampling window, the AR service proposes the most probable activity and a list of probable
activities, each with a confidence value ranging from 1 to 100. That is,

{(amOS[s CVmOSt)v [(ala CV1)5 ((12, CVZ),) (an, Cvn)]}-

If an activity a0 has confidence value cv,,o5 of 100, it implies absolute certainty of the activity and the list of probable
activities [(aq, cvy), (az, cva), ..., (an, cvy)] is null except for Walking and Running. As these two activities are the sub-
activities of On Foot, the cv of one of these two sub-activities can be 100 if the cv of On Foot is 100. We gathered results
from each activity and collectively presented them in a confusion matrix, as shown in Table 3. In the confusion matrix, the
first column contains the names of our labeled activities (or activity under test). The last column (indicated as Ay) is the
aggregated accuracy of the AR service on correctly recognizing the activity under test. Columns between the first and last
columns are the distribution of a correct and false classification for each activity. The label Ay, indicates the overall accuracy
across all activities over all experiments.

We computed the accuracy of the AR service by comparing a,,,;; with the corresponding human label activity a;qp; in a
sequence of measurements. Thus, in a sequence of measurements reported by the AR service the aggregated accuracy, Agggr,
for an activity type ¢ € C is calculated as

1N
Agggr = N Z[amost = Qqpel] M
n=1

where [amosr = Giaber] €quals to 1 if it is evaluated to true, 0 otherwise. The average accuracy Aq across all activity types C
is calculated as

1 C
Aavg = E ZAaggr- (2)
c=1

M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76 65

3.3.1. Stationary

There are two basic forms of the stationary scenarios: (i) when a user is sitting or standing still while holding the device
under test in his/her hand or having it in a pocket; and (ii) when the device under test rests on a stationary structure, such
as a desk. The latter case achieves over 99% of accuracy. But it represents scenarios with no movement at all and is slightly
less interesting compared to the former scenarios, which achieves 39% of accuracy. As the AR service achieves reasonable
accuracy regarding the latter case, Table 3 only shows the detail of the former case. Unlike traditional on-body sensors [9,32]
which are fixed on certain body positions, smartphones usually experience small motions when users interact with them,
thus 61% of misclassified activities are distributed across other activities. In our experiments 32% of activities have been
reported as Tilting and Unknown. As mentioned in [20], the AR service can potentially leverage the accelerometer and the
gyroscope to improve the accuracy. Software developers should be careful about the meaning of being Stationary.

3.3.2. On Foot

In the 2014 update, Google extended the AR service to support recognition of Walking and Running as two sub-classes
on On Foot, potentially with additional sensor inputs. Due to the different speed and motion when people walk or run, we
investigate the accuracy of recognizing these two sub-activities. Data shown in the confusion table confirms our doubt. Other
activities are reported even when users are running at a constant speed. When running at a lower speed, data reported from
the acceleration is not as significant as for fast-running and is not as modest as for walking. Therefore, recognizing Running
is less accurate when compared to Walking. Furthermore, people can perform multiple activities in a time period, and most
of the activity transitions are clear and detectable, such as from In Vehicle to Walking detailed in Section 3.3.6. However, the
activities performed in a time period can be a composite of Walking and Running. In this case, if the AR service is able to
distinguish them, the time period will be segmented as well and different activities will be reported accordingly. Otherwise
a standard fallback is applied and reports the person being On Foot whenever sensor readings are not distinctive and cannot
distinguish between the two sub-activities. It seems ambiguous that one activity such as walking may be recognized as two
classes (Walking and On Foot), but logically, both Walking and Running are sub-classes of On Foot, thus it is reasonable to
consider On Foot as a correct recognition for these two sub-activities.

3.3.3. Cycling

As for Cycling, we noticed that around 22% of samples have been reported as Tilting. Tilting reflects that the device
angle relative to gravity changed significantly (analyzed in Section 3.3.5). When cycling on uneven roads, device rotation is
typically more significant compared to cycling on flat roads. Our experiment results show lower accuracy when traveling
on uneven roads. In these cases, a large percentage of data has been reported as Tilting.

3.3.4. In Vehicle

With regard to In Vehicle, when the vehicle is traveling at a constant speed the recognition accuracy is around 88%. While
the vehicle is traveling slowly, together with stopping patterns, the accuracy falls to 41%. From our experiments, we observe
that a total of 59% of activities are misclassified in activity class rather than being in vehicle; among those, 42% of activities
are reported as Unknown. We conjecture that the poor performance is due to the rapid changing of activities (e.g., multiple
activities occurred in one sampling window). When this happens the recognition algorithm is not able to distinguish multiple
activities, therefore Unknown is reported.

3.3.5. Tilting

According to Google’s definition of Tilting as given in Table 1, it is not clear what kind of motions will trigger Tilting activity
and how significant the change of angle to gravity is required. Thus, we conduct experiments to investigate the Tilting class.
In the experiment shown in Fig. 2, we rotate the device along the X axis for an angle a of 90° and pause for tpquse = 30's, then
we rotate back. After another ¢, time, we repeat the rotation. The 90° rotation should be significant enough to trigger
the Tilting output. Fig. 3(a) shows a snapshot of the time series data. From the recorded observations, the AR service seems
able to recognize Tilting from all the Stationary in this scenario with an average delay 4.4 s after actual Tilting motions. To
provide further insight into the Tilting class, we carry out additional experiments regarding pause time fyqyse, rotation angle
a, rotation speed and rotation axis.

Changing the tyqse: As in previous scenario when t,qse = 30 s the AR service is able to discern all the Tilting activities,
extending the t,quse Will not affect its performance. In this experiment, we shorten the t,quse to 15 sand 1s. When tyquse = 1555,
around 40% of Tiltings are missed, as shown in Fig. 3(b). The rest are recognized as Stationary. When tyqse = 1's, the rapid
changing motions cause the AR service to derive activities such as On Foot. Only 3% of the activity recognitions are reported
as Tilting.

Changing the a: In this experiment, we evaluate the AR service by setting the a to different values: 15°, 30°, 45°, 60° and
90°, respectively. We find that the AR service is not able to recognize Tilting when the ais 15° or 30°, and it detects 40% of the
Tiltings when a = 45°, and it is able to detect Tilting with 100% of accuracy when the a is 60° or 90°. This set of experiments
clarifies the meaning of the term “significantly” used in Google’s definition of Tilting, as given in Table 1.

66 M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76

Fig. 2. Experiments for investigating Tilting.

Actual Tiltings) 'Actual Tiltings
Recognition by Google AR - Recognition by Google AR -
>y
i 2
- -
> " ST ZT
o | N A
< T <
s i AN N s
Q O O O O 0 O .0 O 0 & Q 9 0 O 0O O Q0 b QO H D
D o0 9 N’L N(') \fb ”L\’ 'Lb‘ q:\ ,,)Q N BT 00 AT 9 \/Q \/']/ \:‘) ,\/‘0
Time (s) Time (s)
(a)30s. (b) 15s.

Fig. 3. Experiments on Tilting with different pause time.

Changing the rotation speed and the rotation axis: In another set of experiments, we change the rotation speed from quick
rotation to slow rotation, while in another experiment we change the rotation axis from along the X axis to rotation along
the Y axis. The AR service is able to recognize Tilting in these experiments.

Tilting is a special activity that may occur along with other activities, as shown in Table 3. Unfortunately, we cannot use
one Tilting output to distinguish the other 6 activities. Because all of them can contain the motion of tilting. In addition, from
our experiments the angle change relative to gravity has to be greater 45° in order to trigger Tilting. As a result, we leverage
the behavior of Tilting and develop heuristics in our proposed solutions to improve the recognition accuracy.

3.3.6. Transition between activities

After each interval, the AR service reports the list of probable activities, with corresponding confidence values. We con-
ducted a detailed study on what happens when there is a transition from one activity to another. Fig. 4 shows the confidence
values of each class of activities in the list of the probable activities reported by the AR service, while the bottom part of the
figure presents the index of activities labeled by a human. We highlighted the most probable activity (with the highest con-
fidence) with circles. We noticed that most misclassifications for In Vehicle occur during the time when a bus is stopping
or in stationary (Vs, e.g., in zonel between a and b). The AR service reports that the user is Stationary. It is logically correct.
However, since the user is still inside the vehicle, it might be more appropriate to report In Vehicle. In zone2 (between b and
¢) in which the vehicle mostly moves with normal speed (Vy), we observed a significant increase of Unknown reported by
the AR service, due to the frequent stopping of the vehicle. This is consistent with our results reported in Table 3. At the same
time, the confidence values of In Vehicle typically drop below 60, which means a high entropy of the posterior distribution.
This is one of the insights that we used in our improvement of the AR service to smooth the outliers when detecting uncer-
tainties. In zone3 (between c and d), we observed the transition from In Vehicle to Walking after some delays. To summarize,
irregular behaviors can have significant impact on the accuracy of recognition. Heuristic might be added to filter occasional
misclassifications caused by irregular behaviors, therefore to prevent mis-firing of application adaptations.

4. Roadmap to the design of ARshell+

To improve the recognition accuracy, we investigate four post-processing methods to improve the recognition accuracy:
(i) ARshell (Activity Recognition Shell) was initially proposed in our earlier paper [11]. It takes the outputs generated by the
Google AR service and applies a Markov smoother to derive new results. The accuracy of ARshell depends on the selection
of the activity transition threshold. (ii) To avoid specifying this parameter, we explore the use of Hidden Markov in ARshell,

M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76 67

100 T WSS S e,
@ ® 000 0 ® oW @ ® EBO®
® ® @ 00 O o %o © p ®@ 06e
80p 0o® @ ©Q ® e o |
@ o O ©® o0 B o o@ © ®e
600 ©O ®) @ ® J
8 @ €] @ @ ® @] @
e Spe ©0® @ ® ®
% 401 o o4 o @ o 8 ® x B
o} QOD + Qo 22O} mE ° + o & 4
\g 201«)0% RN p3eal aooo ogdj* X o+><><>< <>; x o+
8 g X0, oYX me ox O o o méo o+T KX X XX
+ g ad X
foal ag@hwﬂaogjxwg%m xovgoxg(Dw©@§g o% 2 FHOHKOOXO & O
O&
Vy Bl
VSW_FV_U_W_V_HJ_\]
Wk 1 1 1
a b c d
Index
Label On_Foot o Tilting ©
In_Vehicle + Stationary o Walking 4
Cycling x Unknown ° Running v

Fig. 4. Experiment on activity transition from In Vehicle to Walking.

AR Service Outputs .! .H

<az.1,1’ v~ <a:,1’ cv”>

ARshell Outputs

1,1
<at—1,2 4 cvt—1,2> < ar,z ’ Cvt,2>
<az-1,3 ’ cvz-1,2> < ar,j 4 cvr,2>

<at—l,n’ cvt—l,n> <ar,n’ cvt,n>

Fig. 5. Modeling of activity transition in ARshell.

therefore, naming it ARshell HMM; (iii) ARsignal is a low-cost scheme to recognize activity based on cellular signal strength;
and (iv) ARshell+ merges ARshell and ARsignal to improve the recognition accuracy across all categories.

4.1. ARshell

As the Google AR service generates recognition results, ARshell compares these recognized activities (as the probable
activities list sorted by their confidence values) to the previous activity generated from ARshell. We apply a Markov smoother
to emphasize the temporal relationship embedded in the human activities. That is, current activity is more likely to continue
into the next time window than transiting to a new one, unless new observations strongly suggest (with high confidence
value) a different class of activity. This temporal characteristic of human behavior has been justified for smoothing time
slice sequences in previous work. For example, in [33] the authors use the characteristic of transition probability when
constructing the dynamic Bayesian network for activity recognition.

To explain the algorithm of ARshell, we model the problems concerning transition between activities in Fig. 5. As shown
in the figure, we introduce the following notations:

® Vi 1,¥:, ... € Yisalist of activities that are generated by ARshell with different timestamps.

® X_1,X, ... € Xisalist of activity datasets that are reported by the AR service with different timestamps. Each x is a
list of probable activities with their confidence values, which is modeled as a tuples list [(a; j, cv;;)], where (a; , cv;j)is a
probable activity and its corresponding confidence value. Tuples are sorted according to the descending order of cv. i is the
timestamp, where j indicates the order in the probable activities list. For example, the AR result x; contains the tuples list
of [(ar,1, CV¢ 1), (Ar.2, CV¢2), (G¢3, €Vt 3),s - .., (Gt n, CVr)]. It should be noted that cve 1 > cv; 5, and (a; 1, cv; 1) is always
the most probable activity in the AR service definition. Each x;_1, x¢, ... € X is an input to ARshell for post-processing to
determine the corresponding y;_1, ¥¢, ... € Y.

There are four activity transitions that need to be addressed by ARshell: (i) from Tilting or Unknown to a specific activity;
that is, x;_1 — X; where x;_; is reported as Tilting or Unknown and x; is reported as one of the activities; in this case, the

68 M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76

90¢ . 100
Q.
)]
A 490
‘o R
N 480 o
& 85t _}__,_..+....+_,__>+",_.3i>-
- * -
‘ P 470
) o, 2
© .. o
5 £ Q {60 8
0] -
2 8o0f 4 % s
< 1
.{}.,...+..4..+...4.+"4 D\ 50 g
14
Accuracy -~ Fee . 0
Data sbove y SO | | ‘

75

- 30
0 10 20 30 40 50 60 70 80 90 100
Transition threshold y value

Fig. 6. Impact of threshold y on accuracy and data size.

most probable activity (a; 1, cv;,1) is proposed for y;, where cv; ; is the maximum confidence value; (ii) from a specific activity
to Tilting or Unknown; that is, in the same transition x,_; — X; where y;_1 = X;_1 is reported as a specific activity and x; is
Tilting or Unknown, in this case, we assume the last historical activity as the current activity y, = y;_1, with a self-transition
probability (8 = 1 — ¢, where ¢ is a sufficiently small number [15]); (iii) self-transition: a specific activity continues into next
timestamp; that is, in transition x,_; — X, if x;_1 = X, then y; = x;; and (iv) activity switches from one to another.

Whenever there is a transition like case (iv), we apply a Markov smoother to the AR service outputs. From our previous
experiments, we identify that most misclassifications (also considered as noises) have confidence values below 60, which
we use as a threshold y to determine the transition of activity. As a result, when a transition occurs at timestamp ¢ for x;,
we check the confidence value cv; ; of the most probable activity (a; 1, cv;1) € x;. If cve 1 > y, ar1 is used as the output of
ARshell (y; = a;,1). Otherwise, the Markov smoother backtracks to previous AR service outputs, and finds 3a;_1 x € x;_; and
ar1 = Gr—1 We compute the cVeum = Y_(CVe.1, cVe—1k). If cVyum > ¥, then we say activity transition occurs and the new
activity should be a; ;. Therefore, we have y, = a;, 1. Otherwise, we say the confidence value of two consecutive recognitions
is not significant enough to determine an activity transition. In this case, ARshell will output y; = y;_1.

4.1.1. Finding an appropriate threshold y

To determine an appropriate y value, we conduct additional experiments to investigate the impact on recognition
accuracy with different y values. For all y = (0, ..., 100), we generate a subset of data that has confidence value (as
reported by the AR service) above the selected threshold y. In other words, the threshold is used as a filter to remove data
with a lower confidence value. We compute the accuracy (reported activity matching the human label) for each dataset.
Fig. 6 shows the results of this study. The general observation is that as we increase the y value, there will be less data we
will consider for recognition. This data is used by ARshell to determine the output of activity; it has significant impact on the
ARshell performance. For example, if a new data (an activity update) is ignored because of its confidence value is below y,
then ARshell will assume previous activity continues. Therefore, we need to determine a y value at which we maintain good
recognition accuracy and allow large percentage of data to pass through to the recognition stage. As shown in the figure, the
accuracy increases and becomes steady when y > 60. As an example, when we compare y > 60and y > 70, the difference
in accuracy is not significant, while the percentage of data produced by the AR service is reduced by around 15%. Hence, we
use y > 60 as our threshold.

When we correlate the two lines, we make another observation. The percentage of data generated by the AR service stays
at 100% for < 30. This indicates that the Google AR service only generates recognition value when the confidence value
is at least 30.

4.1.2. Accuracy of ARshell

We evaluated ARshell on the three representative classes of Android devices as described in Section 3. The recognition
accuracy is presented in Table 4. We observed a significant improvement regarding the accuracy for all the activities, except
Stationary. In the scenarios for evaluating Stationary, we sit down or stand still with the testing devices held in our hands
or in our pockets. The results of the AR service not only shows no temporal pattern, but also occasional readings from the
accelerometer become outliers that cause misclassifications. It is very difficult to correctly classify these random patterns.
Furthermore, we noticed that 35% of outputs were misclassified as Cycling in this Stationary scenario, and the reason for this
kind of misclassification is that ARshell backtracks to previous AR service outputs and finds that the cvy,,;, of Cycling is greater
than the y, and then outputs Cycling. In contrast, if we put the devices on a desk, which implies absolute stationary, we see
that the accuracy increases to close 100%. This is consistent with our observation in the previous experiments. With regard
to all the other activities, our method is able to leverage the temporal information to smooth the outliers and achieve higher
accuracy. For example, as shown in Table 3, when cycling there is a significant percentage of misclassifications (around 32%)
that have been reported as Tilting or Unknown. By incorporating the temporal constraints, ARshell achieves a significant

M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76 69

Table 4
Confusion matrix and accuracy of ARshell.
Classified to: Adger Adiff
S w R F C \% T 8]
S 42% 0 11% 0 35% 0 0 12% 42% 3%
w 0 96% 1} (1] 0 0 0 4% 96% 5%
R 0 0 52% 46% 0 0 0 2% 98% 125%
C 0 0 0 0 92% 0 6% 2% 92% 124%
\ 2% 0 0 0 0 98% 0 0 98% 110%
Aavg 85%

Note: S—Stationary, W—Walking, R—Running, F—On Foot C—Cycling, V—In vehicle, T—Tilting, U—Unknown.

Table 5
Confusion matrix and accuracy of ARshell HMM.
Classified to: Aqggr Adip
S w R F C \ T u
S 22% 0 0 0 0 47% 3% 28% 22% 117%
'\ 0 827% 0 0 0 0 4% 14% 82% %
R 0 0 36% 58% 0 0 3% 3% 94% 121%
C 0 0 0 0 72% 0 19% 9% 72% 14%
\% 0 0 0 1% 0 86% 2% 11% 86% 12%
Aavg 71%

Note: S—Stationary, W—Walking, R—Running, F—On Foot C—Cycling, V—In vehicle, T-Tilting, U-~Unknown.

improvement and reduces the total misclassification for the given example to 8%, as shown in Table 4. The overall average
accuracy has been improved from 65% to 85%. The column Ay shows the improvement difference of each activity over the
Google AR service. As shown in the table, the accuracy of all activity classes have been improved.

4.1.3. Applying HMM to ARshell

To avoid specifying the parameter y in ARshell, we explore the use of Hidden Markov Model (HMM) to smooth the
results reported by the Google AR service. We call this proposal ARshell HMM. We construct the HMM based on the posterior
predictive distribution of recognition results given by the AR service. In this section, we only show the inference process of
ARshell HMM that obtains the most likely sequence of predictions with the Viterbi algorithm and we discuss in the Appendix
how our proposed solution is mapped to HMM.

We borrow the modeling notations from ARshell. In addition, for time t we maintain a vector to store the accumulative
probability v,_q; of time t — 1, and the corresponding activity a;_1;; e.g., [(@r—1,1, ¥t=1.1)s -, (@—1n, Ye—1.8)], N
corresponds to the number of the supported activities. At time ¢, we can use dynamic programming to compute v, ;:

’llft,i = max(llf[—l,j) * 9(1j—>ﬂi * Cvt,i for iaj = 15 R N (3)

where at time t = 0, ¥;_1; is set to cvp ;. The function max(y;—,;) forj = 1,..., N returns the highest accumulative
probability from time t — 1 [34]. Ba;—>q; s the transition probability from activity g; to a;. In our implementation, Ooj—>a; = €
if a; # a; and g;, a; # Tilting or Unknown, otherwise 0o, = 1 — ¢.

Finally, the prediction y, (w.r.t. the output of ARshell HMM, as shown in Fig. 5) at each time ¢ is the activity a; ; with the
corresponding maximal v ;.

Ye =a; s.t.: arg max;(Ye i) V(aei, Yei), i=1,...,N. (4)

Table 5 shows the results of ARshell HMM. The accuracy improvement is not as significant as ARshell. The accuracies of
Stationary and In Vehicle experience a decrease of 17% and 2% respectively. Taking Stationary as an example, some instances
of Stationary have been misclassified as In Vehicle, Unknown by the Google AR service, thus without domain knowledge, such
as the y in ARshell, ARshell HMM rectifies Stationary as In Vehicle, Unknown, which results in low precision of recognizing
such activity. In contrast to ARshell, which uses a transition threshold and characteristic to filter invalid activity transition,
especially transitions caused by instantaneous recognition value with high confidence value. In other words, the HMM
approach is based on the statistical results, but ignoring the heuristic that we incorporated in ARshell. For example, ARshell
assumes an activity continues if the AR service provides Unknown, while ARshell HMM simply returns Unknown.

4.2. ARsignal

While developing ARshell and its HMM version, we notice significant improvement in recognition accuracy for all
supported activities, except Stationary. Here we are interested in relative Stationary scenarios because (i) recognizing absolute
Stationary is very straightforward (in fact the Google AR service achieves over 99% accuracy), (ii) relative Stationary is very
common, but challenging to be correctly recognized; e.g., playing with your phone when waiting for a bus.

70 M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76

Table 6
Comparison of accuracy of different classifiers.
SVM ANN Decision Tree Naive Bayes
Precision 0.851 0.826 0.796 0.819
Recall 0.854 0.828 0.79 0.788
F-Measure 0.843 0.824 0.779 0.794
Table 7
Feature formulation.
Feature Formulation
_ N
S % Y S
var 5 > (si—5)?
o Jvar
ID| & XL lsi =3l
1 N-1

N—2 Lui=2 I{(si—1 —S) * (Siz1 —S) < 0}

Table 8
Confusion matrix and accuracy of ARsignal.
Classified to: Aqggr
Stationary On Foot In Vehicle
Stationary 83% 7% 10% 83%
On Foot 8% 50% 42% 50%
In Vehicle 0 2% 98% 98%
Aavg 7%

As aresult, we explore low-cost and light-weight methods that allow us to distinguish the relative Stationary from other
activity classes. From our previous work [35] on study the correlation between bandwidth to cellular signal strength, we
observed that the absolute signal deviation for Stationary (of both types) is significantly different from other activity classes.

To construct a suitable model for recognizing Stationary, we fed our sampling data to WEKA [36] and compared four
typical machine learning techniques (i.e., SVM, ANN, Decision Tree, and Naive Bayesian). The results are shown in Table 6.
Based on these results, we decided to develop our recognition algorithm using SVM. In our Android implementation, we use
the libSVM library [37] to construct the model and recognition algorithm.

In the training phase, we divide our training data (collected every second) into 15 s sampling windows; that is, the
sample data S = (s, ..., S15). In the literature, sampling windows for activity recognition based on cellular signal strength
are usually set to 15 s [38]. As demonstrated in our previous work [35], cellular signals can change dramatically due to
many factors. Our experiments confirm 15 s is reasonable sampling window length for this type of activity recognition.
The conventional features depicted in Table 7, such as mean s, variance var, standard deviation o, mean of absolute
deviation |D|, and mean cross rate mcr that is the rate of signal crossovers the mean signal, make up our feature vector
Veature = {S, var, o, |D|, mcr}.

To construct the model, we find the hyperplane w - x; + b = 0 that maximizes the margin between all Vpqzre of different
classes by optimizing the Quadratic Programming problem:

1, -
f1 e
arg min | - [w|* + ;s
sit.: yiwx;+b)>1—-§&, &=>0

where x; is the Vpqure, W and b adjusts the orientation and the offset of hyperplane. The C parameter controls over-fitting
and tolerance on the degree of false classification &; for each sample.

4.2.1. Accuracy of ARsignal

We conduct experiments to evaluate the recognition accuracy for different activity classes. From the experiment results,
we found that ARsignal is only able to recognize limited activity classes that include Stationary, On Foot and In Vehicle with
accuracy above 50%, thus a smaller confusion matrix is created for ARsignal, compared with ARshell. Table 8 shows the results
of these three activity classes. As also demonstrated in the literature [38], using cellular signal alone fails to distinguish all
the supported activities that we discussed. However, it will be a good complementary solution to improve the recognition
accuracy for detecting Stationary.

M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76 71

ARshell+ Outputs

ARshell Outputs

AR Service Outputs .a

<a1,1’ Cvr,l>
<a 2 cv“>
<ar,x' cvt,z>

ARsignal Outputs

<a ,cv >
Lm Ln

Fig. 7. Modeling of activity transition in ARshell+.

1

Relative
Absolute

OMM N N A j'i
0 10 20 30 40 50 60 70 80 90 100
Confidence value

Fig. 8. Confidence value distribution of two types of Stationary.
4.3. ARshell+

In this subsection, we propose ARshell+, which combines ARshell and ARsignal to improve the recognition accuracy of
the AR service.

Fig. 7 shows the processes of ARshell+. When the Google AR service reports a recognition result x; (that is a list of probable
activities) for time t, ARshell applies the Markov model to smooth the result and generates y;. ARsignal will maintain 15 s
of cellular signal data in a moving sampling window, and it generates recognition result z; based on this data. A verification
process checks if z; # Stationary, then s, = y,. Otherwise, we first find the (a.;, cv;;) € X, such thaty; = a;. If the
corresponding cv;; > y, then the confidence of this prediction is quite high. As a result, we set s; = y;. Otherwise,
s¢ = Stationary if cve; < y.

Regarding Stationary, the Google AR service will not distinguish between absolute and relative stationary. We investigate
this type of activity further by analyzing the distribution of confidence value in a set of experiments. Fig. 8 shows the
distribution of confidence value for each Stationary type. The results highlight that the confidence value for relative Stationary
is roughly a uniform distribution, while for absolute Stationary almost all confidence values are concentrated at 100, except
three outliners (at cv = 92 and cv = 98). We conjecture that these outliners are caused by small movement of the table
during the experiments. We use the observation that absolute Stationary typically has confidence value of 100 with very
high probability. We incorporate this heuristic in ARshell+ to distinguish the two sub-classes of stationary: (i) absolute
Stationary—the device has been put on a stationary structure, (ii) relative Stationary—the device is on a user who is sitting
or standing. We conducted a separate set of experiments to confirm the accuracy of this contribution. From our results, we
observe the recognition accuracy of 92.8% for relative stationary and 98.4% for absolute stationary. This process only applies
to the result when the AR service reports Stationary, and it is optional for software developers. In addition, ARshell+ is able
to fill up the delay between two consecutive recognitions of the Google AR service with opportunistic predictions according
to the domain knowledge applied to the Markov smoother in ARshell, and provides continuous recognition results.

Table 9 shows the accuracy of ARshell+. Agyy column shows the improvement over the Google AR service. The accuracy
of recognizing Stationary is not as high as using ARsignal, due to the misclassifications (with high confidence value) by the
Google AR service. However, it should note that ARshell+ achieve 34% improvement over the Google AR service.

In addition to recognition accuracy, we investigate the response time when an activity transition happens. This time
indicates how fast can ARshell+ recognize a change of the activity. As discussed in Section 4.1, the response for the first three

72 M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76

Table 9
Confusion matrix and accuracy of ARshell+.
Classified to: Aqgger Adify
S W R F C v T U
S 73% 0 2% 4 9% 7% 0 5% 73% 134%
w 0 96% 0 0 0 0 0 4% 96% +15%
R 0 0 52% 46% 0 0 0 2% 98% 125%
C 0 0 0 0 92% 0 6% 2% 92% 124%
\ 2% 0 0 0 0 98% 0 0 98% 110%
Aqvg 91%

Note: S—Stationary, W—Walking, R—Running, F—On Foot C—Cycling, V—In vehicle, T—Tilting, U—Unknown.

Human label

VF 4D+ Semetsisieisietieststaeestieeiesteb gttt Saeeanents ARshell+ &
Google AR +

> W b Pt
is)
B
2 F
+
31
< S

Ut

a b ¢
Index

Fig. 9. Example of activity transition.

types of activity transition should be immediate. The last type of transition can be analyzed in two scenarios: (i) the most
probable activity reported by the AR service is with a confidence value over y, then the response should be immediate, and
(ii) the AR service reports correct recognitions with the confidence value under y, and the response time is one delay before
receiving another update (around 3.5 s with the probability over 80%, as discussed in Section 3.2). Fig. 9 shows these two
examples: (i) at Index a, from Stationary to In Vehicle, and (ii) at Index b, from In Vehicle to Walking. The region between Index
b-c indicates an absolute delay of six updates. During this period, the Google AR service was not able to correctly recognize
the sudden change, therefore ARshell suffers the delay too. However, ARshell+ reflects the change once the Google AR service
generates a correct recognition.

5. Cost analysis: CPU, memory and power consumption

The evaluation results of the proposed solutions confirm the improvement in recognition accuracy. In this section, we
evaluate the efficiency of the proposed solutions, by measuring the cost (i.e., CPU load, memory, and power consumption)
of running the these solutions. To get a more accurate measurements, we use the ADB (Android Debug Bridge®) to extract
information about the CPU load and memory.

5.1. CPU usage

The CPU load is an important efficiency indication of an algorithm. To measure the CPU usage, we stop all unnecessary
background processes and mobile applications. Then, we measure the CPU usage of each solution during their run. Fig. 10
shows the CDF of CPU usage of different solutions while they are running. As shown in the figure, the CPU load of all proposed
solutions is almost negligible. Among all the corresponding experiments, more than 94% of tests confirm that the proposed
solutions do not increase CPU load. Less than 1% of tests show an increase of 1% in CPU usage.

5.2. Memory occupancy

Memory occupancy is another important indication of efficiency. To evaluate the memory usage of the proposed
solutions, we evaluate two important indicators RSS and VSS measured in number of pages,* which is defined as a block
of memory addresses. RSS (Resident Set Size) is the portion of memory occupied by a process that is held in the physical
memory, while VSS (Virtual Set Size) is the virtual memory occupied by a process in total, including all types of memory
(such as RAM, swapped out).

3 http://developer.android.com/tools/help/adb.html.
4 http://processors.wiki.ti.com/index.php/Android_Memory_Analysis.

http://developer.android.com/tools/help/adb.html
http://processors.wiki.ti.com/index.php/Android_Memory_Analysis

M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76 73

[
%
0.98 /
¥ i
53 i
=} /
O i
0.96 ; Google AR -
- ,’ ARshell .-)(
/ ARshellHM -
ARsignal =)
T ARshell+ - -
0.94 - - -
0 1 2 3 4
CPU usage (%)
Fig. 10. CDF of CPU usage of different solutions.
11000 T T T T T
10000 RSS EXXRXA %
S 9000} VSS N—] Solution (ID) RSS/VSS
o%
~ 8000} & ! .
0 = &3 5 % Google AR (1) 7516,/4040
2 s000r BB OB K ARshell (2) 7564,/4044
% £ o5 k3 K
@ s000f BB K 55 .
m B & % ARshell HMM (3) 7540/4044
3000 KR Bl & 5 ARsignal (4) 5328/4508
23 a8 ARshell+ (5) 10324/5340
Solution IDs
(a) RSS/VSS increment. (b) Details of the increment.

Fig. 11. Analysis of RSS/VSS increment (K).

We conduct multiple experiments and measure the results for a detailed analysis. Results are averaged across multiple
experiment runs. We measure our benchmark (RSS = 39640 K and VSS = 505 176 K, respectively) with the bare system,
without unnecessary applications running. Then, we measure the memory usage of the proposed solutions. Fig. 11 show
the increase of each solution on top of the benchmark. From these figures, we can see that when the Google AR service is
running, the RSS and VSS have increased to 7516 K and 4040 K, respectively. Because both ARshell and its HMM version apply
improvement based on the Google AR service, we observe minor increase in memory usage. Interestingly, ARsignal uses less
memory since its algorithm only require signal strength values that are already collected by the phones. No additional sensor
data is collected for this solution. Finally, ARshell+ shows an increase in memory usage of 2760 K for RSS and 1296 K for
VSS compared with ARshell. This increase is due the fact that ARshell+ combines ARsignal and ARshell. Various constructs
defined in ARsignal requires memory to maintain the state information. However, the increase in memory is still reasonable.
These increases represent approximately 6.9% and 0.25% over the benchmark respectively.

5.3. Power consumption

To measure the power consumption, we remove the battery from the phone and connect the positive and negative
electrodes directly to a power meter,” as shown in Fig. 12(a). An application, as shown in Fig. 12(b) that comes with the
power meter is used to record the power consumption of all proposed solutions. Similar approach was used in [39] in which
authors use the National Instruments PCI-MIO-16E-4 sampling board to measure the voltage across the phone battery and
the voltage drop across our measurement resistor.

To ensure that the evaluation only measures the power consumption related to the Google AR service and our approaches,
we first check the power consumption of the bare system, without any unnecessary applications and services running.
The results show that the bare system consumes 0.648 W. Then, we measure the power consumption of the Google AR
service running on the bare system, and we found that it consumes 0.744 W. Since our proposed solutions are based on
the Google AR service, we use its performance as benchmark for comparing the proposed solutions. Table 10 shows the
averaged difference in power consumption over the Google AR service. In general, the proposed solutions slightly increase
the power consumption, except ARsignal. We conjecture that ARsignal makes use of information (cellular signal strength)
already collected by the phone, rather than gathering data from the on-board sensors. Similar argument as in the memory
usage section, ARshell+ combines ARsignal on top of ARshell. Therefore, it increases the power consumption by 0.12 W on
top of ARshell. We argue that this increase during the recognition run is still acceptable.

5 https://odroid.com/dokuwiki/doku.php?id=en:odroidsmartpower.

https://odroid.com/dokuwiki/doku.php?id=en:odroidsmartpower

74 M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76

Smart Power

Device Found: AttachedState = TRUE Status S/W Version: 1.1.0 F/W Version: V3.0
&
Off Stop & logging Watt Graph
Voltage
acnr Smart Power
Lo o5
Ampere
I IE (4
[| M
Min:0.415 Max: 00000 o3
g
Watt €
<

n EE'I &
L. l
Max: 1.568 min: 000000 14

Watt/hot —— e~

R e e e

100 msec

(a) Smartphone and power meter. (b) PC side application.

Fig. 12. Experimental setup of battery consumption.

Table 10
Averaged difference in battery consumption (Watt).
Increment
ARshell +0.12
ARshell HMM +0.14
ARsignal —0.24
ARshell+ +0.24

5.4. Prototype and API of ARshell+

A proof of concept prototype has been developed on Android devices. In the current implementation, ARshell+ runs as a
background daemon, and it tries to improve every output generated by the Google AR service. As ARshell+ is based on the
AR service, it inherits the warm-up time. ARshell+ provides two mechanisms for delivery of the activity recognition results:
(i) a pull-based mechanism that replies with the latest activity when requested, supporting request up to every second, and
(ii) a notification-based mechanism that updates the recognition result per interval; notifications are sent when an activity
change is detected or per interval depending on how ARshell+ is configured.

We also streamline the API, so that software developers can easily integrate ARshell+ into their existing projects. With
our ARshell+ AP], only few lines of code are required for adding/linking the activity recognition functionalities. ARshell+ also
supports backward compatibility with the AR service should developers need access to the original AR data. Both ARshell
and ARshell+ are available to the public as open-source projects on GitHub.®

6. Conclusion

In this paper, we shared the lesson learnt from the systematic analysis of the Android Activity Recognition service. Based
on our findings, we proposed and evaluated four different practical solutions for smartphones that significantly enhance
the activity recognition accuracy with the overall average improvement of 21%. We evaluated these proposed solutions
regarding CPU usage, memory occupancy, and power consumption. Compared with API of the Google AR Service, the
proposed ARshell+ offers a streamline, easier to use, API for mobile app developers to incorporate activity recognition into
their existing projects or applications. It supports both pulling and notification based mechanisms for receiving recognition
results. We prototyped ARshell+ and released it as an open source project for the mobile app development community.

Acknowledgments

NICTA is funded by the Australian Government through the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

6 https://github.com/myzhong/ARshell.

https://github.com/myzhong/ARshell

M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76 75

p(a,=Stationary|s)=0.6
p(a,=Walking|s,)=0.2

+ —| Google AR service |—»

p(a,=In Vehicle|s))=0.1
Fig. 13. Example of posterior distribution given by Google AR service.
Appendix. Mapping ARshell HMM to HMM

In the Hidden Markov model, the variables include hidden states and observations. As shown in Fig. 13, HMM models
the joint distribution of those variables by making Markov assumptions that current latent state a; (fort = 0,...,T)
only depends on previous latent state a;_1, and current observation s; only depends on current latent state a,. The former
dependency can be described by transition probability p(a;|a;_1) while the later can be captured by emission probability
p(s¢lae), and then joint distribution can be formulated as follows:

T
p(s. @) = p(ao)p(solxo) | [p(arla—1)p(sclar). (5)
t=1

In our case, the observations s are the readings produced by the on-board sensors at different time points, while latent
states a are the undergoing activities that we want to recognize. Note that the dependencies among the latent states can be
used to characterize the temporal relationships among human activities. Specifically, assigning large values to self-transition
probabilities encourages the current activity to be continued with high probability.

Central to HMM are the parameters (i.e. transition and emission probabilities) that can be used to infer the latent activities
given a sequence of current observations. The transition probability is similar to that of Markov Model in ARshell (described
in Section 4.1). However, as for the emission probability, this is a non-trivial work, since we do not have access to the
observations (sensor readings) encapsulated in Google AR service that conceals the underlying logic of how the sensor
readings are processed. Fortunately, by treating the Google AR service as a black box, the emission probability can be
approximated with the predictions given by the Google AR service, formulated as follows:

pselar) = POBOPED sy 6)
p(a;)

where prior knowledge p(a;) is identical for different activities, because we balance the training data over all the activity
classes. The variable s; is the observation at time t, and p(s;) is a constant when calculating its evidence against different
classes. Therefore, the emission probability is proportional to the posterior probability given by the Google AR service (shown
in Fig. 13), and the joint distribution can be re-formulated as follows:

T
p(s, @) o p(a)p(aolso) | | p(a:lar—1)p(aclse). (7)

t=1

Finally, inferring the hidden states is equivalent to finding the sequences that maximize the joint probability depicted in
Eq. (7), which is performed by the Viterbi algorithm as specified in Section 4.1.3.

References

[1] Cisco, Cisco visual networking index: Global mobile data traffic forecast update 2014-2019 white paper.
[2] B.Guo, D.Zhang, Z. Yu, Y. Liang, Z. Wang, X. Zhou, From the Internet of things to embedded intelligence, World Wide Web 16 (4) (2013) 399-420.
[3] L. Chen,]. Hoey, C.D. Nugent, D.]. Cook, Z. Yu, Sensor-based activity recognition, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42 (6) (2012) 790-808.
[4] B. Logan, J. Healey, M. Philipose, E. Munguia, S. Intille, A long-term evaluation of sensing modalities for activity recognition, in: Proc. of Ubiquitous
Computing, Innsbruck, Austria, 2007.
[5] T.Nguyen, D.Phung, S. Gupta, S. Venkatesh, Extraction of latent patterns and contexts from social honest signals using hierarchical dirichlet processes,
in: Proc. of IEEE International Conference on Pervasive Computing and Communications, San Diego, CA, USA, 2013, pp. 47-55.
[6] M. Stikic, T. Huynh, K. Van Laerhoven, B. Schiele, Adl recognition based on the combination of rfid and accelerometer sensing, in: Proc. of the second
IEEE International Conference on Pervasive Computing Technologies for Healthcare, Tampere, Finland, 2008, pp. 258-263.
[7] S. Lee, D. Ahn, S. Lee, R. Ha, H. Cha, Personalized energy auditor: Estimating personal electricity usage, in: Proc. of IEEE International Conference on
Pervasive Computing and Communications, Budapest, Hungary, 2014, pp. 44-49.
[8] J.R. Kwapisz, G.M. Weiss, S.A. Moore, Activity recognition using cell phone accelerometers, ACM SigKDD Explor. Newslett. 12 (2) (2011) 74-82.
[9] T. Maekawa, Y. Yanagisawa, Y. Kishino, K. Ishiguro, K. Kamei, Y. Sakurai, T. Okadome, Object-based activity recognition with heterogeneous sensors
on wrist, in: Pervasive Computing, Springer, 2010, pp. 246-264.
[10] J. Lester, T. Choudhury, N. Kern, G. Borriello, B. Hannaford, A hybrid discriminative/generative approach for modeling human activities, in: Proc. of
International Joint Conference on Artificial Intelligence, Vol. 5, Edinburgh, Scotland, UK, 2005, pp. 766-772.
[11] M. Zhong, J. Wen, P. Hu, J. Indulska, Advancing android activity recognition service with markov smoother, in: Proc. of the 11th Workshop on Context
and Activity Modeling and Recognition, PerCom Workshop, St. Louis, Missouri, USA, 2015.
[12] N.C. Krishnan, D.J. Cook, Activity recognition on streaming sensor data, Pervasive Mob. Comput. 10 (2014) 138-154.
[13] L. Bao, S.S. Intille, Activity recognition from user-annotated acceleration data, in: Pervasive Computing, Springer, 2004, pp. 1-17.

http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref2
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref3
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref8
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref9
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref12
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref13

76 M. Zhong et al. / Pervasive and Mobile Computing 38 (2017) 60-76

[14] M. Quwaider, S. Biswas, Body posture identification using hidden markov model with a wearable sensor network, in: Proceedings of the ICST 3rd
International Conference on Body Area Networks, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
2008, p. 19.

[15] S. Wang, W. Pentney, A.-M. Popescu, T. Choudhury, M. Philipose, Common sense based joint training of human activity recognizers, in: Proc. of
International Joint Conference on Artificial Intelligence, Vol. 7, Hyderabad, India, 2007, pp. 2237-2242.

[16] P.Palmes, H.K. Pung, T. Gu, W. Xue, S. Chen, Object relevance weight pattern mining for activity recognition and segmentation, Pervasive Mob. Comput.
6(1)(2010) 43-57.

[17] T. Choudhury, S. Consolvo, B. Harrison,]. Hightower, A. LaMarca, L. LeGrand, A. Rahimi, A. Rea, G. Bordello, B. Hemingway, et al., The mobile sensing
platform: An embedded activity recognition system, IEEE Pervasive Comput. 7 (2) (2008) 32-41.

[18] L. Wang, T. Gu, X. Tao,]. Lu, A hierarchical approach to real-time activity recognition in body sensor networks, Pervasive Mob. Comput. 8 (1) (2012)
115-130.

[19] A.Pantelopoulos, N.G. Bourbakis, A survey on wearable sensor-based systems for health monitoring and prognosis, IEEE Trans. Syst. Man Cybern. Part
C Appl. Rev. 40 (1) (2010) 1-12.

[20] M. Shoaib, H. Scholten, P.J. Havinga, Towards physical activity recognition using smartphone sensors, in: Proc. of IEEE UIC/ATC 2013, Vietri sul Mare,
Italy, 2013, pp. 80-87.

[21] S. Dernbach, B. Das, N.C. Krishnan, B.L. Thomas, D.]. Cook, Simple and complex activity recognition through smart phones, in: Proc. of the 8th
International Conference onlIntelligent Environments, Guanajuato, Mexico, 2012, pp. 214-221.

[22] N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A.T. Campbell, A survey of mobile phone sensing, IEEE Commun. Mag. 48 (9) (2010) 140-150.

[23] S. Hemminki, P. Nurmi, S. Tarkoma, Accelerometer-based transportation mode detection on smartphones, in: Proc. of the 11th ACM Conference on
Embedded Networked Sensor Systems, Rome, Italy, 2013, p. 13.

[24] T. Maekawa, S. Watanabe, Unsupervised activity recognition with user’s physical characteristics data, in: Proc. of IEEE International Symposium on
Wearable Computing, San Francisco, CA, USA, 2011, pp. 89-96.

[25] B. Cvetkovic, B. Kaluza, M. Lustrek, M. Gams, Semi-supervised learning for adaptation of human activity recognition classifier to the user, in: Proc. of
Workshop on Space, Time and Ambient Intelligence, IJCAI, Bellevue Washington, USA, 2011, pp. 24-29.

[26] D.Gordon,]. Czerny, T. Miyaki, M. Beigl, Energy-efficient activity recognition using prediction, in: Proc. of IEEE International Symposium on Wearable
Computing, Osaka, Japan, 2012, pp. 29-36.

[27] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, K. Aberer, Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive
approach, in: Proc. of IEEE International Symposium on Wearable Computing, Osaka, Japan, 2012, pp. 17-24.

[28] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, G. Troster, Activity recognition from on-body sensors: accuracy-power trade-off
by dynamic sensor selection, in: Proc. of the 5th European Conference on Wireless Sensor Networks, Pittsburgh, PA, 2008, pp. 17-33.

[29] M.Keally, G. Zhou, G. Xing,]. Wu, A. Pyles, Pbn: towards practical activity recognition using smartphone-based body sensor networks, in: Proc. of ACM
Conference on Embedded Networked Sensor Systems, Seattle, WA, 2011, pp. 246-259.

[30] S.Kang,].Lee, H.Jang, H. Lee, Y. Lee, S. Park, T. Park, J. Song, Seemon: scalable and energy-efficient context monitoring framework for sensor-rich mobile
environments, in: Proceedings of the 6th ACM SIGMOBILE International Conference on Mobile Systems, Applications, and Services, Breckenridge,
Colorado, 2008, pp. 267-280.

[31] Y.]Ju, C. Min, Y. Lee, J. Yu,]. Song, An efficient dataflow execution method for mobile context monitoring applications, in: Proc. of IEEE International
Conference on Pervasive Computing and Communications, Lugano, Switzerland, 2012, pp. 116-121.

[32] T. Maekawa, Y. Kishino, Y. Sakurai, T. Suyama, Activity recognition with hand-worn magnetic sensors, Pers. Ubiquitous Comput. 17 (6) (2013)

1085-1094.
[33] D. Wyatt, M. Philipose, T. Choudhury, Unsupervised activity recognition using automatically mined common sense, in: Proc. of National Conference

of the American Association for Artificial Intelligence, Vol. 5, Pittsburgh, Pennsylvania, 2005, pp. 21-27.

[34] L. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition, Proc. IEEE 77 (2) (1989) 257-286.

[35] M. Zhong, P. Huy,]. Indulska, Revisited: Bandwidth estimation methods for mobile networks, in: Proc. of the 8th IEEE Workshop on Autonomic and
Opportunistic Communications, WoWMoM Workshop, Sydney, Australia, 2014.

[36] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, L.H. Witten, The weka data mining software: an update, ACM SIGKDD Explor. Newslett. 11
(1) (2009) 10-18.

[37] C.-C.Chang, C.-]. Lin, Libsvm: a library for support vector machines, ACM Trans. Intell. Syst. Technol. (TIST) 2 (3) (2011) 27.

[38] I. Anderson, H. Muller, Practical activity recognition using gsm data.

[39] A. Rice, S. Hay, Decomposing power measurements for mobile devices, in: Proc. of IEEE International Conference on Pervasive Computing and
Communications, Mannheim, Germany, 2010, pp. 70-78.

http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref14
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref16
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref17
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref18
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref19
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref22
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref32
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref34
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref36
http://refhub.elsevier.com/S1574-1192(16)30210-3/sbref37

	Advancing Android activity recognition service with Markov smoother: Practical solutions
	Introduction
	Related work
	Evaluation of Google activity recognition service
	Experimental setup
	Delay
	Accuracy
	Stationary
	On Foot
	Cycling
	In Vehicle
	Tilting
	Transition between activities

	Roadmap to the design of ARshell+
	ARshell
	Finding an appropriate threshold γ
	Accuracy of ARshell
	Applying HMM to ARshell

	ARsignal
	Accuracy of ARsignal

	ARshell+

	Cost analysis: CPU, memory and power consumption
	CPU usage
	Memory occupancy
	Power consumption
	Prototype and API of ARshell+

	Conclusion
	Acknowledgments
	Mapping ARshell HMM to HMM
	References

