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Abstract

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of
Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite
Ramsey number b(s, t) is the smallest integer b such that any coloring of
the edges of Kb,b with two colors contains a Ks,s in the first color or a
Kt,t in the second color.

In this work, we design and exploit a computational method for bound-
ing and computing Zarankiewicz numbers. Using it, we obtain several
new values and bounds on z(b; s) for 3 ≤ s ≤ 6. Our approach and new
knowledge about z(b; s) permit us to improve some of the results on bipar-
tite Ramsey numbers obtained by Goddard, Henning and Oellermann in
2000. In particular, we compute the smallest previously unknown bipar-
tite Ramsey number, b(2, 5) = 17. Moreover, we prove that up to isomor-
phism there exists a unique 2-coloring which witnesses the lower bound
16 < b(2, 5). We also find tight bounds on b(2, 2, 3), 17 ≤ b(2, 2, 3) ≤ 18,
which currently is the smallest open case for multicolor bipartite Ramsey
numbers.
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1 Introduction

Graph notation

If G is a bipartite graph, with the bipartition of its vertices V (G) = L(G)∪R(G),
or simply V = L ∪R, we will denote it by writing G[L,R]. Furthermore, when
we wish to point only to the orders m and n of the left and right parts of the
vertex set V (G), m = |L|, n = |R|, we will use notation G[m,n]. The parts L
and R will be called left vertices and right vertices of G, respectively. If H is a
subgraph of G, and its bipartition is H[L′, R′], then we will consider only the
cases when L′ ⊂ L and R′ ⊂ R. For the remainder of this paper, all bipartite
graphs have a fixed bipartition.

This allows us to treat any bipartite graph G[m,n] as m × n 0-1 matrix
MG, whose rows are labeled by L, columns are labeled by R, and where 1’s
stand for the corresponding edges between L and R. The (bipartite) reflection
of G is obtained by swapping the left and right vertices of G, or equivalently
by transposing the corresponding 0-1 matrix. The bipartite complement G
of a (bipartite) graph G[L,R], has the same bipartition as G, but its matrix
representation is the binary complement of MG.

Zarankiewicz numbers

The Zarankiewicz number z(m,n; s, t) is defined to be the maximum number of
edges in any subgraph G[m,n] of the complete bipartite graph Km,n, such that
G[m,n] does not contain Ks,t. For the diagonal cases, we will use z(m,n; s) and
z(n; s) to denote z(m,n; s, s) and z(n, n; s, s), respectively.

In 1951, Kazimierz Zarankiewicz [26] asked what is the minimum number of
1’s in a 0-1 matrix of order n×n, which guarantees that it has a 2× 2 minor of
1’s. In the notation introduced above, it asks for the value of z(n, n; 2, 2) + 1.

General Zarankiewicz numbers z(m,n; s, t) and related extremal graphs have
been studied by numerous authors, including Kövári, Sós, and Turán [17],
Reiman [21], Irving [16], and Goddard, Henning, and Oellermann [12]. A nice
compact summary of what is known was presented by Bollobás [3] in 1995. Re-
cently, Füredi and Simonovits [11] published an extensive survey of relationships
between z(m,n; s, t) and much studied Turán numbers ex(k,Ks,t).

The results and methods used to compute or estimate z(n; 2) are similar to
those in the widely studied case of ex(n,C4), where one seeks the maximum
number of edges in any C4-free n-vertex graph. Previous papers established the
exact values of z(n; s) for all n ≤ 21 [7], and some recent as of yet unpublished
work by Afzaly and McKay pushed it further to all n ≤ 31 [1], see also Table 3
in the Appendix. Early papers by Irving [16] and Roman [22] presented some
bounding methods and results for concrete cases with s > 2. For more data
for 3 ≤ s ≤ 6 see our Appendix. For detailed discussion of general bounds
and asymptotics, especially for s = 2 and s = 3, see the work by Füredi and
Simonovits [11].
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Bipartite Ramsey numbers

The bipartite Ramsey number b(s1, . . . , sk) is the least positive integer b such
that any coloring of the edges of the complete bipartite graph Kb,b with k colors
contains Ksi,si in the i-th color for some i, 1 ≤ i ≤ k.

If si = s for all i, then we will denote this number by bk(s). The study
of bipartite Ramsey numbers was initiated by Beineke and Schwenk in 1976,
and continued by others, in particular Exoo [8], Hattingh and Henning [15],
Goddard, Henning, and Oellermann [12], and Lazebnik and Mubayi [18].

The connection between Zarankiewicz numbers and bipartite Ramsey num-
bers is quite straightforward: the edges in color i in any coloring of Kn,n wit-
nessing n < b(s1, . . . , sk) give a lower bound witness for e ≤ z(n, n; si), where
the i-th color has e edges. Thus, upper bounds on z(n; s) can be useful in
obtaining upper bounds on bipartite Ramsey numbers. This relationship was
originally exploited by Irving [16], developed further by several authors, includ-
ing Goddard, Henning, and Oellermann [12], and it will be used in this paper.
The role of Zarankiewicz numbers and witness graphs in the study of bipartite
Ramsey numbers is very similar to that of Turán numbers ex(n,G) and G-free
graphs in the study of classical Ramsey numbers, where we color the edges of
Kn while avoiding G in some color.

For multicolor bipartite cases (k > 2), we know most when avoiding C4,
i.e. for s = 2. The following exact values have been established: b2(2) = 5 [2],
b3(2) = 11 [8], and b4(2) = 19 [24, 7]. In the smallest open case for 5 colors it
is known that 26 ≤ b5(2) ≤ 28 [7], where the lower bound was obtained by a
5-coloring of GF (52) × GF (52), and the upper bound is implied by a general
upper bound on z(k2 +k− 2) for k = 5. It was also conjectured that b5(2) = 28
[7].

Finally, we wish to point to the work by Fenner, Gasarch, Glover and Pure-
wal [9], who wrote a very extensive survey of the area of grid colorings, which
are equivalent to edge colorings of complete bipartite graphs. Their focus is on
the cases avoiding C4 for both Zarankiewicz and Ramsey problems.

Notes on asymptotics

Asymptotics of Zarankiewicz numbers is quite well understood (relative to Ram-
sey numbers). The classical bound by Kövári, Sós, and Turán [17], generalized
by several authors (cf. [3, 11]) is

z(m,n; s, t) < (s− 1)1/t(n− t + 1)m1−1/t + (t− 1)m,

which for constant s = t becomes z(n; s) = O(n2−1/t). Füredi [10] improved
the general bound to the best known so far

z(m,n; s, t) < (s− t + 1)1/t(n− t + 1)mn1−1/t + (t− 1)n2−2/t + (t− 2)m,

for m ≥ t and n ≥ s ≥ t ≥ 2. These upper bounds are asymptotically optimal,
as discussed in a book chapter by Bollobás [3], and a more recent monograph
by Füredi and Simonovits [11].
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In 2001, Caro and Rousseau [4], using upper bounds on Zarankiewicz num-
bers z(n, n; s, s), proved that for any fixed m ≥ 2 there exist constants Am and
Bm such that for sufficiently large n we have

Am

( n

log n

)(m+1)/2

< b(m,n) < Bm

( n

log n

)m
.

The asymptotics of other off-diagonal cases, including avoidance of Ks,t and
other bipartite graphs, was studied by Lin and Li [19], and others. For the diago-
nal case, the best known asymptotic upper bound b(n, n) <

(
1+o(1))2n+1 log2 n

was obtained by Conlon [6].

Overview of this paper

In the remainder of this paper we consider only the case of avoiding balanced
complete Ks,s, i.e. the case of s = t. Thus, for brevity, in the following the
Zarankiewicz numbers will be written as z(m,n; s) or z(n; s).

The main contribution of this paper is the method for computing and bound-
ing z(m,n; s) for small s > 2, and the results obtained by using it. The back-
ground to the method and the method itself are presented in Section 2. The
main results of this paper and the computations leading to them are presented
in Section 3. The results are as follows: We obtain several new values and
bounds on z(n; s) for 3 ≤ s ≤ 6. We compute the smallest previously unknown
bipartite Ramsey number, b(2, 5) = 17, and we prove that up to isomorphism
there exists a unique 2-coloring which witnesses the lower bound 16 < b(2, 5).
Finally, we find tight bounds on b(2, 2, 3), 17 ≤ b(2, 2, 3) ≤ 18, which currently
is the smallest open case for multicolor bipartite Ramsey numbers.

2 Two lemmas and their applications

The focus of this section is on Lemmas 2 and 3, and refining their applications.
In the context of bipartite Ramsey numbers and Zarankiewicz numbers, these
lemmas may be found in various forms in Section 12 of [13], in [16], [12], and
[7]. For use throughout the paper, we introduce the following notation.

Definition 2.1. Let G[m,n] be some bipartite graph. For positive integers e, s, t,
we say that

1. G is a (m,n, e+)-graph if e(G) ≥ e,

2. G is a (m,n, e+)s-graph if G is a (m,n, e+)-graph and Ks,s 6⊆ G, and

3. G is a (m,n, e+)s,t-graph if G is a (m,n, e+)s-graph and Kt,t 6⊆ G.

In any of the above notations, we may replace “e+” with “e” whenever the
condition e(G) ≥ e is strengthened to e(G) = e and drop “, e+” whenever no
restriction is placed on e(G).
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For example, “z(m,n; s) ≥ z” is equivalent to “there exists some (m,n, z)s-
graph” and “b(s, t) ≥ m+1” is equivalent to “there exists some (m,m)s,t-graph”.
In general, we will use the placeholder P to denote any of the empty word, “s”,
and “s, t”.

Proposition 1. For fixed positive integers p, k, t, among the k-part sums a1 +
· · ·+ ak = p with ai ≥ 0, the sum

k∑
i=1

(
ai
t

)
(1)

is minimized when |ai − aj | ≤ 1 for all 1 ≤ i < j ≤ k.

Proof. Suppose a1 + · · ·+ak = p is not balanced in the above sense, and assume
without loss of generality that a1 ≥ · · · ≥ ak. It follows that a1 − ak > 1. Let
b1 := a1 − 1, b2 = a2, · · · , bk−1 = ak−1, bk := ak + 1, be a new split of p into k

parts. Note that
∑k

i=1

(
ai

t

)
−
(
bi
t

)
=
(
a1−1
t−1

)
−
(
ak

t−1

)
≥ 0, thus a more balanced

k-part sum does not increase (1). Consequently, (1) is minimized for some sum
as stated.

Lemma 2 (Star-Counting Lemma). Let G be a (m,n, e+)s-graph with e(G) =
mdL + rL = ndR + rR, where 0 ≤ rL < m and 0 ≤ rR < n. If (ai) is the left
degree sequence of G (and thus a1 + · · ·+ am = e(G)), then

(m− rL) ·
(
dL
s

)
+ rL ·

(
dL + 1

s

)
≤

m∑
i=1

(
ai
s

)
≤ (s− 1) ·

(
n

s

)
. (2)

Proof. Fix G as above. The first inequality in (2) follows from Proposition 1
since the leftmost expression corresponds to a balanced m-part composition of
e. Note that the middle expression of (2) counts the number of stars K1,s ⊆ G
whose center is on the left. If this sum exceeds (s−1)·

(
n
s

)
, then by the pigeonhole

principle, there is some B ⊆ R, with |B| = s which is the set of leaves of at least
s of the left stars as above. However, their union must contain a Ks,s subgraph
of G, so the second inequality holds as well.

An analogous statement holds for the right-hand side of G.

Lemma 3 (Density Lemma). Let G be (m,n, e+)P -graph and f = e − be/mc.
Then G contains an induced (m− 1, n, f+)P -subgraph.

Proof. Fix G as above and let d = e/m. Since d is the average left degree, we
may find and remove some left vertex of degree at most d, leaving us with a
(m− 1, n, f+)P -graph.

An analogous statement holds for the right-hand side of G. Lemma 2 pro-
vides a static upper bound z(m,n; s) ≤ e based on the parameters m,n, s, e
alone. Likewise, given an upper bound on z(m − 1, n; s), Lemma 3 gives an
upper bound on z(m,n; s).
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Example 2.1. We will show that there is no (4, 4, 10)2-graph. The most bal-
anced possible composition of 10 into 4 parts is 2 + 2 + 3 + 3 = 10. For
m = n = 4, s = 2 and dL = rL = 2 we have the left- and right-hand side
of (2) equal to 8 and 6, respectively. Thus, z(4; 2) ≤ 9.

Example 2.2. We will show that there is no (4, 5, 12+)2-graph. If we apply
Lemma 3 to any (5, 4, 12)2-graph, then we obtain a (4, 4, 10+)-graph. As argued
in the previous example such graphs do not exist, hence z(4, 5; 2) ≤ 11.

We combine Lemmas 2 and 3 as follows.

Lemma 4. Let m,n, s, w be positive integers. If z(m−1, n; s) < z ≤ w−bw/mc,
then z(m,n; s) < w. Also, if a1 + · · · + am = w satisfies |ai − aj | ≤ 1 for all
1 ≤ i < j ≤ m and

(
a1

s

)
+ · · ·+

(
am

s

)
> (s− 1)

(
n
s

)
, then z(m,n; s) < w.

Suppose we know that W = (wij)
m,n
i,j=1 are upper bounds on the Zarankiewicz

numbers z(i, j; s). Then, we may be able to improve some of them using Lemma
4 by traversing the indices (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n in some order from
(1, 1) to (m,n) so that Lemma 4 can be applied at each step. Call this algorithm
z bound.

Backwards paths extensions

The bounds found just by z bound alone can be often improved by exhaustive
methods. If this is successful for any parameters, further application of the
z bound algorithm can lead to improvements for higher parameters. The same
technique will be used to bound bipartite Ramsey numbers. In both cases, we
will attempt to construct all (m,n, e+)P -graphs (a possibly empty set). To do
this, we begin with all (a, b, f+)P -graphs, where a, b, f are chosen carefully. For
convenience, write

(m,n, e+)P A (a, b, f+)P

if it is known that any (m,n, e+)P -graph contains some induced (a, b, f+)P -
subgraph. When (a, b) = (m−1, n) or (a, b) = (m,n−1), the “A” will be called
a step. A backwards path is a sequence of steps, such as

(mk, nk, e
+
k ) A (mk−1, nk−1, e

+
k−1) A · · · A (m0, n0, e

+
0 ).

We aim at constructing the set of all (mk, nk, e
+
k )P -graphs, up to bipartite

graph isomorphism, using the following extend algorithm. First, generate all
of the (m0, n0, e

+
0 )P -graphs up to bipartite graph isomorphism by some other

method. Now suppose we have all (mi, ni, e
+
i )P -graphs. For each such graph G,

generate (mi+1, ni+1, e
+
i+1)-graphs by adding a new vertex v to the appropriate

side of degree d(v) ≥ ei+1 − e(G) in all possible ways. In addition, if P =“s”
or “s, t” and the bound z ≥ z(mi+1, ni+1; s) is known, we may also impose a
condition that d(v) ≤ z − e(G). Remove all generated graphs which are not of
type (mi+1, ni+1, e

+
i+1)P . Reduce the remaining set up to bipartite graph iso-

morphism, which can be readily accomplished by using McKay’s nauty package
[20]. Repeat this for all G until all (mk, nk, e

+
k )-graphs are generated.
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Question 2.1. Given a, b,m, n, e,P, how can we find a suitable backwards path
(m,n, e+)P A · · · A (a, b, f+)P in such a way that f is as large as possible?

In principle, one could use techniques from dynamic programming to obtain
all such optimal paths, yet this is not practical in our case. While Lemmas 2
and 3 are easy to apply at all times, the question whether it is feasible to run
extend algorithm depends on other unpredictable factors.

Example 2.3. In order to aid in the computation of the bipartite Ramsey num-
ber b(2, 5) and characterization of its lower bound witnesses, we found a back-
wards path (16, 16, 189+)5,2 A · · · A (7, 7, f+)5,2, which is displayed in Figure 1,
where the rows and columns correspond to i and j ranging from 7 to 16. For
reconstruction, the starting (7, 7, 42+)5,2-graphs have the number of edges close
to the maximum equal to z(7; 5) = 44 (see Table 6).

Figure 1: Backwards path witnessing (16, 16, 189+)5,2 A (7, 7, 42+)5,2.

The path highlighted in Figure 1 illustrates the sensitive nature of this pro-
cess. Parity plays a crucial role and it is not obvious to the authors how in
general to find a backwards path from (m,n, e+) to the destination (a, b, f+)
maximizing f and feasible to follow with computations. The pointers from
entries indicate which immediately smaller parameters where considered when
performing computations leading to the displayed path. If instead we step back-
wards along the main diagonal, we end at (7, 7, 39+)5,2. Stepping back in two
straight paths (straight to entry (7, 16), then straight to entry (7, 7)) coinciden-
tally gives the same end value 39. Note that a bare density comparison gives
only (16, 16, 189+)5,2 A (7, 7, d49 · 189/256e+)5,2 = (7, 7, 37+)5,2. Up to isomor-
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phism, there are 7500 (7, 7, 37+)5,2-graphs, 1619 (7, 7, 39+)5,2-graphs, but only
33 (7, 7, 42+)5,2-graphs.

3 Bipartite Ramsey Numbers and Sidon Sets

We motivate this section with two results from [5]. When trying to establish the
lower bound 16 < b(2, 5), one may consider searching for witness graphs which
satisfy certain structural properties. The nauty package command

genbg 16 16 64:64 -d4:4 -D4:4 -Z1

lists, up to isomorphism, all 4-regular (16, 16, 64)2-graphs where the neighbor-
hood of any two vertices intersect in at most one neighbor (so that the graphs
are K2,2-free). This runs in a few minutes on an ordinary laptop computer,
and produces 19 graphs. After removing the graphs whose bipartite comple-
ment contains a K5,5, a single (16, 16, 64)2,5-graph remains and its bipartite
adjacency matrix is shown in Table 1.

Table 1: The bipartite adjacency matrix of a 16 < b(2, 5) witness.

There is clear structure in this (16, 16, 64)2,5-graph. The matrix of Table 1
is a 4× 4 arrangement of 4× 4 blocks, 12 of them being permutation matrices
of 4 elements. This graph has 2304 = 2832 automorphisms.

In [5], a cyclic witness on 15 vertices to the 3-color bipartite Ramsey number
b(2, 2, 3) was found, but no witness of any kind could be found on 16 vertices.
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Question 3.1. Are the bounds 16 < b(2, 5) and 15 < b(2, 2, 3) tight?

In Theorem 6 of the next section, we will be able to conclude that b(2, 5) = 17
and that the lower bound witness found in Table 1 is indeed the unique witness.
For the second part of Question 3.1 we will be able to improve the lower bound
by 1 using bipartite Cayley graphs as described in the remaining part of this
section.

Our definition of bipartite Cayley graphs generalizes the classical cyclic con-
structions. Given Γ a group and S ⊆ Γ a set of edge generators, the bipartite
Cayley graph generated by S is X(Γ, S), where V (X(Γ, S)) = Γ×{1, 2} and for
each g ∈ Γ and s ∈ S, there is an edge between (g, 1) and (g · s, 2). We impose
no restriction on the symmetry of S and accept the identity 1Γ as a valid edge
generator. We can easily describe what causes X(Γ, S) to avoid K2,2 using the
concept of Sidon sets.

Definition 3.1. Given a group Γ, a subset S ⊆ Γ is Sidon if there are no
solutions in S to

s1s
−1
2 s3s

−1
4 = 1Γ,

unless si = si+1 for some i = 0, 1, 2, 3, with indices taken modulo 4.

Sidon sets were originally defined over the integers, while the above is a
well-known generalization to arbitrary groups. For a more detailed discussion,
see [14] and [25].

Proposition 5. X(Γ, S) is K2,2-free if and only if S is Sidon.

Proof. Suppose S ⊆ Γ has a solution s1, s2, s3, s4 ∈ S to s1s
−1
2 s3s

−1
4 = 1Γ.

Then with a := 1Γ, b := s1, c := s1s
−1
2 , and d := s1s

−1
2 s3 = s4, note that

a 6= c and b 6= d. It follows that K2,2 ⊆ X(Γ, S). Conversely, suppose there is
some K2,2 ⊆ X(Γ, S) with left vertices a, c and right vertices b, d. Then setting
s1 := a−1b, s2 := c−1b, s3 := c−1d and s4 := a−1d, we see that s1, s2, s3, s4 ∈ S
satisfies s1s

−1
2 s3s

−1
4 = 1Γ. Assuming a 6= c and b 6= d (because of si 6= si+1),

this is genuinely a K2,2.

The 3-color construction on 15 vertices in [5] witnessing 15 < b(2, 2, 3) can be
described in terms of Sidon sets as follows: Let Γ be the additive group modulo
15, Z15, and consider three bipartite Cayley graphs X(Z15, Si), 0 ≤ i ≤ 2,
where S0 = {0, 1, 3, 7}, S1 = {2, 4, 12, 13}, and S2 = {5, 6, 8, 9, 10, 11, 14}. One
can check that S0 and S1 are Sidon, S2 yields a K3,3-free graph, and that the
edges of X(Z15, Si)’s partition the edges of K15,15.

We searched for witnesses to 16 < b(2, 5) and 16 < b(2, 2, 3) using the
same principle. Our approach was to search among the bipartite Cayley graphs
whose edge generators are Sidon sets and whose groups are of order 16. This
task is not difficult, since sage [23] has a page1 which lists groups of small order
alongside commands to generate them. A few lines of code in sage allowed us

1http://doc.sagemath.org/html/en/constructions/groups.html#construction-instructions-
for-every-group-of-order-less-than-32
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to automate the process of generating the Sidon sets S in a group. Checking
whether the bipartite complement X(Γ,Γ \ S) contains K5,5 can also be done
easily in sage. We may assume that 1Γ ∈ S without loss of generality. Among the
14 groups of order 16, the only group which produced a desired construction was
Dic4, the dicyclic group of order 16 (a generalization of the quaternion group).
Up to isomorphism, only a single bipartite Cayley graph of the form X(Γ, S)
witnessing 16 < b(2, 5) was found. Interestingly, this graph is isomorphic to the
one in Table 1. Based on the same Sidon set, a 3-colored adjacency matrix of
K16,16 corresponding to the bound 16 < b(2, 2, 3) is presented in Table 2.

Table 2: A 3-color bipartite adjacency matrix witnessing 16 < b(2, 2, 3).

4 Main Results

Theorem 6. We have that
b(2, 5) = 17,

and the unique witness to 16 < b(2, 5) is the (16, 16)2,5-graph given by Table 1.
Moreover, the only way to realize this witness as a bipartite Cayley graph is with
the dicyclic group Dic4.

Proof. The lower bound is implied by the constructions discussed in previous
section. The conclusion b(2, 5) = 17 follows by inspection of Tables 3 and 6 in
the Appendix: z(17; 2) = 74 and z(17; 5) ≤ 213, adding to 287, which is not
sufficient to cover all 289 edges of K17,17. The uniqueness of the constructed
graph on 16 vertices follows from a similar but more detailed argument. Since
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z(16; 2) = 67, it suffices to consider all of the (16, 16, 189+)5,2-graphs. All of
such graphs were generated using the algorithms described in Section 2 along
the computational backwards path displayed in Figure 1. The final computation
(after performing many auxiliary computations and consistency verifications)
terminates in under a half hour on an ordinary laptop computer. It returns a
single graph G[16, 16] with 192 edges, isomorphic to the graph given by Table
1. We wish to note that a seemingly much simpler approach of considering all
potential (16, 16, 64+)2,5-graphs resulted to be computationally infeasible using
our methods.

Theorem 7. It holds that

17 ≤ b(2, 2, 3) ≤ 18.

Proof. The lower bound witness is found in Table 2. The upper bound is implied
by using the bounds in Tables 3 and 4 in the Appendix: z(18; 2) = 81, z(18; 3) ≤
156, and 2 · 81 + 156 = 318 < 324.

Conjecture 8. We conjecture that b(2, 2, 3) = 17.

At present, Tables 3 and 4 are quite close to providing a proof: z(17; 2) = 74
and z(17; 3) ≤ 141, so we have that 2 · 74 + 141 = 289 is just barely too large.
It would suffice to prove that z(17; 3) ≤ 140, but our computational attempts
to obtain this bound have proven to be too time-consuming. The interested
reader may note other weak-looking bounds in Table 4, such as for z(k, 17; 3)
for 13 ≤ k ≤ 17.
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Appendix: Small Zarankiewicz Numbers

The problem of computing z(m,n; 2) is well-studied (cf. [13], [7], [1]). Below
in Table 3, we only list the values of z(n; 2) until the first open case at n = 32.
More details on z(m,n; 2) and related cases can be found in a recent work by
Afzaly and McKay [1].
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n z(n; 2) n z(n; 2) n z(n; 2)
1 1 12 45 23 115
2 3 13 52 24 122
3 6 14 56 25 130
4 9 15 61 26 138
5 12 16 67 27 147
6 16 17 74 28 156
7 21 18 81 29 165
8 24 19 88 30 175
9 29 20 96 31 186
10 34 21 105 32 189/190
11 39 22 108 33

Table 3: Zarankiewicz numbers z(n; 2) from [7] and [1].

The following are tables of upper bounds on some small Zarankiewicz num-
bers. A boldfaced entry is an exact value. A superscript ∗ indicates that there
exists a unique (m,n, z(m,n; s))s-graph. A superscript † indicates that there is
also a unique (m,n, z(m,n; s)−1)s-graph. An italicized entry indicates that the
bound or value was determined with exhaustive computations. Otherwise, an
undecorated number indicates that the bound was obtained by using Lemmas
2, 3 and 4, and without exhaustive enumeration of (m,n, e+)s-graphs.

6 7 8 9 10 11 12 13 14 15 16 17 18

6 26∗ 29 32 36∗ 39∗ 42 45∗ 48∗ 50 53 56 58 61
7 33∗ 37∗ 40 44∗ 47 50 53 56 60∗ 63∗ 66 69
8 42∗ 45 50∗ 53 57∗ 60 64∗ 67 70 74∗ 78
9 49 54 59∗ 64∗ 67∗ 70 73 77 81 85
10 60† 64∗ 68 73∗ 77 81∗ 85∗ 90∗ 94
11 69∗ 74 80 84 88 92 96 101
12 80 86∗ 91∗ 96 99 103∗ 109
13 92∗ 98∗ 104∗ 107 110 116
14 105∗ 112∗ 115∗ 118 124
15 120† 123∗ 126 132
16 128∗ 133 140
17 141 148
18 156

Table 4: Bounds on Zarankiewicz numbers z(m,n; 3).
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6 7 8 9 10 11 12 13 14 15 16 17 18

6 31∗ 36∗ 39 43 47 51 55 59 63 67 71∗ 75∗ 78

7 42† 45 49 54 58 63 68∗ 72 77 82∗ 87∗ 90
8 51∗ 55 60 65 70 75 80 85 90 95∗ 99
9 61 67 72 78∗ 84∗ 88 94 99 104 109
10 74∗ 79 86∗ 93∗ 97 103 109 115 120
11 86 93∗ 100∗ 105 111 117 124 131
12 101 109 114 121 127 134 141
13 118 123 131 137 145 152
14 132 141 147 156 163
15 151 157 166 174
16 167 177 185
17 188 196
18 207

Table 5: Bounds on Zarankiewicz numbers z(m,n; 4).

6 7 8 9 10 11 12 13 14 15 16 17 18

6 33∗ 38∗ 43∗ 48∗ 52 57 62 67∗ 72∗ 76 81 86 91

7 44∗ 50∗ 56∗ 60 66 72 78∗ 84† 88 92∗ 96 101
8 57∗ 64∗ 68 74 80 86∗ 92∗ 97 103 109 115
9 72† 76 82 88 95 101 108 114 121 128
10 84∗ 90 97 104 110 117 124 131 138
11 98 106 113 120 127 135∗ 142 150
12 114 122 130 138 146 154∗ 163
13 132∗ 140 149∗ 156 165 174
14 150∗ 160∗ 168 177 187
15 171∗ 180 189 200
16 192† 201 212
17 213 225
18 238

Table 6: Bounds on Zarankiewicz numbers z(m,n; 5).
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6 7 8 9 10 11 12 13 14 15 16 17 18

6 35∗ 40 45 50 55 60 65 70 75 80 85 90 95
7 46∗ 52∗ 58∗ 64∗ 70∗ 75 81 87 93 99∗ 105∗ 110
8 59∗ 66∗ 73∗ 80∗ 85 92 99 106 113∗ 120∗ 125
9 74∗ 82∗ 90∗ 95 102 109 116 123 130 137
10 95∗ 100∗ 105 112 120 127 135 142 150
11 110∗ 115 122 130 138 147 155 163
12 125∗ 132 141 150∗ 158 167 176
13 142 152∗ 161 170 180 189
14 162 172 182 192∗ 202
15 184∗ 195 205 216
16 208 218 230
17 231 244
18 258

Table 7: Bounds on Zarankiewicz numbers z(m,n; 6).
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