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Abstract—Crowd-sensing is a popular way to sense and collect
data using smartphones that reveals user behaviors and their
correlations with device performance. PhoneLab is one of the
largest crowd-sensing platform based on the Android system.
Through experimental instrumentations and system modifica-
tions, researchers can tap into a sea of insightful information that
can be further processed to reveal valuable context information
about the device, user and the environment. However, the
PhoneLab data is in JSON format. The process of inferring
reasons from data in this format is not straightforward. In this
paper, we introduce PLOMaR — an ontology framework that
uses SPARQL rules to help researchers access information and
derive new information without complex data processing. The
goals are to (i) make the measurement data more accessible,
(ii) increase interoperability and reusability of data gathered
from different sources, (iii) develop extensible data representation
to support future development of the PhoneLab platform. We
describe the models, the JSON to RDF mapping processes,
and the SPARQL rules used for deriving new information. We
evaluate our framework with three application examples based
on the sample dataset provided.

I. INTRODUCTION

The proliferation of mobile devices, smartphones in particu-
lar, has changed the way services are delivered. Mobile devices
generate a lot more digital content than desktop computers
[1]. To provide appropriate services tailored to users’ current
situations, applications often rely on information gathered
from users and environments using sensors onboard the mobile
devices [2], [3]. This information, also known as context, helps
automate system adaptations to users’ changing situations [4],
[5].

To better understand correlations between mobile data,
crowd-sensing platforms were developed to facilitate the task
of sensing and collecting relevant context information from a
large group of participants. PhoneLab [6] for example, is one
such crowd-sensing platform developed at the University of
Buffalo. It is a large scale, open-access, smartphone testbed
consisting of hundreds of Android devices. Participants receive
subsidized call rates for participating in the crowd-sensing
effort. Through experimental instrumentations and direct mod-
ification of the operating system’s source code, researchers
can use the provided JSON scheme and API functions to
extract information of interest in order to study user behav-
iors and their correlations with device performance. Some

examples include crowd-sensing network utilization in order
to compute better resource allocation [7] and assisting access
points to make channel assignment decisions with mobile
clients [8]. Researchers can instrument participants’ devices
with functions that record parameters either periodically, or
triggered by events. This measurement data is sent back to
a server when devices are connected to trusted networks.
Currently, there are five existing instrumentations on Android
devices including, but not limited to, location, network, and
battery power1. Data collected is stored in JSON format. This
measurement data needs to be processed to make sense of
implicit correlations between data. In this paper, we aim to
make this measurement data more accessible, thus improving
interoperability of data from different sources. We leverage
modeling and reasoning techniques from the semantic web
and context modeling communities.

Context information can be represented using context mod-
eling techniques such as object-role model, ontology model
and spatial model [9]. Such representations facilitate context
management, support for reasoning and also derivation of new
context information. Among those, ontology modeling has
been widely used in prototype systems that are context-aware
due to its reasoning capability being well supported [3], [9].
Ontology was used in [10] to capture context information and
was combined with rules to derive new context information.
It can represent a shared conceptualization of a particular
domain. It is also a collection of axioms that offer constraints,
meaning, rules and heuristics that can derive new information
[3]. Our goal is to develop a mobile framework for automatic
identification of new context based on implicit rules and
statistical reasoning.

In this paper, we introduce PLOMaR, an ontology frame-
work that captures measurement data and implicit relationships
among them by applying ontology modeling and developing
rules. Through the development of such framework, we present
three main contributions in this paper: (i) create ontology-
based context models for large scale crowd-sensing smart-
phone testbed, (ii) define rules that temporally correlate data
to derive new information, (iii) support SPARQL queries to
reveal user behavior.

1Example Instrumentation, https://phone-lab.org/experiment/existing/



This paper is organized as follows. Section II describes
how we have modeled PhoneLab data and new concepts
for deriving new context information. Section III discusses
example SPARQL queries that demonstrate the usefulness of
this work. This is followed by descriptions of some of the
existing, related works in Section IV. The paper concludes in
Section V and discusses future work.

II. THE PHONELAB CASE STUDY

In this section, we show an example of raw, mobile data
recorded by PhoneLab, present the ontology that we devised to
represent this raw data, and also describe how to model newly
inferred context data to be stored back into our ontology.

A. Mobile data recorded on PhoneLab

Through experimental instrumentations or platform mod-
ifications on Android sources, data reflecting the perfor-
mance of mobile devices and user behavior can be extracted
in the form of JSON objects. A total of over 40 GB
of sample data was available from their website2 featur-
ing data gathered from 11 PhoneLab devices. This formed
the basis for our ontology. The sample dataset consists
of one file per device per tag per day in this format:
{device identifier}/{tag}/{year}/{month}/{day}.out.gz.

Following this convention, we develop a mapping algorithm
to automatically create individuals that conform to the ontol-
ogy. Currently, there are eight groups of information covering
five aspects of mobile devices, including location, network,
package management, power and security. Each measurement
data is reported as one of the 25 actions of an information
group. The following snippet shows an example of the mea-
surement data triggered when there is a change in location.
Location-Misc-PhoneLab {
"Action":"android.location.LOCATION_CHANGED",
"Counter":2159,
"LogFormat":"1.0",
"Location": {

"ElapsedRealtimeNanos":54026639248,
"HasSpeed":false,
"IsFromMockProvider":false,
"HasBearing":false,
"Accuracy":1854,
"Altitude":0,
"Speed":0,
"Time":1427045651782,
"HasAltitude":false,
"Latitude":42.9931695,
"Longitude":-78.7472696,
"Bearing":0,
"Provider":"fused",
"HasAccuracy":true

}
}

Within each of these information groups, there are three
common fields: Action corresponds to an Android intent,
such as LOCATION_CHANGED (one of the 25 possible ac-
tions) as illustrated; Counter represents an event sequence
ID; and LogFormat is simply a version number of the
logging format. The rest of the location related information
is self-explanatory. In addition, each measurement data is

2https://phone-lab.org/static/experiment/sample dataset.tgz

associated with the timestamp it was recorded at. In our
example, this corresponds to “2015-03-01 00:03:47”. We
use this timestamp to correlate measurement data from two
or more instrumentations. Note that some events might be
recorded periodically and this period can vary from a few
milliseconds to a few seconds. For example, information about
battery charging and discharging and also information about
updates in location are recorded this way. Some other events
are recorded only when a change of state is detected. For
example, information about a change in state of the phone’s
screen (from locked to unlocked) is recorded this way.

B. Ontology

Extracting PhoneLab measurement data from JSON objects
requires a custom parser. Although retrieving a small set of
data from the JSON objects can be straight-forward, making
correlations between data directly from those JSON objects
can be challenging. To facilitate this process, we use on-
tology models to represent the measurement data and their
relationships. We develop a parser to appropriately map JSON
formatted data as individuals of the corresponding ontology
classes. The models are designed with a goal to maximize
information interoperability and reusability. Figure 1 depicts
an excerpt of our ontology using a UML-like notation. Due
to lack of space, we only present classes that are used to
support our discussions. (Prefix plo: corresponds to URI
“https://phone-lab.org/ontology/”.)

We model each measurement data entry as an ac-
tion by creating individuals of plo:PhoneAction class.
As shown in the Location-Misc-PhoneLab exam-
ple, each measurement data block contains action, counter
and log format, which can be represented as data prop-
erties. These properties are mapped to plo:action,
plo:counter and plo:logFormat in the ontology.
Each plo:PhoneAction happens at a specific timestamp,
plo:timestamp, which is a property of the plo:Event
class. When two actions are found to happen within the same
timestamp, sharing the same individual of the plo:Event
type, we relate these two actions together. In other words, we
correlate measurement data recorded roughly at the same time,
within a second.

The following snippet shows example RDF data, using pre-
fix pld: as URI “https://phone-lab.org/data/”, for correlating
phone charging and location changed action.
pld:Action2159 rdf:type plo:LocationChanged ;

plo:action
‘‘android.location.LOCATION_CHANGED’’ ;

plo:has pld:Coord783 .
pld:Coord783 rdf:type plo:Coordinate ;

plo:long -78.7472696 ;
plo:lat 42.9931695 .

pld:Event284 rdf:type plo:Event ;
plo:timestamp ‘‘2015-03-01 00:03:47’’ .

pld:Action2159 plo:happened pld:Event284 .
pld:Action2163 rdf:type plo:BatteryChanged ;

plo:happened pld:Event284 .

In this case, we have an individual pld:Action2159
of type plo:LocationChanged, pld:Action2163 of
type plo:BatteryChanged, and pld:Event284 which
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Fig. 1. Excerpt of our PhoneLab ontology
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Fig. 2. Excerpt of the inferred data

is the timestamp connecting both actions. For clarity, we
omitted some properties in the example.

C. Modeling inferred data

With the base ontology, we are interested to investigate
whether we can derive new context information. Figure 2 illus-
trates the extended model of the derived context information
“address has climate information”. In this case, we correlate
plo:LocationChanged with plo:BatteryChanged
to infer the temperature of a location by using the temperature
measurement of the battery. As shown in the figure, the two
classes plo:ClimateInfo and plo:Address are derived
from existing information.

We use SPARQL’s CONSTRUCT clause to extend our base
ontology. The following code snippet shows how we create
the two new classes shown in Figure 2. Again, we omit

some properties for clarity. We use Google’s reverse geocoding
service to resolve the address information from a coordinate.
CONSTRUCT {
_:ci rdf:type plo:ClimateInfo ;

plo:temperature ?temp ;
plo:happened ?event .

?addr rdf:type plo:Address ;
plo:climate ?temp .

} WHERE {
?event rdf:type plo:Event ;

plo:timestamp ?time .
?coord rdf:type plo:Coordinate ;

plo:refersTo ?addr .
?lc rdf:type plo:LocationChanged ;

plo:happened ?event ;
plo:coordinate ?coord .

?bc rdf:type plo:BatteryChanged ;
plo:temperature ?temp ;
plo:happened ?event . }

Note that :ci is a blank node, i.e., a placeholder, entailing a
new URI that will be automatically generated by the SPARQL
query engine when running this query.

III. IMPLEMENTATION AND EVALUATION

In the PLOMaR framework, a parser was developed in Java
to map the PhoneLab measurement data in JSON format onto
an ontology. Protege OWL APIs were used to programmati-
cally create the ontology models, including creating classes,
specifying relationships between classes, and defining object
and data properties. SPARQL APIs were used to support
queries and creation of new ontology for the derived con-
text information. In this section, we present three examples
in which SPARQL rules were used to derive new context
information that reveals user behavior. The example SPARQL
rules and the results shown in this section are presented to
demonstrate the feasibility of our framework using the sample
dataset. More interesting insights can be discovered when this
framework is applied to user data.



Fig. 3. Battery temperature measurements.

A. Inferring temperature at a location

As discussed in Section II-C, we construct SPARQL
rules to correlate plo:BatteryChanged and
plo:LocationChanged in order to infer the temperature
at a location. Temperature is one of the measurements within
battery properties recorded by PhoneLab instrumentations.
If we assume the battery temperature is more or less an
approximation of the temperature of the surroundings, we can
estimate the temperature at the location. In this experiment,
we ignore the instances where battery is charging since it
might result in higher temperatures than normal. Using the
previously discussed SPARQL rule, we can retrieve a list
of locations and the corresponding average temperatures of
days. Figure 3 shows the instantaneous battery temperature
measurements recorded every few minutes and the average
battery temperature on March 16, 2015. From the sample
dataset, we know that the average temperature in the
PhoneLab office on March 16, 2015 was 25.2 degree Celsius.
This information indicates the phone has mostly been indoors,
since temperature in March, at Buffalo, NY, should be a lot
lower. Again, the consensus is that the data was collected
from a demo phone in a lab.

B. Learning battery charging patterns

In the second example, we construct queries to investi-
gate a user’s battery charging patterns. By defining three
segments in a day, such as pld:BeforeDay (12-8:59AM),
pld:DuringDay (9AM-5:59PM) and pld:AfterDay (6-
11:59PM), and by retrieving battery statuses that indicate
pld:Full, we can learn how often users charge their phones
and when. The SPARQL query below retrieves the number of
times battery is charged to full during BeforeDay segment.
Changing the plo:status value to “Charging”, we can
retrieve the number of times the phone has been unplugged
before charging to full during the same time segment.
SELECT ( COUNT(?bc) AS ?count ) WHERE {
?bc rdf:type plo:BatteryChanged ;

plo:status pld:Full ;
plo:happend ?event .

?event plo:timeOfDay pld:BeforeDay . }

Figure 4(a) shows battery charging patterns during different
segments of a day over twelve days. As expected, in most
cases this phone was charged to full during the after work
hours. During this measurement period, there were not many
urgencies (such as meetings) that forced the user to disconnect
the phone before its charged to full. Rate of interruptions of
battery charging to full during work hours is high, which
was just as expected. By modifying the query slightly, we
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can retrieve the average duration users spend on charging
their phones in two situations: charging to full or unplugging
the phone before fully charged. Table I shows the results.
These statistics indicate that the phone was under constant
use. The average number of times battery was charged to full
is around five per day. This ratio implies that (i) The phone
is likely plugged into charging whenever possible and (ii) On
many occasions, the phone was unplugged for short periods
of time and then reconnected. Hence, we observe a high
average number within a short time frame. These behaviors
are confirmed when we looked into the distribution of the
charge durations, as shown in Figure 4(b). Around 70% of the
data indicates that the charging duration is very less (about a
minute). We also found the abnormally long charging duration
of 24 hours.

TABLE I
AVERAGE HOURS USER SPENDS ON CHARGING THE PHONE.

12-8:59AM 9AM-5:59PM 6-11:59PM
Charging to full 3.96 1.08 4.17
Unplug before full 4.12 0.49 0.19

In addition, we construct a SPARQL query to temporally
correlate different battery charging statuses with location. The
following query will return the list of locations where the
battery has been charged to full.
SELECT ?addr WHERE {
?event rdf:type plo:Event ;

plo:timestamp ?time .
?bc rdf:type plo:BatteryChanged ;

plo:status pld:Full ;
plo:happened ?event .

?coord rdf:type plo:Coordinate ;
plo:refersTo ?addr .

?lc rdf:type plo:LocationChanged ;
plo:happened ?event ;
plo:coordinate ?coord .

}

From the above query, we found that the phone has always
been charged to full in the computer science department at
University of Buffalo. This verifies that the sample dataset is
generated likely from a demo phone.

C. Determining network type for downloads

The general perception is that cellular network is slow and
expensive. For this reason, users tend to defer any install/up-
date of mobile application until a WiFi network is in range.



In the last example, we attempt to construct rules that allow
researchers to investigate such user behavior directly from
the ontology models. Note that plo:PackageChanged
is an instrumentation that records package status changes,
including installation, modification, and uninstallation from
the user’s phone. plo:TelephonyStateChanged instru-
mentation contains data related to cellular network activities,
while plo:WifiStateChanged instrumentation contains
data about WiFi. By temporally correlating information from
these three classes, SPARQL queries can be constructed to
retrieve instances indicating the type of network (WiFi or
cellular) that has been used when a package is being installed
or updated.
SELECT ?network ?pkgName WHERE {
?event rdf:type plo:Event ;

plo:timestamp ?time .
?pc rdf:type plo:PackageChanged ;

plo:packageName ?pkgName ;
rdf:type plo:PhoneAction ;
plo:action ?action ;
plo:happened ?event .

?tc rdf:type plo:TelephonyStateChanged ;
plo:state pld:Connected ;
plo:happened ?event .

?wc rdf:type plo:WifiStateChanged ;
plo:NetworkInfo ?netinfo ;
plo:happened ?event .

?netinfo rdf:type plo:NetworkInfo ;
plo:state pld:Connected .

FILTER(
(?action="android.intent.action.PACKAGE_CHANGED"
|| ?action="android.intent.action.PACKAGE_ADDED")
&& (?network=?tc || ?network=?wc) )

}

A SPARQL query is similar to a SQL query in the SELECT
and WHERE clauses. Additional FILTER statement is used to
limit the search space. Since we are only interested in the
network bandwidth usage behavior, we modify the query to
retrieve instances in which user performs package installation
or update on either of the network types. Adding a COUNT()
function, we get the number of packages being updated while
the phone is connected to either of the network types. Figure 5
shows the results found from the sample dataset of three users.
Interestingly, the sample dataset contains data that shows users
were either using only WiFi or only cellular for the entire
measurement duration. Also, User3 seemed to only use the
cellular network for all application installations and updates.
A short discussion with the PhoneLab team confirmed that due
to the sparse network coverage, they sometimes disable WiFi
even if the demo phone is stationary. If we apply PLOMaR
to the actual user data, we can learn various aspects of user
preferences towards network usage. For example, what type
of mobile applications are more popular when people are on
the move?

IV. RELATED WORK

The use of ontology models and SPARQL queries to
facilitate information reuse, management, and retrieval has
been well studied in the semantic web community. Examples
include semantically correlating journals and articles [11],
mapping sensors and their observation to address heterogeneity
issues [12], capturing semantic relations between concepts [13]
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and optimizing the data mining processes with detailed ontol-
ogy [14]. In each of the existing work, an application-specific
ontology model was developed. For example, Keet et al.
[14] proposed Data Mining Optimization Ontology (DMOP).
Although domain models for data mining exist, optimization
of the data mining process was not possible due to the lack
of detailed knowledge. DMOP was proposed to automate the
selection of critical elements in the data mining process such
as algorithms, models, and parameters. In contrast to seeing
data mining algorithm as black boxes, focusing mostly on the
input data and output hypotheses, DMOP conceptualizes the
internals of the algorithm. It optimizes the data mining process
by detailing knowledge of how components from different
phases interact and how each component’s characteristics
influence the process performance.

Similarly, ontology has also been used extensively to model
context information [2], [3], [9]. Wang et al. [15] marked
one of the early attempts to model context using ontology.
Henricksen et al. [16] described a hybrid model that combines
an object-role model’s ease of use and an ontology’s support
for well reasoning. Riboni et al. [17] attempted the use
of OWL 2 for modeling and reasoning of complex human
activities. However, there are limitations on OWL due to the
lack of support for temporal reasoning and newly named
individual assertions [18]. Meditskos et al. addressed these
problems by leveraging SPARQL rules over the OWL context
representations [18]. In their SP-ACT framework, OWL (or
OWL 2) is used to capture conceptual information about
the activities, whereas SPARQL rules are used to correlate
atomic activities together to form complex activities. Temporal
relations are also captured by these rules. By using the
CONSTRUCT and WHERE clauses where the former defines
new relation that should be added to the ontology upon the
successful pattern matching of the condition defined in the
latter clause. Our framework shares similar use of SPARQL
rules when deriving new context information.

The main differences between our work and others are: (i)
An ontology model was defined for a real-world crowd-sensing
smartphone platform (ii) a parser was developed to automat-
ically map JSON structured data onto the ontology model
(iii) SPARQL rules were created to derive new information
about user behavior. Most importantly, this framework can be
extended to include in-depth operations within a smartphone.
Together with the new inferencing rules, this framework
can certainly make PhoneLab user data more accessible to



researchers.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the use of ontology models
and SPARQL queries to facilitate management, processing
and retrieval of mobile crowd-sensing data. More specifically,
we defined ontology models for capturing PhoneLab’s raw
measurement data, constructed new models for representing
the correlations between data and created SPARQL queries
for deriving context information that is embedded in the
models. We evaluated our proposal with three examples: (i)
Inferring the temperature of a location by correlating battery
temperature with location, (ii) Learning a user’s charging
pattern and its correlation with location, and (iii) Finding
correlation between package changes and network usage. We
demonstrated the feasibility of retrieving this information from
the ontology models through simple queries. This is not pos-
sible if the measurement data is in the original JSON format
without additional processing. We argue that the benefits of
our proposal go beyond these examples when more and more
information is collected. By extending the models with new
measurement data types, we can use this framework to derive
implicit context information about the user, which is otherwise
hidden within the complex JSON data objects.

As an extension to this work, we will extend the ontology to
include other implicit correlations and construct more queries
to facilitate the discovery of user behavior. When appropriate,
we will incorporate our ontology with other well-established
ontologies such as the LinkedGeoData.org for location refer-
encing.
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