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Abstract—In this paper, we study the power allocation problem
for the downlink transmission in a set of closed-access femtocells
which overlay a number of macrocells. We introduce a mutli-step
pricing mechanism for the macrocells to control the cross-tier
interference by femtocell transmissions without explicit coordi-
nation. We model the cross-tier joint power allocation process
in the heterogeneous network as a non-cooperative, average-
reward Markov game. By investigating the structure of the
instantaneous payoff functions in the game, we propose a self-
organized strategy learning scheme based on learning automata
for both the macrocell base stations and the femtocell access points
to adapt their transmit power simultaneously. We prove that the
proposed learning scheme is able to find a pure-strategy Nash
equilibrium of the game without the need for the femtocell access
points to share any local information. Simulation results show the
efficiency of the proposed learning scheme.

I. INTRODUCTION

Recent years have seen a surge of mobile data traffic demand
with the explosive growth of smart mobile terminals. According
to Cisco’s most recent forecast on mobile data usage [1], the
global mobile data traffic will increase nearly eightfold between
2015 and 2020. However, mobile network connection speeds
will increase only threefold by 2020. To cope with the problem
of data explosion, deploying additional low-power, short-range
femtocell Base Stations (BSs) in the networks becomes an
appropriate solution for improving spatial spectrum reuse and
delivering higher link throughput.

Femtocell BSs, also known as Femtocell Access Points
(FAPs), are low-cost, plug-and-play BSs deployed by termi-
nal consumers with backhaul connections. By overlaying the
traditional macrocell in a small area, femtocells are expected
to be able to off-load traffic for the users who are far from the
Macro BS (MBS) or experiencing significant indoor penetration
losses. However, the random and dense co-channel deployment
of FAPs could induce significant cross-tier interference from
femtocells to macrocells, or inter-cell interference between
femtocells, hence undermining the capacity of the network [2].
Moreover, due to unplanned FAP deployment by end users,
it will be difficult to mitigate interference through traditional
network planning and optimization techniques. As a result,
self-organization of FAPs becomes a primary consideration
for network designers to control the cross-tier interference as
well as the inter-femtocell interference. In [3], a distributed
downlink power adaptation mechanism is proposed based on
the analysis of outage probabilities of the Orthogonal Fre-
quency Division Multiple Access (OFDMA)-based macro and

femto cells. In [4], a teaching (docition) process is introduced
based on decentralized reinforcement learning for FAPs to
control their downlink power levels in a non-stationary wireless
environment. In [5]–[7], the cross-tier and inter-cell interactions
are formulated as non-cooperative [5], [6] or coalition games
[7]. Accordingly, decentralized, iterative solutions are proposed
for the networks to reach the equilibrium operation point with
respect to different game-based models.

In this paper, we consider the downlink operation of a closed-
access femtocell set which overlays a number of macrocells.
Compared with the existing studies in the literature, we in-
troduce monetary incentive for the macrocells to adaptively
enforce the interference level caused by the links from each
FAPs to their subscribed Femto User Equipments (FUEs)
according to the macrocell traffic load. By only allowing
limited information exchange from macrocells to femtocells,
we formulate the power allocation process in femtocells as
a stochastic game. In order for the FAPs to properly adjust
their transmit power in a self-organized manner without the
need of co-tier information exchange, we introduce a distributed
strategy learning mechanism based on Learning Automata (LA)
[8]. Theoretical analysis shows that the proposed LA-based
power allocation scheme is able to reach a pure-strategy Nash
Equilibrium (NE). Numerical simulation results show that the
proposed scheme is able to provides a better link throughput
than the potential game-based power allocation algorithm with-
out a pricing mechanism.

II. PROBLEM FORMULATION

A. Network Model

We consider the downlink transmission of a two-tier hetero-
geneous network containing M MBS and N FAPs (N > M ).
The FAPs operate in closed-access manner and underlay the
macrocell band with bandwidth W . For analytical tractability,
we assume that the channel is block-fading to all the links and
remains constant during each transmission block. The inter-cell
interference among the macrocells is not negligible and the
MBSs are able to coordinate for joint power allocation. Due
to random FAP deployment, One FAP does not have access
to the other FAPs’ local strategy information, and information
exchange only happens cross-tier between MBSs and FAPs. In
order to maintain the QoS of links to Macrocell User Equip-
ments (MUEs), the MBSs expect the cross-tier interference
from the FAPs to be kept below an acceptable level. MBSs
and FAPs are able to adapt their transmit power by choosing



power levels from a discrete power level set. We denote the
power level set for MBSs by PM = {pM1 , . . . , pM|PM |} and the
power level set for FAPs by PF = {0, pF1 , . . . , pF|PF |}.

Let m denote the index of a transmitter-receiver pair in MBS-
MUE pair set M and n denote the index of a transmitter-
receiver pair in FAP-FUE pair set N . We denote the channel
power gain between the MBS of link i and the MUE of link m
(i,m ∈ M) by hMM

i,m , the channel power gain between FAP
j and FUE n (j, n ∈ N ) by hFFj,n , the channel power gain
between MBS m and FUE n by hMF

m,n and the channel power
gain between FAP n and MUE m by hFMn,m. We also denote the
power level used by MBS m as pMm (pMm ∈PM ) and the power
level used by FAP n as pFn (pFn ∈PF ). We assume that a link i,
i∈M∪N , experiences an additive white Gaussian noise with
variance σ2

i . Then, the Signal-to-Interference-plus-Noise-Ratio
(SINR) of FAP-FUE link n ∈ N can be measured as follows
at time interval t:

γFn (pM (t),pF (t)) =
hFFn,n(t)pFn (t)

σ2
n +

∑
m∈M

hMF
m,m(t)pMm (t) +

∑
j∈N\{n}

hFFj,m(t)pFj (t)
, (1)

where pM (t) = [pM1 (t), . . . , pM|M|(t)]
T is the vector of MBS

transmit powers and pF (t)=[pF1 (t), . . . , pF|N |(t)]
T is the vector

of FAP transmit powers. Similarly, the SINR of MBS-MUE link
m ∈M can be measured as follows at time interval t:

γMm (pM (t),pF (t)) =
hMM
m,m(t)pMm (t)

σ2
m +

∑
i∈M\{m}

hMM
i,m (t)pMi (t) +

∑
n∈N

hFMn,m(t)pFn (t)
. (2)

We consider that the FAPs are self-centric and are inter-
ested only in maximizing their individual payoffs. Based on
Shannon’s capacity, the throughput of FAP-FUE link n can be
expressed as:

rFn (pM (t),pF (t)) = W log
(
1 + γFn (pM (t),pF (t))

)
. (3)

On the other hand, each MBS monitors its individual traffic
load, which is jointly determined by its transmit rate and the
incoming traffic rate. Similar to (3), the throughput of a MBS-
MUE link can be measured by

rMm (pM (t),pF (t)) = W log
(
1 + γMm (pM (t),pF (t))

)
. (4)

Without loss of generality, we consider that the packet arrival at
each MBS m is independent and can be modeled as a Poisson
process with an unknown arrival rate dm. Let L denote the
packet buffer capacity at each MBS, lm(t) denote the packet
buffer length of MBS m at time interval t, and B denote the
packet length in bits. Then, we can model the buffer state
evolution at MBS m as follows:

lm(t+1)=min

(
L,

(
lm(t) +Dm−

T

B
rMm (pM (t),pF (t))

)+
)
,

(5)

where T is the duration of one time interval, Dm is the
number of arrived packets during time interval t, and (x)+ =
max(x, 0).

In order to compensate for the performance loss due to cross-
tier interference caused by FAP transmissions, we introduce
a biased pricing mechanism for each MBS to charge an FAP
according to the interference that it causes. At each MBS, multi-
step pricing is adopted, and the interference price is set by the
MBS according to its current buffer usage level. We divide the
buffer length of each MBS into a number of ranges to indicate
the critical level of local buffer usage:

cm(t) =


0, if 0 ≤ lm(t) < l1,

1, if l1 ≤ lm(t) < l2,

. . .

C, if lC−1 ≤ lm(t) < lC ,

(6)

where li (1≤ i ≤C) is the threshold for buffer critical level i.
Let λm(cm(t)) represent the unit interference price associated
with buffer usage level cm(t). Then, the net revenue of FAP n
at time interval t is

un(t) = rFn (pM (t),pF (t))−
∑
m∈M

λm(cm(t))hFMn,mp
F
n . (7)

We note that the price incentive may not necessarily be virtual,
and the monetary transaction can be easily implemented by
charging the subscriber FUEs of each FAP according to the
data service they receive.

B. Power Allocation as a Markov Game

Based on our discussion on the individual link payoffs and
MBS buffer queue states, we are ready to formulate the cross-
tier power allocation process as a discrete-time Markov game.
Mathematically, a discrete-time Markov game is defined as a
5-tuple Multi-Agent Markov Decision Process (MAMDP) [9]:

Definition 1. A general Markov game is defined by a 5-tuple:
G=〈K,A,S,u,Pr(s′|s,a)〉, in which

1) K is the set of agent participating in the game.
2) A is the space of joint action a, a = [a1, . . . , a|K|]

T and
is the composition of each agent’s local action ak, k ∈ K.

3) S is the space of system state s as a random state variable
vector, whose transition is determined by an underlying
controlled Markov chain defined by Pr(s′|s,a).

4) u = [u1, . . . , u|K|]
T is the vector of the agents’ instanta-

neous payoff, uk(t) = uk(s(t),a(t)) at time interval t.
5) Pr(s′|s,a) is the state transition probability function con-

trolled by joint action a.

Following the MAMDP-based definition of Markov
games, we formulate the cross-tier power allocation
process in the heterogeneous network as a 5-tuple
Gp = 〈K,P,S,u,Pr(s′|s,p)〉, in which
• K is the union of all MBS-MUE links and FAP-FUE links,
K =M∪N .

• P is the space of joint power level vector p = (pM ,pF ).



• S = ×Sm, m ∈ M, is the Cartesian product of
each MBS’s buffer state space and sm = lm ∈ Sm =
{0, 1, . . . , L} corresponds to a feasible buffer length.

• For macrocell link i ∈ M, the local instantaneous payoff
is defined as ui(s,p

M ,pF ) = rMi (pM (t),pF (t)). For
femtocell link i ∈ N , the local instantaneous payoff is
given by (7).

• Pr(s′|s,p) is the state transition map controlled by the
joint power level p.

According to Definition 1, Gp is a Markov game if the state
transition map Pr(s′|s,p) is a well-defined probability function.
For two buffer queue states sm and s′m of MBS-MUE link m,
let δl = s′m − sm + T/BrMm (pM ,pF ) given a fixed power
allocation p = (pM ,pF ). With the packet arrival at each MBS
following independent Poisson process with arrival rate dm, we
can express the transition probability function between each
state of link m based on (5) as follows:

• if
T

B
rMm (p)− sm + L > 0 and 0 < s′m < L,

Pr(s′m|sm,p) =
(dm)δl exp(dm)

δl!
, (8)

• if s′m = L,

Pr(s′m|sm,p) =

∞∑
k=δl

(dm)k exp(dm)

k!
, (9)

• if sm ≤
T

B
rMm (p) and s′m = 0,

Pr(s′m|sm,p) =

δl∑
k=0

(dm)k exp(dm)

k!
, (10)

• otherwise Pr(s′m|sm,p) = 0.
With (8)-(10) we can easily check that Pr(s′m|sm,p) is a well-
defined probability function with any fixed power allocation p:
0≤Pr(s′m|sm,p)≤ 1 and

∑
s′m

Pr(s′m|sm,p) = 1. Therefore,
Gp is a well-defined Markov game.

Observing the instantaneous payoff functions in game Gp, we
note that the payoff function for MBS-MUE link m given by
(4), um(s,pM ,pF ) = rMm (pM ,pF ), is independent of system
state sm. On the other hand, the payoff function for FAP n can
be written in the form of

un(s,pM ,pF ) = rFn (pM ,pF ) + gn(s, pFn ), (11)

where gn(s, pFn ) =
∑
m∈M λm(sm)hFMn,mp

F
n . With such obser-

vations, we obtain the following property of game Gp:

Theorem 1. The formulated Markov game Gp is an exact
potential game, if (a) each link (player) admits the expected
average payoff as its objective, and (b) the underlying Markov
chain for any fixed power allocation profile p is ergodic.

Proof. If all links admit expected average payoffs, the goal of
link i during play is to maximize its local objective [10]:

Ji(πππ(p)) = lim
τ→∞

1

τ
Eπππ

[
τ−1∑
t=0

ui(s(t),p)

]
, (12)

where πππ(p) is the vector of probabilities for adopting any fea-
sible power allocation profile p. Under the assumption that the
underlying Markov chain corresponding to any power allocation
profile p is ergodic, we can show that the state distribution
of the Markov chain corresponding to a (mixed) strategy πππ
converges to a limiting distribution ααα = (α1(πππ), . . . ,ααα|S|(πππ)),
∀i, αi(πππ) > 0 [10]. Then, with starting state s, (12) can be
rewritten as:

Ji(πππ(p)) =
∑
s∈S

αs(πππ)
∑
s′∈S

Pr(s′|s,πππ)Eπππ [ui(s,p)] . (13)

We check the property of Ji(πππ(p)) with a deterministic
strategy p. According to the definition of a potential game [9],
Markov game Gp in the matrix form with payoff Ji(pi, p−i)
given by (13) is an exact potential game if there exists an exact
potential function Φ(p) such that ∀i ∈ K, ∀pi, p′i, ∀p ∈ P ,

Φ(pi, p−i)− Φ(p′i, p−i) = Ji(pi, p−i)− Ji(p′i, p−i), (14)

where p−i is the joint power allocation profile of the adversary
links of link i. By examining (4) and (7), we can define the
instantaneous potential function for MBSs and for FAPs as (15)
and (16), respectively. In what follows, we omit the superscripts
in pMm (m ∈M) and pFn (n ∈ N ) for conciseness:

φi(s, pi, p−i) =

W log

( ∑
m∈M

hMM
mi pm+

∑
n∈N

hFMni pn+σ2
i

)
,∀i ∈M,

(15)

φi(s, pi, p−i) = fi(pi, p−i)− gi(s, pi)

= W log

( ∑
m∈M

hMF
mi pm+

∑
n∈N

hFFni pn+σ2
i

)
−
∑
m∈M

λm(cm)hFMi,m pi,∀i ∈ N .

(16)

Since ∀m∈M, local instantaneous payoff um is independent
of system state s, then for MBS m we can rewrite (13) as

Jm(πππ(p)) =
∑
s∈S

αs(πππ)Eπππ [um(p)]
∑
s′∈S

Pr(s′|s,πππ)

= Eπππ [um(p)] .
(17)

Similarly, if we replace the instantaneous payoff function ui in
(13) by the instantaneous potential function φi, we can obtain
the potential function for the matrix game as

Φm(πππ(p)) = Eπππ [φm(p)] . (18)

For a deterministic policy πππ with πi(pi) = 1, where pi is an
element of p (pi ∈ PM for MBSs and pi ∈ PF for FAPs), we
have Jm(πππ(p)) = um(p). Then,

Jm(πm, π−m)−Jm(π′m, π−m)=um(pm, p−m)−um(p′m, p−m)

= W log(1 + γMm (pm, p−m))−W log(1 + γMm (p′m, p−m))

= W log(
IMm + hMM

m,mpm

IMm + hMM
m,mp

′
m

) = φm(pm, p−m)− φm(p′m, p−m)

= Φm(pm, p−m)− Φm(p′m, p−m),
(19)



where according to (2) IMm is the total interference to link m:

IMm = σ2
m +

∑
i∈M\{m}

hMM
i,m pi +

∑
n∈N

hFMn,mpn. (20)

For FAP-FUE link n ∈ N , we note that both the original
instantaneous payoff in (11) and the proposed corresponding
function in (16) are comprised by two parts. Then, the expected
payoff of link n in the matrix form game can be written as:

Jn(πππ(p))=
∑
s∈S

αs(πππ)
∑
s′∈S

Pr(s′|s,πππ)Eπππ
[
rFn (p)+gn(s,p)

]
.

(21)
Again, since rFn (p) in (21) is independent of system state s, we
can use the same technique for proving the potential function
of MBS-MAP links as in (17)-(19) and show that fn(pi, p−i)
given in (16) defines an exact potential function for the expected
average payoff related to rFn (p) in the matrix-form game. Since
both (11) and (16) share the same term gn(s,p), we have:

Jn(πn, π−n)−Jn(π′n, π−n)=fn(pn, p−n)−fn(p′n, p−n)

+
∑
s∈S

αs(pi, p−i)
∑
s′∈S

Pr(s′|s, pi, p−i)Eπππ(p) [gi(s, pi)]

−
∑
s∈S

αs(p
′
i, p−i)

∑
s′∈S

Pr(s′|s, p′i, p−i)Eπππ(p′) [gi(s, p
′
i)]

=Φn(pn, p−n)− Φn(p′n, p−n).

(22)

Then, (16) defines an exact potential function for FAP-FUE
link n in the matrix-game form of Gp.

With Theorem 1, the following property holds for game Gp:

Corollary 1. If the two conditions in Theorem 1 are satisfied,
then the Markov power allocation game, Gp, has at least one
pure-strategy Nash equilibrium.

Proof. Corollary 1 immediately follows Theorem 1 and Corol-
lary 3.1 of [9].

III. SELF-ORGANIZED LEARNING FOR CROSS-TIER POWER
ALLOCATION

Based on Theorem 1 and Corollary 1, we are ready to
develop a self-organized strategy learning mechanism for both
MBSs and FAPs in the network. In this section, we propose to
apply learning automata for the BSs to simultaneously adapt
their transmit power without the need of explicit coordination.

A. LA-based Equilibrium Learning with Limited Coordination

In Markov game Gp, link i aims at finding the best-response
to the joint adversary power allocation strategy π−i as:

π∗i (pi|π−i) = arg max
πi

Ji(πi, π−i), (23)

and if ∀i ∈ K, πi(pi|π−i) = π∗i , πππ is an NE. We consider that
each MBS is able to broadcast its buffer state information to
the nearby FAPs in the network. Besides, the only information
that an FAP can obtain is the achieved link throughput and the
payment to be made to the macrocells. In order for FAPs and
MBSs to learn the NE of the power allocation game without the
need of any other information exchange, we introduce the LA-
based Linear Reward Inaction (LR−I ) scheme [8] for power

allocation strategy learning. With a generalized LR−I scheme,
Learning agent i updates its action-taking policy purely based
on the local payoff that it observes:{
πt+1
i (pi) = πti(pi) + θβt(p(t))(1− πti(pi)) if pi(t) = pi,

πt+1
i (p′i) = πti(p

′
i)− θβt(p(t))πti(p

′
i) if pi(t) 6= p′i,

(24)
where θ is the learning step size and β(t) (0 ≤ β(t) ≤ 1) is
the normalized payoff of LA agent i.

Instead of associating a single LA with one MBS-MUE or
FAP-FUE link, we propose to associate an automaton with each
system state s ∈ S for each link in game Gp. In this case,
for a network containing |M| MBSs with buffer capacity L, a
number of L|M| LA are to be created for each link. Based on
(24), let LAs

i denote the policy updating process associated with
state s for link i. Then, at time interval t, only one automaton,
LA

s(t)
i , is activated on MBS/FAP i for policy updating. We

note that with a finite discrete power level set for each link,
the throughput of MBS-MUE link m is upper-bounded. Then
for MBS m, the normalized payoff is defined as follows:

βtm(p(t)) =

∑t
τ=1 r

M
m (p(τ))

t · rMm
, (25)

where rMm = max
p

rMm (p) is the maximum throughput that

MBS-MUE link m can achieve. For FAP-FUE link n, consid-
ering that the link revenue may be negative when the nearby
MBS-MUE links charges link n with a high interference price,
we define its normalized payoff as follows:

βtn(p(t)) =

∑t
τ=1(uFn (s(τ),p(τ))− uFn )

t · (uFn − uFn )
, (26)

where uFn = max
s,p

uFn (s,p) and uFn = min
s,p

uFn (s,p).
For a general Markov game defined by Definition 1, a group

of independent LA that are associated with the state-agent pairs
guarantees to converge to a pure-strategy NE, if the conditions
in Theorem 2 are satisfied:

Theorem 2 (Corollary 1 of [10]). If an average-reward Markov
game has a pure-strategy NE point and for any joint policy
its underlying multi-agent Markov chain is ergodic, then by
associating each state for each agent an LA, the LR−I scheme
given in (24) is guaranteed to find the pure-strategy NE point.

According to Corollary 1 and Theorem 2, the learning
scheme given by (24)-(26) is able to find a pure-strategy NE
of game Gp as long as the underlying Markov chain defined
by (8)-(10) is ergodic for any pure-strategy power allocation
profile. By the definition of ergodic Markov chain, we only need
to show that Pr(s′i|si,p) > 0,∀i,∀si, si ∈ Si and ∀p. Thus,
to derive the condition of always being an ergodic Markov
chain, we only need to examine the boundary cases of smallest
throughput for each MBS. Then, a sufficient condition for game
Gp to be ergodic is given as follows:

hMM
m,mp

M
1

σ2
m+

∑
i∈M\{m}

hMM
i,m pM|PM |+

∑
n∈N

hFMn,mp
F
|PF |

≥ 2
L
W −1. (27)



B. Approximate State Space Reduction

Although the learning scheme given by (24)-(26) does not
need extra information exchange for reaching a pure-strategy
NE, it still faces a problem of state space explosion as the
number of MBSs in the network increases. A natural consid-
eration for state space reduction is to partition the state space
with a coarse granularity, e.g., by using the partition scheme
given in (6). With such a state partition scheme, the space of
the aggregated states, C = {0, 1, . . . , C}, changes the original
state transition map into the follows:

P̂r(c′m|cm,p) =
∑

s′m∈ψ
−1
m (c′m)

∑
sm∈ψ−1

m (cm)

Pr(s′m|sm,p), (28)

where ψm : Sm → Cm is a mapping from the state space of sm
to the new state space of cm. Since P̂r(c′m|cm,p) is ill-defined
as a probability function, a weighting factor is needed to be
imposed onto P̂r(c′m|cm,p) in order to obtain a well-defined
probability function:

Pr(c′m|cm,p) =
1∑

sm∈ψ−1(cm)

αsm(p)
P̂r(c′m|cm,p). (29)

Since the state aggregation does not really change the state
transitions in the real world, we call the new Markov game with
aggregated states c = [c1, . . . , c|M|]

T the virtual game G′p. We
note that state aggregation preserves the ergodic property of
the original MAMDP Gp. However, due to state aggregation,
a value manipulation based on the original payoff in game Gp
is needed for the virtual game to preserve the same expected
average payoff of a link i with respect to the same joint policy
as in Gp (see Lemma 1 in [11]). Let u′i denote the new
instantaneous payoff in the virtual game. For a deterministic
policy p, we have

u′i(c,p) =
∑
s

1(ψ(s), c)αααs(p)∑
x∈ψ−1(c)

αααx(p)
ui(s,p), (30)

where 1(x, y) is the indicator function, 1(x, y) = 1 if x = y
and 1(x, y) = 0 if x 6= y. αααx is the joint distribution with
respect to state vector x.

Fortunately, the structure of the payoff functions for MBS-
MUE links in (4) and FAP-FUE links in (7) guarantees that the
exact potential function still exists for u′i(c,p) in the virtual
game1. Since the limiting distribution of joint state s, αααs, is
unknown to the on-line learning scheme, we use the following
scheme to estimate the value of u′i:

û′i(c,p, t) =

∑t
τ=1 1(c(τ), c)ui(τ)∑t

τ=1 1(c(τ), c)
. (31)

Then, lim
t→∞

û′i(c,p, t) = u′i(c,p). We can apply the same LR−I
scheme given by (24)-(26) to the virtual game G′p with the
value of u′i estimated as (31). However, it is worth noting

1We omit the proof in this paper due to space limit. The proof can be derived
in the same way as the proof of Theorem 1.

that although the new state value u′i(c,p) for a fixed policy
p preserves the value of link i’s payoff for the same policy in
the original game Gp, the NE of game G′p is generally not the
same as the NE of game Gp. Therefore, the NE learned based
on the virtual game G′p is an approximation of the NE of the
original game Gp.

IV. SIMULATION RESULTS

In our simulations, we consider a network where MBSs are
deployed in a hexagonal grid with a node distance of 500m, and
a number of FAPs are randomly deployed in the same region.
We assume that the maximum interference distance from an
FAP to an MBS is 250m. Then, an FAP only needs to keep track
of at most two nearest MBSs’ buffer states. The simulation
parameters are given in Table I. The channel gains are generated
by a lognormal shadowing pathloss model as a function of the
node distance, hi,j = D−ki,j , where k is the pathloss factor,
k = 2.7 for cross-tier links and k = 2.2 for other links.

TABLE I
MAIN PARAMETERS USED IN THE FEMTOCELL NETWORK SIMULATION

Parameter Value
Shared Bandwidth W 1MHz
Feasible region for MBS transmit power pMm [10, 30]dBm
Feasible region for FAP transmit power pFn [0, 24]dBm
AWGN power σ2 −40dBm
Buffer queue capacity 1× 104

Bits per packet (bpp) 1000bpp
Packet arrival rate dm 250

We first demonstrate in Figure 1 the converge property of the
proposed strategy learning scheme for a network of 7 MBSs and
100 randomly deployed FAPs. We consider that both MBSs and
FAPs adopt an action set of 6 power levels. The buffer usage
is evenly divided into 4 levels (states), and their corresponding
interference price are set to 100, 1000, 1×105 and 1×107,
respectively. From Figure 1, we observe that when the LA
associated with each state-link pair converges (see Figure 1c),
the femto links are able to achieve a slightly higher throughput
than the macro links (see Figure 1a). Such performance is
achieved in the condition that the network is not too crowded,
and the FAPs are able to transmit with a relatively high power
level. From Figure 1b, we can also infer that for most of the
time the buffer usage is kept at a medium level at each MBS.

In Figure 2, we compare the performance of the proposed
learning scheme with that of LA-based learning without a
pricing mechanism. We note from (15) and (16) that without
pricing, the power allocation process is reduced to a single-
state repeated game and each link is associated with only
one automaton. In the simulation, buffer usage is divided
into 6 levels (states). Figure 2a shows that with interference
pricing, the throughput of femtocell links can be improved
by at most 380%. Also, when FAPs are densely deployed in
the network, learning with pricing is able to better prevent
performance deterioration of the femtocell links than without
pricing. Meanwhile, Figure 2b shows that with LA-based NE
searching, MBSs may have a better throughput as the number of
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Fig. 1. (a) Evolution of average throughput. (b) Evolution of average payment of each FAP. (c) Policy evolution for FAP 1 at the most frequently visited state.
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Fig. 2. (a) Average throughput of FAPs vs. number of FAPs in the network.
(b) Average throughput of MBSs vs. number of FAPs in the network.
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Fig. 3. FAP/MBS performance vs. state number at the approximate NE.

nearby FAPs increases. Intuitively, with a higher FAP density,
the increasing inter-cell interference will drive the FAPs to
greatly reduce their transmit power in order to reach the new
NE. As a result, the received cross-tier interference of marcocell
links will get smaller, hence a better throughput of the MBSs.

In Figure 3, we investigate the impact of state aggregation
on the performance of the proposed learning scheme. The
simulation is performed in a network with 1 MBS and 15 FAPs.
The interference price is obtained from a range [0, 1×1013].
Figure 3 shows that as the buffer state size (equivalently, the
number of price levels) increases, the social performance of
the FAPs also increases. Figure 3 indicates that a finer price
granularity will lead to a larger number of feasible options for
FAPs’ power allocation. Then, it is possible for the NE to move
to a new point that leads to better FAP performance.

V. CONCLUSION

In this paper, we have studied the power allocation problem
for the downlink transmission of a two-level, overlay heteroge-

neous network. We have introduced a multi-step pricing mecha-
nism for macrocell base stations to implicitly control the cross-
tier interference from femtocells. By considering the buffer load
evolution at each macrocell base station as a stochastic process,
we have formulated the cross-tier power allocation process as
a Markov game. We have proposed an LA-based, distributed
strategy learning mechanism for both the macrocell and the
femtocell base stations to autonomously learn the pure-strategy
equilibrium of the game. We have also proposed a state space
aggregation scheme in order to address the problem of state
space explosion in the proposed learning process. Simulation
results have shown that LA-based learning with proper state
aggregation is able to find a pure-strategy Nash Equilibrium and
improve the femtocell performance by 130%-380% compared
with the learning scheme without pricing.
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