
A Toolbox versus a Tool — A Design Approach

H.-P. Bischof
Department of Computer Science, Rochester Institute of Technology, Rochester, NY, USA

Center for Computational Relativity and Gravitation, Rochester Institute of Technology. Rochester, NY, USA

Abstract— Tools are built to be used as they are. The
members of the development team of the tool are most
likely the only ones who can make modifications to the
tool. Others, even if the source code is available, could in
principle modify the tool, but this is in most cases extremely
difficult to achieve. A toolbox, on the other hand side, is
intended to be extended, or modified often by many people.
Unix is a good example for a toolbox. Everybody can add
new libraries or commands used by one or many. Unix itself
does not need to be touched in order to add user-defined
functionality to it. This paper describes design criteria for
a visualization toolbox which can easily be extended.

Keywords: Visualization System Design, Toolbox Design, Tool
Design, Data Flow

1. Introduction
The first notion about the functionality of a Unix[3] pipe

was written by Doug McIlroy[7]. McIlroy wrote on October
11, 1964: “We should have some ways of coupling programs
like garden hose - screw in another segment when it becomes
necessary to massage data in another way.” The idea of
how to use a pipe was later described in[5]. In order for
the individual components to be able to interact with each
other they must agree on a communication mechanism.
McIlory described in a conversation how this could be
accomplished[8]: “Write programs that handle text streams,
because that is a universal interface.” One philosophy behind
Unix was write programs, which could do one thing well,
and combine the programs in shell scripts using pipes for
the communication. The author of a new command needs to
know how write the output to stdout and how to read from
stdin.

This allows pipe sequences like:

c a t f i l e | s o r t | l p r

cat sends the file to sort and then it gets printed. It is
trivial to make this line into a distributed version without
changing any of its used components:

c a t f i l e | s s h compute r s o r t | l p r

The shell is responsible for redirecting in and output
channels. Adding new components to the Unix toolbox
requires little special knowledge and is easy to accomplish:
add an executable anywhere in the file system and make
sure that the directory is in the search path. The rest of

this paper describes how the same philosophy is applied to
a visualization toolbox and discusses the consequences of
this.

The paper describes how to design a system, which is
intended to be modified by many.

2. Visualization Tools
Most visualization systems like ParaView[6], VisIt[4], etc.

apply a data flow principle to execute their programs. A
visualization program is typically represented by a graph
where the nodes are components and the data flows along
the edges. The components’ purposes ranges from read the
data, filter parts of the data, stream, analyze the data, create
a visual of the data, store the image, and others. Distributing
the components across a network, controlling the data flow
through the system, etc. is done by the runtime system of
the visualization system.

The visualization graph is typically constructed with the
use of a graphical programming environment. The graphi-
cal programming environment allows, besides creating the
program, typically many more things, like selecting colors,
specifying labels, adding decorative features, etc.

A Unix pipe is a linear graph in which each component
reads from stdin and writes to stdout. The program in
Listing 1 illustrates how little knowledge is required to fulfill
the communication requirement for a pipe (include files are
omitted). First let us look at the writer. The writer writes the
content of a character array to the standard out file descriptor
and then exits with exit code 0.

Listing 1: writer.c.
i n t main ()
{

c h a r * msg = " H e l l o World \ n " ;
w r i t e (STDIN_FILENO , msg , s t r l e n (msg)) ;
e x i t (0) ;

}

The reader reads from the standard in file descriptor and
stores the read information in a character array of length 20,
prints the input text, and then exits with exit code 0. This
program does not deal with buffer overflow issues.

Listing 2: reader.c.
i n t main ()
{

c h a r msg [2 0] ;
r e a d (STDIN_FILENO , msg , 2 0) ;
w r i t e (STDOUT_FILENO , msg , s t r l e n (msg)) ;
e x i t (0) ;

}

The two programs can be used in any UNIX shell environ-
ment like:

$ cc −o w r i t e r w r i t e r . c
$ cc −o r e a d e r r e a d e r . c
$ w r i t e r | r e a d e r
H e l l o World

The communication requirements for a visualization pro-
gram are a bit more complicated, because it must be possible
to connect n output channels with k input channels, n and
k ≥ 1. This is required in order to write components that
do one thing, but do this one thing very well. A program
of this kind is shown in Figure 1. This program reads the
data for Black Hole and Gravitational Wave visualization,
and sends the data to the visualization components and
both components send the visual representation to a display
component where the visuals will be combined.

Fig. 1: A snippet of a visualization program.

3. Design Principles for a Visualization
Toolbox

There is no reason to modify a visualization system if
its functionality provides what is needed. The source code
for many visualization systems is available. In the case of
ParaView it is even possible to request a new feature. Par-
aView is a wonderful visualization system and as such has
received the Best HPC Visualization Product Editor Choice
2016 award. As of April 5 2017, the top four requests have
more than 150 votes and many more requests have single
digit support. The question is: How easy or difficult is it to
add functionality to an existing system. Two “Community
Contributed Plugins” are available for download. Why only
two? The modification of ParaView is in its complexity
comparable to modifying a Unix Kernel; doable but not easy.
Spiegel[2], a visualization toolbox, implemented in Java,
shall be used as an example of how to design a visualization
toolbox in such a way that it is easy to add functionality.

4. Separation of Functionality
A visualization tool should be divided up into a runtime

system, which executes then visualization program, and pro-
gramming environment. Most programming environenment
are graphical programming environment because this is the
easiest way to construct a program. We modeled our system
based on how a shell executes components in a Unix pipe.
Unix is buffering the data, and sending the data along
through the system. The shell is responsible for connecting
the input channels and output channels of the individual
components. The functionality to execute a command of a
pipe sequence remotely is implemented in the shell, not in
the command.

5. Need to Know about Adding New
Components

Adding a new component to the system should only
require an understanding of the communication agreements
and where and how to add it to the system. The next few
chapters describe how this can be achieved in Spiegel.

6. Communication
The following code illustrates the definition of the com-

munication channels. The input channels must have a name,
and a type, which later on allows type safe connections. In
Listing 3 we define two input channels, of type Boolean and
Integer.

Listing 3: Input Channel Definition.
p u b l i c s t a t i c D a t a I n p u t . I n f o [] i n p u t = {

new ParamInpu t . I n f o (" randomColor " ,
Boolean . c l a s s)

new ParamInpu t . I n f o (" a I n t e g e r " ,
I n t e g e r . c l a s s)

}

The output channel follows the same structure as the input
channel. More channels could be added to the block structure
if needed. In Listing 4 we define one output channel, of type
Integer.

Listing 4: Output Channel Definition.

p u b l i c s t a t i c Da taOutpu t . I n f o o u t p u t [] = {
new DataOutpu t . I n f o (" Channel " ,

I n t e g e r . c l a s s)
}

Having typed input channels prevents the connection of an
input with a ncompatible output channel. Most visualization
systems use graphical editors to build the visualization
programs. The connectable connections can be highlighted
if typed channels are used.

7. How to Add a new Component
Adding a new component in a Unix system requires

adding a component to a directory, adding the directory
to the search path if necessary, and making the command
executable. The Java equivalent to this is: Create a com-
ponent, compile it, and add a class to CLASSPATH .
Adding a new component to the Spiegel visualization system
requires only an understanding of the Java CLASSPATH
mechanism, and how to code in Java. In other words no
additional knowledge is needed in order to extend the
system.

It is useful to have a visual programming editor to write
programs for visualization systems. This requires having
menus populated in a meaningful way. The Spiegel system
examines the directory structure below the directory plugin.
Every directory in this sub tree becomes a menu item
like “visual”. Directories below first level directories, like
“atomic” become automatically sub menu items. It is not
desirable to include every class found in the class path below,
and it is now and then desirable to include a component
in more than one category. Determination of including a
class and in which menu it appears, is decided by the values
of a variable named “category”. Currently the configuration
is analyzed during compile time, but in the future it will
be done via reflection. Listing 5 shows the example for
a component appearing under the visual and filter menu.
Figure 2 shows an automatically populated menu.

Listing 5: Category.
p u b l i c s t a t i c S t r i n g [] c a t e g o r y =

{" v i s u a l " , " f i l t e r " , } ;

Fig. 2: Automatically populated Menu.

8. A Complete Example
This chapter is a complete exmaple of how to add a

new filter to the system. The filter will read black hole

information from an input stream. The black hole data
structure needs to be added to the system, because it does
not exist at this point. In most cases this is not required
because a large number of data structures do exist. We add
this data structure just to show how it is done in principle.

The file structure for the input data is describe in Listing 6

Listing 6: Category.
b l a c k h o l e i d x y z

An example of the input is shown in Listing 7

Listing 7: Input Example snippet.
1 . 3 1 . 5 4 . 5 # t ime s t e p 1
1 . 5 0 . 2 0 . 2 # t ime s t e p 2
1 . 0 0 . 0 0 . 0 # t ime s t e p 3

. . .
and so on

The following new developments need to be made in this
order:

1) a new data structure, and we will name it
BlackHole.java

2) a component which reads the input data and sends
out the BlackHole data structure and we will name it
BHreader.java. The new data structure will be used
in this component. We assume there is only one black
hole per time step.

3) a filter, and we will name it BHfilter.java. The new
data structure will be used in this component.

4) a test program and we will call it bhTest.sprache.

The complete system can be downloaded from
http://spiegel.cs.rit.edu/∼hpb/Spiegel. bhTest.sprache
will not be shown in this paper. A visual representation of
bhTest.sprache is shown in Figure 3.

Fig. 3: Visual Representation of bhTest.sprache.

In most cases only the filter component would need to be
developed, because the other pieces do already exist.

We implement 2) only in order to be able to develop a
complete and running program. In most cases this would not
be required, because the component would exist.

First, we implement BlackHole.java. Listing 8 shows
the complete source code. BlackHole.java is a data struc-
ture which represents one Black Hole, to be more precise
the x, y, and z position of it. The constructor sets the three
position instance variables, which can be accessed via the
get-methods.

Listing 8: BlackHole.java
package s p i e g e l .

v i e w c o n t r o l .
f u n c t i o n .
d a t a t y p e s ;

p u b l i c c l a s s BlackHole {

p r i v a t e dou b l e x ;
p r i v a t e dou b l e y ;
p r i v a t e dou b l e z ;

p u b l i c BlackHole (d ou b l e x ,
do ub l e y ,
do ub l e z) {

t h i s . x = x ;
t h i s . y = y ;
t h i s . z = z ;

}
p u b l i c d ou b l e getX () {

r e t u r n x ;
}
p u b l i c d ou b l e getY () {

r e t u r n y ;
}
p u b l i c d ou b l e ge tZ () {

r e t u r n z ;
}
p u b l i c S t r i n g t o S t r i n g () {

r e t u r n x + " / " + y + " / " + z + " / " ;
}

}

The next class we implement is responsible for reading
Black Hole data one by one from a file. The first part of
this file is shown in Listing 9. This part shows all necessary
initializations. The BHReader component is highlighted in
the visual program, and the values are shown below. The
input hostName is automatically set, because the base class
Function includes this instance variable. The component
would automatically distributed to a host, if this value would
be initialized with a host name. The DataInput and DataOut-
put variables store the type and names of the communication
end point channels.

The category for this component is extractor, because of
the functionality of the component. The values of the initial-
izations are used by the visual programming environment as
shown in Figure 9 and Listing 4. This allows the developer to
see the parameter types for the component, and information
about who wrote the component, and a very short description
about the functionality of the component.

Listing 9: BlackHoleReader Part 1

Fig. 4: Component Information.

package s p i e g e l . v i e w c o n t r o l .
f u n c t i o n . p l u g i n s . e x t r a c t o r ;

some i m p o r t s a r e n o t shown

i m p o r t s p i e g e l . v i e w c o n t r o l . f u n c t i o n .
d a t a t y p e s . BlackHole ;

p u b l i c c l a s s BHreader e x t e n d s F u n c t i o n {
p u b l i c s t a t i c S t r i n g disp layName

= "BH e x t r a c t o r " ;
p u b l i c s t a t i c S t r i n g d e s c r i p t i o n

= " E x t r a c t s BH’ s from a f i l e . " ;
p u b l i c s t a t i c S t r i n g [] a u t h o r s

= { " Hans−P e t e r B i s c h o f " } ;

p u b l i c s t a t i c D a t a I n p u t . I n f o []
i n p u t = {

new ParamInpu t . I n f o
< S t r i n g >(" f i l eName " ,

u l l , S t r i n g . c l a s s) ,
} ;
p u b l i c s t a t i c Da taOutpu t . I n f o

o u t p u t
= new DataOutpu t . I n f o (" b l a c k H o l e " ,

BlackHole . c l a s s) ;
p u b l i c s t a t i c S t r i n g [] c a t e g o r y

= {" e x t r a c t o r " } ;

p r i v a t e ParamInput < S t r i n g > f i l e N a m e I n ;
p r i v a t e Da taOutpu t b l ackHoleOut ;

The last part of the BHreader, shown in Listing 10,
implements the method update. This method will be called
from the runtime system when needed. First, the file name
is read and then the file is opened. The file will only be
opened the first time update is called.

Only one line will be read to initialize the BlackHole
data structure. This data structure is then sent to the next

component, in this case BHfilter.

Listing 10: BlackHoleReader Part 2
B u f f e r e d R e a d e r t h e B l a c k H o l e F i l e = n u l l ;
p r o t e c t e d vo id u p d a t e () {

S t r i n g t h e P o s i t i o n [] = n u l l ;
S t r i n g f i l eName = f i l e N a m e I n . g e t () ;
t r y {

i f (t h e B l a c k H o l e F i l e != n u l l) {
t h e B l a c k H o l e F i l e =

new B u f f e r e d R e a d e r (
new F i l e R e a d e r (f i l eName)) ;

S t r i n g aBH = t h e B l a c k H o l e F i l e .
r e a d L i n e () ;

t h e P o s i t i o n = aBH . s p l i t (" \ \ s + ") ;
aBlackHole = new BlackHole (

new Double (t h e P o s i t i o n [0]) ,
new Double (t h e P o s i t i o n [1]) ,
new Double (t h e P o s i t i o n [2])) ;
b l ackHoleOu t . s e t (aBlackHole) ;

}
} c a t c h (E x c e p t i o n e) {

b l ackHoleOu t . s e t (n u l l) ;
}

}

The last component we need to implement is the class
BHfilter. The first part is shown in Listing 11. Like before
we need to initialize the components used for the visual
programming environment.

Listing 11: BlackHoleReader Part 1
p u b l i c c l a s s B H f i l t e r e x t e n d s F u n c t i o n {

p u b l i c s t a t i c S t r i n g
disp layName = " B H f i l t e r " ;

p u b l i c s t a t i c S t r i n g d e s c r i p t i o n
= " D i s p l a y s BH’ s " ;

p u b l i c s t a t i c S t r i n g [] a u t h o r s
= { " Hans−P e t e r B i s c h o f " } ;

p u b l i c s t a t i c D a t a I n p u t . I n f o []
i n p u t = {

new ParamInpu t . In fo <Double >
(" b l a c k H o l e S i z e " ,
new Double (0 . 0 3)

, Double . c l a s s) ,
new S i n g l e D a t a I n p u t . I n f o

<BlackHole >(" bh " ,
BlackHole . c l a s s)

} ;
p u b l i c s t a t i c Da taOutpu t . I n f o

o u t p u t =
new DataOutpu t . I n f o

(" o b j e c t " ,
BranchGroup . c l a s s) ;

p u b l i c s t a t i c S t r i n g []
c a t e g o r y = {" v i s u a l " } ;

p r i v a t e Pa ramInpu t
<Double > b l a c k H o l e S i z e I n ;

p r i v a t e S i n g l e D a t a I n p u t
<BlackHole > bhIn ;

p r i v a t e Da taOutpu t o b j e c t O u t ;

The second part is shown in Listing 12. The method
update gets the values for size and the Black Hole Data
structure first. This creates a Branchgroup, representing
the visual which will be sent to the next component via
objectOut.set(theBH).

Listing 12: IBlackHoleReader Part 2
p u b l i c vo id u p d a t e () {

BlackHole aBH = bhIn . g e t () ;
do ub l e s i z e = b l a c k H o l e S i z e I n . g e t () ;
i f (aBH != n u l l) {

BranchGroup theBH
= new BranchGroup () ;

commit ted
o b j e c t O u t . s e t (theBH) ;

} e l s e {
o b j e c t O u t . s e t (n u l l) ;

}
}

9. Conclusion
The described paper lays out a framework which has

been proven that it is easily extensible. Many undergraduate
students used it on their REU experience here at RIT. We
gave the students on purpose minimum instructions on how
to add components and within an hour they started to add
components. The students did not need to modify the runtime
system.

10. Future Work
At this point the runtime system and the graphic pro-

gramming environment is combined. These individual com-
ponents need to be separated.

The runtime system allows a distribution of the com-
ponents across a network, but there is no functionality
provided for a finer distribution mechanism. This needs to
be improved.

Functions can be created, but not easily. This functionality
needs to be improved.

The runtime system is not optimized for speed, memory
use, disk access etc. This functionality needs to be improved.

Neither the visual programming environment or the run-
time system is using reflection[10] to detect usable com-
ponents. The use of Java reflection would enhance the
modifiability of the system.

11. Acknowledgements
The authors would like to thank all members of The

Center for Computational Relativity and Gravitation at RIT.
Their visualization needs drove much of the development of
Spiegel system.

References
[1] D., Foulser, “IRIS Explorer: a framework for investigation,” ACM

SIGGRAPH Computer Graphics - Special focus: modular visualization
environments (MVEs), vol. 29, Issue 2, pp. 13-16, Nov. 1995.

[2] H.-P. Bischof, E. Dale, and T. Peterson, “Spiegel - A Visualization
Framework for Large and Small Scale Systems”, in Proc. MSV’06,
2006, paper, pp. 199-205.

[3] Dennis M. Ritchie, “The Evolution of the Unix Time-sharing Sys-
tem”, (April/2017) [Online]. Available: http://www.princeton.edu/~hos/
Mahoney/expotape.htm.

[4] DHank Childs and Eric Brugger and Brad Whitlock and Jeremy
Meredith and Sean Ahern and David Pugmire and Kathleen Biagas
and Mark Miller and Cyrus Harrison and Gunther H. Weber and Hari
Krishnan and Thomas Fogal and Allen Sanderson and Christoph Garth
and E. Wes Bethel and David Camp and Oliver Ruebel and Marc Durant
and Jean M. Favre and Paul Navr at all, “VisIt: An End-User Tool
For Visualizing and Analyzing Very Large Data”, High Performance
Visualization–Enabling Extreme-Scale Scientific Insight, pp. 357-372,
Nov. 2012.

[5] Brian W. Kernighan and P. J. Plauger, “Software Tools”, Addison-
Wesley Publishing Company, 0-201-03669-X

[6] Paraview. (April/2017) [Online]. Available: http://http://www.paraview.
org/

[7] Paraview. (April/2017) [Online]. Available: http://www.princeton.edu/
~hos/Mahoney/expotape.htm

[8] Paraview. (April/2017) [Online]. Available: http://doc.cat-v.org/unix/
pipes/

[9] David Eberly. (April/2016). Kochanek-Bartels Cubic Splines
(TCB Splines). [Online]. Available: http://www.geometrictools.com/
Documentation/KBSplines.pdf

[10] Ira R. Forman, and Nate Forman. “Java Reflection in Action.”
Manning Publishing Company, 2004.

http://www.princeton.edu/~hos/Mahoney/expotape.htm
http://www.princeton.edu/~hos/Mahoney/expotape.htm
http://http://www.paraview.org/
http://http://www.paraview.org/
http://www.princeton.edu/~hos/Mahoney/expotape.htm
http://www.princeton.edu/~hos/Mahoney/expotape.htm
http://doc.cat-v.org/unix/pipes/
http://doc.cat-v.org/unix/pipes/
http://www.geometrictools.com/Documentation/KBSplines.pdf
http://www.geometrictools.com/Documentation/KBSplines.pdf

	Introduction
	Visualization Tools
	Design Principles for a Visualization Toolbox
	Separation of Functionality
	Need to Know about Adding New Components
	Communication
	How to Add a new Component
	A Complete Example
	Conclusion
	Future Work
	Acknowledgements
	References

