Computers in Ramsey Theory

testing, constructions and nonexistence

Stanisław Radziszowski
Department of Computer Science
Rochester Institute of Technology, NY, USA

Computers in Scientific Discovery 8
Mons, Belgium, August 24, 2017

Ramsey Numbers

- R(G,H) $=n \quad$ iff
minimal n such that in any 2-coloring of the edges of K_{n} there is a monochromatic G in the first color or a monochromatic H in the second color.
- 2 - colorings \cong graphs, $\quad R(m, n)=R\left(K_{m}, K_{n}\right)$
- Generalizes to k colors, $R\left(G_{1}, \cdots, G_{k}\right)$
- Theorem (Ramsey 1930): Ramsey numbers exist

Unavoidable classics

$R(3,3)=6$

$R(3,5)=14$ [GRS90]

Asymptotics

diagonal cases

- Bounds (Erdős 1947, Spencer 1975; Conlon 2010)

$$
\frac{\sqrt{2}}{e} 2^{n / 2} n<R(n, n)<R(n+1, n+1) \leq\binom{ 2 n}{n} n^{-c \frac{\log n}{\log \log n}}
$$

- Conjecture (Erdős 1947, \$100)
$\lim _{n \rightarrow \infty} R(n, n)^{1 / n}$ exists.
If it exists, it is between $\sqrt{2}$ and 4 ($\$ 250$ for value).

Asymptotics

Ramsey numbers avoiding K_{3}

- Kim 1995, lower bound

Ajtai-Komlós-Szemerédi 1980, upper bound

$$
R(3, n)=\Theta\left(\frac{n^{2}}{\log n}\right)
$$

- Bohman/Keevash 2009/2013, triangle-free process
- Fiz Pontiveros-Griffiths-Morris, lower bound, 2013 Shearer, upper bound, 1983

$$
\left(\frac{1}{4}+o(1)\right) n^{2} / \log n \leq R(3, n) \leq(1+o(1)) n^{2} / \log n
$$

Clebsch (3, 6; 16)-graph on $\operatorname{GF}\left(2^{4}\right)$
$(x, y) \in E$ iff $x-y=\alpha^{3}$

Alfred Clebsch (1833-1872)

\#vertices / \#graphs

no exhaustive searches beyond 13 vertices

```
3 4
4 11
5 34
6 156
71044
8 12346
9 274668
10 12005168
11 1018997864
12 165091172592
13 50502031367952 \approx5*10 13
-too many to process
14 29054155657235488 \approx3*1016
15 31426485969804308768
16 64001015704527557894928
17 245935864153532932683719776
18}\approx2*1\mp@subsup{0}{}{30
```


Test - Hunt - Exhaust

Ramsey numbers

- Testing: do it right.

Graph G is a witness of $R(m, n)>k$ iff
$|V(G)|=k, c l(G)<m$ and $\alpha(G)<n$.
Lab in a 200-level course.

- Hunting: constructions and heuristics.

Given m and n, find a witness G for k larger than others.
Challenge projects in advanced courses.
Master: Geoffrey Exoo 1986-

- Exhausting: generation, pruning, isomorphism.

Prove that for given m, n and k, there does not exist any witness as above. Hard without nauty/traces.
Master: Brendan McKay 1991-

Values and bounds on $R(m, n)$

two colors, avoiding K_{m}, K_{n}

k^{l}	3	4	5	6	7	8	9	10	11	12	13	14	15
3	6	9	14	18	23	28	36	$\begin{aligned} & 40 \\ & 42 \end{aligned}$	$\begin{aligned} & 47 \\ & 50 \end{aligned}$	$\begin{aligned} & 53 \\ & 59 \end{aligned}$	$\begin{aligned} & 60 \\ & 68 \end{aligned}$	$\begin{aligned} & 67 \\ & 77 \end{aligned}$	74 87
4		18	25	$\begin{aligned} & 36 \\ & 41 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & 61 \end{aligned}$	$\begin{aligned} & 59 \\ & 84 \end{aligned}$	$\begin{array}{r} 73 \\ 115 \end{array}$	$\begin{array}{r} 92 \\ 149 \end{array}$	$\begin{aligned} & 102 \\ & 191 \end{aligned}$	$\begin{aligned} & 128 \\ & 238 \end{aligned}$	$\begin{aligned} & 138 \\ & 291 \end{aligned}$	$\begin{aligned} & 147 \\ & 349 \end{aligned}$	155 417
5			$\begin{array}{r} 43 \\ 48 \\ \hline \end{array}$	$\begin{array}{r} 58 \\ 87 \\ \hline \end{array}$	$\begin{array}{r} 80 \\ 143 \\ \hline \end{array}$	$\begin{aligned} & 101 \\ & 216 \\ & \hline \end{aligned}$	$\begin{aligned} & 133 \\ & 316 \\ & \hline \end{aligned}$	$\begin{aligned} & 149 \\ & 442 \\ & \hline \end{aligned}$	$\begin{aligned} & 183 \\ & 633 \\ & \hline \end{aligned}$	$\begin{aligned} & 203 \\ & 848 \\ & \hline \end{aligned}$	$\begin{array}{r} 233 \\ 1138 \\ \hline \end{array}$	$\begin{array}{r} 267 \\ 1461 \\ \hline \end{array}$	$\begin{array}{r} 269 \\ 1878 \\ \hline \end{array}$
6				$\begin{aligned} & 102 \\ & 165 \end{aligned}$	$\begin{aligned} & 115 \\ & 298 \end{aligned}$	$\begin{aligned} & 134 \\ & 495 \end{aligned}$	$\begin{aligned} & 183 \\ & 780 \end{aligned}$	$\begin{array}{r} 204 \\ 1171 \end{array}$	$\begin{array}{r} 256 \\ 1804 \end{array}$	$\begin{array}{r} 294 \\ 2566 \end{array}$	$\begin{array}{r} 347 \\ 3703 \end{array}$	5033	$\begin{array}{r} 401 \\ 6911 \end{array}$
7					$\begin{aligned} & 205 \\ & 540 \end{aligned}$	$\begin{array}{r} 217 \\ 1031 \end{array}$	$\begin{array}{r} 252 \\ 1713 \end{array}$	$\begin{array}{r} 292 \\ 2826 \end{array}$	$\begin{array}{r} 405 \\ 4553 \end{array}$	$\begin{array}{r} 417 \\ 6954 \end{array}$	$\begin{array}{r} 511 \\ 10578 \end{array}$	15263	22112
8						$\begin{array}{r} 282 \\ 1870 \\ \hline \end{array}$	$\begin{array}{r} 329 \\ 3583 \\ \hline \end{array}$	$\begin{array}{r} 343 \\ 6090 \\ \hline \end{array}$	10630	16944	$\begin{array}{r} 817 \\ 27485 \\ \hline \end{array}$	41525	$\begin{array}{r} 865 \\ 63609 \\ \hline \end{array}$
9							$\begin{array}{r} 565 \\ 6588 \\ \hline \end{array}$	$\begin{array}{r} 581 \\ 12677 \\ \hline \end{array}$	22325	38832	64864		
10								$\begin{array}{r} 798 \\ 23556 \end{array}$	45881	81123			1265

[SPR, EIJC survey Small Ramsey Numbers, revision \#15, 2017, with updates]

Small $R(m, n)$ bounds, references

two colors, avoiding K_{m}, K_{n}

${ }_{k} \quad l$	4	5	6	7	8	9	10	11	12	13	14	15
3	GG	GG	Kéry	$\begin{aligned} & \mathrm{Ka} 2 \\ & \mathrm{GrY} \end{aligned}$	$\begin{gathered} \text { GR } \\ \text { McZ } \end{gathered}$	$\begin{aligned} & \mathrm{Ka} 2 \\ & \mathrm{GR} \end{aligned}$	$\begin{gathered} \text { Ex5 } \\ \text { GoR1 } \end{gathered}$	$\begin{aligned} & \text { Ex20 } \\ & \text { GoR1 } \end{aligned}$	$\begin{gathered} \text { Kol } 1 \\ \text { Les } \end{gathered}$	Koll GoR1	$\begin{array}{r} \mathrm{Kol} 2 \\ \mathrm{GoR} 1 \\ \hline \end{array}$	$\begin{array}{r} \text { Kol2 } \\ \text { GoR1 } \\ \hline \end{array}$
4	GG	$\begin{gathered} \hline \mathrm{Ka1} \\ \text { MR4 } \end{gathered}$	$\begin{aligned} & \text { Ex19 } \\ & \text { MR5 } \end{aligned}$	$\begin{aligned} & \text { Ex3 } \\ & \text { Mac } \end{aligned}$	$\begin{aligned} & \text { ExT } \\ & \text { Mac } \end{aligned}$	$\begin{aligned} & \text { Ex16 } \\ & \text { Mac } \end{aligned}$	$\begin{aligned} & \text { HaKrl } \\ & \text { Mac } \end{aligned}$	$\begin{aligned} & \hline \text { ExT } \\ & \text { Spe4 } \\ & \hline \end{aligned}$	SuLL Spe4	$\begin{aligned} & \text { ExT } \\ & \text { Spe4 } \end{aligned}$	$\begin{aligned} & \text { ExT } \\ & \text { Spe4 } \end{aligned}$	$\begin{aligned} & \text { ExT } \\ & \text { Spe4 } \end{aligned}$
5		$\begin{gathered} \text { Ex4 } \\ \text { AnM } \\ \hline \end{gathered}$	$\begin{gathered} \text { Ex9 } \\ \text { HZ1 } \end{gathered}$	$\begin{gathered} \hline \mathrm{CaET} \\ \mathrm{HZ1} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{HaKr1} \\ \text { Spe4 } \\ \hline \end{gathered}$	Kuz Mac	$\begin{aligned} & \text { ExT } \\ & \text { Mac } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Kuz} \\ \mathrm{HW}+ \end{gathered}$	$\begin{gathered} \text { Kuz } \\ \text { HW+ } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Kuz} \\ \mathrm{HW}+ \end{gathered}$	$\begin{gathered} \text { Kuz } \\ \text { HW+ } \\ \hline \end{gathered}$	$\begin{gathered} \text { ExT } \\ \text { HW+ } \\ \hline \end{gathered}$
6			$\begin{aligned} & \mathrm{Ka} 2 \\ & \mathrm{Mac} \end{aligned}$	$\begin{aligned} & \text { ExT } \\ & \text { HZ1 } \end{aligned}$	$\begin{aligned} & \text { ExT } \\ & \text { Mac } \end{aligned}$	Kuz Mac	Kuz Mac	$\begin{gathered} \mathrm{Kuz} \\ \mathrm{HW}+ \end{gathered}$	$\begin{gathered} \text { Kuz } \\ \text { HW+ } \\ \hline \end{gathered}$	$\begin{gathered} \text { Kuz } \\ \text { HW+ } \end{gathered}$	HW+	$\begin{aligned} & \text { 2.3.h } \\ & \text { HW+ } \end{aligned}$
7				She2 Mac	$\begin{gathered} \mathrm{XSR} 2 \\ \mathrm{HZ1} \end{gathered}$	$\begin{aligned} & \text { Kuz } \\ & \mathrm{HZ2} \end{aligned}$	Kuz Mac	$\begin{gathered} \text { XXER } \\ \text { HW+ } \end{gathered}$	$\begin{aligned} & \text { XSR2 } \\ & \text { HW+ } \end{aligned}$	$\begin{gathered} \mathrm{XuXR} \\ \mathrm{HW}+ \end{gathered}$	HW+	HW+
8					BurR Mac	$\begin{aligned} & \text { Kuz } \\ & \text { Eal } \end{aligned}$	Kuz HZ2	HW+	HW+	$\begin{aligned} & \text { XXER } \\ & \text { HW+ } \end{aligned}$	HW+	$\begin{aligned} & \text { 2.3.h } \\ & \text { HW+ } \end{aligned}$
9						She2 ShZ1	$\begin{gathered} \text { XSR2 } \\ \text { Ea1 } \end{gathered}$	HW+	HW+	HW+		
10							$\begin{aligned} & \text { She2 } \\ & \text { Shi2 } \end{aligned}$	HW+	HW+			2.3.h

Small $R(m, n)$ ，references

$R(5,5) \leq 48$ ，Angeltveit－McKay 2017.

	4	5	6	7	8	9	10	11	12	13	14	15
3	GG	GG	Kéry	$\begin{aligned} & \mathrm{Ki} 2 \\ & \mathrm{GrY} \end{aligned}$	$\begin{gathered} \text { GR } \\ \text { McZ } \end{gathered}$	$\begin{gathered} \mathrm{K} \mathrm{a}_{2} \\ \text { GR } \end{gathered}$	$\begin{gathered} \text { Ex5 } \\ \text { GoR! } \end{gathered}$	Ex20 GoRI	K에 1 Les	Koll GoRI	Kol2 GoRI	Kol2 GoRI
4	GG	$\begin{gathered} \text { Kil } \\ \text { MR4 } \end{gathered}$	Ex 19 产只	Ex3 －Mue	$\begin{gathered} \text { ExT } \\ \text { N } \end{gathered}$	Ex16	HaKrl	$\begin{aligned} & \text { ExT } \\ & \text { Spet } \end{aligned}$		$\begin{array}{c\|} \hline \text { ExT } \\ \text { Ppet } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ExT } \\ \hline \end{array}$	$\begin{gathered} \text { ExT } \\ \text { spet } \\ \hline \end{gathered}$
5		$\begin{gathered} \text { Ex4 } \\ \text { AnM } \end{gathered}$	Exy 振	CaET 1	$\begin{gathered} \mathrm{HaKrl} \\ \text { Spot } \end{gathered}$	$\begin{gathered} \mathrm{Kuz} \\ \hline \end{gathered}$	$\begin{aligned} & \text { ExT } \\ & \hline \text { Wene } \end{aligned}$	Kuz \qquad				$\begin{array}{\|c\|} \hline \text { ExT } \\ \text { Sivw } \\ \hline \end{array}$
6			Ka2 Nat	$\begin{gathered} \text { ExT } \\ \hline \text { HZI } \end{gathered}$	ExT Nae	Kuz －Men	$K u z$	$K u z$ H2N＋			4917	$\begin{array}{r} \text { 2.3.h } \\ +197 \end{array}$
7				She2 Man		Kuz	Kuz Mae	XXER		$\begin{array}{\|c\|c\|} \hline \text { XuXR } \\ \hline \text { InN+ } \\ \hline \end{array}$	19N＋	－
8					BurR 4ne	$\begin{aligned} & \text { Kuz } \\ & \hline \end{aligned}$		H2＋	284＋	XXER IfN＋	－74＋	
9						She2 shzt	$\begin{array}{\|c\|} \hline \text { XSR2 } \\ \hline \\ \hline \end{array}$	＋274	［17W＋	L\＃W		
10							She 2 chin	HW＋	H\％			2．3．h

Spring 2017 avalanche of improved upper bounds after LP attack for higher m and n by Angeltveit－McKay．

Small $R\left(K_{m}, C_{n}\right)$

	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	...	C_{n} for $n \geq m$
K_{3}	$\begin{array}{r} 6 \\ \text { GG-Bush } \end{array}$	$\begin{array}{r} 7 \\ \text { ChaS } \end{array}$	9	11	13	15	17	...	$2 n-1$ ChaS
K_{4}	$\begin{array}{r} 9 \\ \text { GG } \end{array}$	$\begin{array}{r} 10 \\ \mathrm{ChH} 2 \end{array}$	13 He4/JR4 He4/JR4	$\begin{array}{r} 16 \\ \text { JR2 } \end{array}$	$\begin{array}{r} 19 \\ \text { YHZ1 } \end{array}$	22	25	...	$\begin{aligned} & 3 n-2 \\ & \text { YHZ1 } \end{aligned}$
K_{5}	$\begin{array}{r} 14 \\ \text { GG } \end{array}$	$\begin{array}{r} 14 \\ \text { Clan } \end{array}$	17 He2/JR4	$\begin{array}{r} 21 \\ \mathrm{JR} 2 \end{array}$	$\begin{array}{r} 25 \\ \text { YHZ2 } \end{array}$	$\begin{array}{r} 29 \\ \text { BolJY }+ \end{array}$	33	...	$\begin{array}{r} 4 n-3 \\ \text { BolJY+ } \end{array}$
K_{6}	$\begin{array}{r} 18 \\ \text { Kéry } \end{array}$	$\begin{array}{r} 18 \\ \text { Ex2-RoJal } \end{array}$	$\begin{array}{r} 21 \\ \text { JR5 } \end{array}$	$\begin{array}{r} 26 \\ \text { Schil } \end{array}$	31	36	41	...	$\begin{gathered} 5 n-4 \\ \text { Schi1 } \end{gathered}$
K_{7}	23 $\mathrm{Ka} 2-\mathrm{GrY}$	22 RaT-JR1	$\begin{array}{r} 25 \\ \text { Schi2 } 2 \end{array}$	$\begin{array}{r} 31 \\ \text { CheCZN } \end{array}$	$\begin{array}{r} 37 \\ \text { CheCZN } \end{array}$	$\begin{array}{r} 43 \\ \mathrm{JaBa} / \mathrm{Ch}+ \end{array}$	$\begin{array}{r} 49 \\ \mathrm{Ch}+ \end{array}$...	$6 n-5$ $\mathrm{Ch}+$
K_{8}	$\begin{array}{r} 28 \\ \text { GR-McZ } \end{array}$	$\begin{array}{r} 26 \\ \mathrm{RaT} \end{array}$	29-33 JaAl2	$\begin{array}{r} 36 \\ \text { ChenCX } \end{array}$	$\begin{array}{r} 43 \\ \text { ChenCZ1 } \end{array}$	$\begin{array}{r} 50 \\ \text { JaAll/ZZ3 } \end{array}$	$\begin{array}{r} 57 \\ \text { Bat } J A \end{array}$...	$7 n-6$ conj.
K_{9}	$\begin{array}{r} 36 \\ \mathrm{Ka} 2-\mathrm{GR} \end{array}$	$\begin{array}{r} 30 \\ \text { RaT-LaLR } \end{array}$					$\begin{array}{r} 65 \\ \text { conj. } \end{array}$...	$8 n-7$ conj.
K_{10}	$\begin{array}{r} 40-42 \\ \text { Ex5-GoR1 } \end{array}$	$\begin{array}{r} 36 \\ \text { LaLR } \end{array}$...	$\begin{array}{r} 9 n-8 \\ \text { conj. } \end{array}$
K_{11}	$\begin{array}{r} 47-50 \\ \text { Ex20-GoR1 } \end{array}$	39-44 LaLR						...	$10 n-9$ conj.

Erdős-Faudree-Rousseau-Schelp 1976 conjecture: $R\left(K_{m}, C_{n}\right)=(m-1)(n-1)+1$ for all $n \geq m \geq 3$, except $m=n=3$.

Lower bound witness: complement of $(m-1) K_{n-1}$.
First two columns: $R(3, m)=\Theta\left(m^{2} / \log m\right)$,
$c_{1}\left(m^{3 / 2} / \log m\right) \leq R\left(K_{m}, C_{4}\right) \leq c_{2}(m / \log m)^{2}$.

Known bounds on $R\left(3, K_{s}\right)$ and $R\left(3, K_{s}-e\right)$

$J_{s}=K_{s}-e, \Delta_{s}=R\left(3, K_{s}\right)-R\left(3, K_{s-1}\right)$

s	$R\left(3, J_{s}\right)$	$R\left(3, K_{s}\right)$	Δ_{s}	s	$R\left(3, J_{s}\right)$	$R\left(3, K_{s}\right)$	Δ_{s}
3	5	6	3	10	37	$40-42$	$4-6$
4	7	9	3	11	$42-45$	$47-50$	$5-10$
5	11	14	5	12	$47-53$	$53-59$	$3-12$
6	17	18	4	13	$55-62$	$60-68$	$3-13$
7	21	23	5	14	$60-71$	$67-77$	$3-14$
8	25	28	5	15	$69-80$	$74-87$	$3-15$
9	31	36	8	16	$74-91$	$82-97$	$3-16$

$R\left(3, J_{s}\right)$ and $R\left(3, K_{s}\right)$, for $s \leq 16$
(Goedgebeur-R 2014, SRN 2017)

Conjecture

and 1/2 of Erdős-Sós problem

Observe that
$R(3, s+k)-R(3, s-1)=\sum_{i=0}^{k} \Delta_{s+i}$.
We know that
$\Delta_{s} \geq 3, \Delta_{s}+\Delta_{s+1} \geq 7, \Delta_{s}+\Delta_{s+1}+\Delta_{s+2} \geq 11$.

Conjecture

There exists $d \geq 2$ such that $\Delta_{s}-\Delta_{s+1} \leq d$ for all $s \geq 2$.
Theorem
If Conjecture is true, then $\lim _{s \rightarrow \infty} \Delta_{s} / s=0$.

52 Years of $R(5,5)$

year	reference	lower	upper	
1965	Abbott	38		quadratic residues in \mathcal{Z}_{37}
1965	Kalbfleisch		59	pointer to a future paper
1967	Giraud		58	LP
1968	Walker		57	LP
1971	Walker		55	LP
1973	Irving	42		sum-free sets
1989	Exoo	43		simulated annealing
1992	McKay-R		53	(4, 4)-graph enumeration, LP
1994	McKay-R		52	more details, LP
1995	McKay-R		50	implication of $R(4,5)=25$
1997	McKay-R		49	long computations
2017	Angeltveit-McKay		48	massive LP for $(\geq 4, \geq 5)$-graphs

History of bounds on $R(5,5)$

$43 \leq R(5,5) \leq 48$

Conjecture. McKay-R 1997
$R(5,5)=43$, and the number of $(5,5 ; 42)$-graphs is 656 .

- $42<R(5,5)$:
- Exoo's construction of the first (5,$5 ; 42$)-graph, 1989.
- Any new (5,$5 ; 42$)-graph would have to be in distance at least 6 from all 656 known graphs, McKay-Lieby 2014.
- $R(5,5) \leq 48$, Angeltveit-McKay 2017:
- Enumeration of all 352366 (4, 5; 24)-graphs.
- Overlaying pairs of (4,5;24)-graphs, and completing to any potential (5,$5 ; 48$)-graph, using intervals of cones.
- Similar technique for the new bound $R(4,6) \leq 40$.
- The only non-trivial classical Ramsey number known for hypergraphs, McKay-R 1991.
- Enumeration of all valid 434714 two-colorings of triangles on 12 points. $K_{13}^{(3)}-t$ cannot be thus colored, McKay 2016.
- For size Ramsey numbers, the above gives

$$
\widehat{R}(4,4 ; 3) \leq 285=\binom{13}{3}-1
$$

which answers in negative a general question posed by Dudek, La Fleur, Mubayi and Rödl, 2015.

$R_{r}(3)=R(3,3, \cdots, 3)$

- Much work on Schur numbers $s(r)$ via sum-free partitions and cyclic colorings $s(r)>89^{r / 4-c \log r}>3.07^{r}{ }_{\text {[except small r] }}$ Abbott+ 1965+
- $s(r)+2 \leq R_{r}(3)$
- $R_{r}(3) \geq 3 R_{r-1}(3)+R_{r-3}(3)-3$ Chung 1973
- The limit $L=\lim _{r \rightarrow \infty} R_{r}(3)^{\frac{1}{r}}$ exists Chung-Grinstead 1983 $(2 s(r)+1)^{\frac{1}{r}}=c_{r} \approx_{(r=6)} 3.199<L$

$R(3,3,3)=17$

two Kalbfleisch (3, 3, 3; 16)-colorings, each color is a Clebsch graph

Four colors - $R_{4}(3)$

$51 \leq R(3,3,3,3) \leq 62$

year	reference	lower	upper
1955	Greenwood, Gleason	42	66
1967	false rumors	$[66]$	
1971	Golomb, Baumert	46	
1973	Whitehead	50	65
1973	Chung, Porter	51	
1974	Folkman		65
1995	Sánchez-Flores		64
1995	Kramer (no computer)		62
2004	Fettes-Kramer-R (computer)		62

History of bounds on $R_{4}(3)$ [from FKR 2004]

Four colors - $R_{4}(3)$

color degree sequences for ($3,3,3,3 ; \geq 60$)-colorings

n	orders of $N_{\eta}(v)$	
65	$[16,16,16,16]$	Whitehead, Folkman 1973-4
64	$[16,16,16,15]$	Sánchez-Flores 1995
63	$[16,16,16,14]$	
	$[16,16,15,15]$	
62	$[16,16,16,13]$	Kramer 1995+
	$[16,16,15,14]$	-
	$[16,15,15,15]$	Fettes-Kramer-R 2004

$61 \quad[16,16,16,12]$
[$16,16,15,13$]
$[16,16,14,14]$
[$16,15,15,14$]
[$15,15,15,15$]
$60 \quad[16,16,16,11]$
[$16,16,15,12$]
[16, 16, 14, 13]
$[16,15,15,13]$
[$16,15,14,14$]
[$15,15,15,14$]

- Why don't heuristics come close to $51 \leq R_{4}(3)$?
- Improve on $R_{4}(3) \leq 62$

Diagonal Multicolorings for Cycles

Bounds on $R_{k}\left(C_{m}\right)$ in 2017 SRN

	m	3	4	5	6	7	8
k		17	11	17	12	25	16
3		51	18	33 137	18 20	49	20
42							
5	162	27	65	26	97	28	
307	29						
6	538	34	129		193		

Table XIII. Known values and bounds for $R_{k}\left(C_{m}\right)$ for small k, m;
Columns:

- 3 - just triangles, the most studied
- 4 - relatively well understood, thanks geometry!
- 5 - bounds on $R_{4}\left(C_{5}\right)$ have a big gap

What to do next?

computationally

- A nice, open, intriguing, feasible to solve case (Exoo 1991, Piwakowski 1997)

$$
28 \leq R_{3}\left(K_{4}-e\right) \leq 30
$$

- improve on $20 \leq R\left(K_{4}, C_{4}, C_{4}\right) \leq 22$
- improve on $27 \leq R_{5}\left(C_{4}\right) \leq 29$
- improve on $33 \leq R_{4}\left(C_{5}\right) \leq 137$

Folkman Graphs and Numbers

For graphs F, G, H and positive integers s, t

- $F \rightarrow(s, t)^{e}$ iff in every 2-coloring of the edges of F there is a monochromatic K_{s} in color 1 or K_{t} in color 2
- $F \rightarrow(G, H)^{e}$ iff in every 2-coloring of the edges of F there is a copy of G in color 1 or a copy of H in color 2
- variants: coloring vertices, more colors

Edge Folkman graphs

$\mathcal{F}_{e}(s, t ; k)=\left\{F \mid F \rightarrow(s, t)^{e}, K_{k} \nsubseteq F\right\}$

Edge Folkman numbers

$F_{e}(s, t ; k)=$ the smallest order of graphs in $\mathcal{F}_{e}(s, t ; k)$
Theorem (Folkman 1970)
If $k>\max (s, t)$, then $F_{e}(s, t ; k)$ and $F_{v}(s, t ; k)$ exist.

Test - Hunt - Exhaust

Folkman numbers

Hints.

- Inverted role of lower/upper bounds wrt Ramsey
- F_{e} tends to be much harder than F_{v}

Folkman is harder then Ramsey.

- Testing: $F \rightarrow(G, H)$ is Π_{2}^{p}-complete, only some special cases run reasonably well.
- Hunting: Use smart constructions.

Very limited heuristics.

- Exhausting: Do proofs.

Currently, computationally almost hopeless.

Bounds from Chromatic Numbers

Set $m=1+\sum_{i=1}^{r}\left(a_{i}-1\right), M=R\left(a_{1}, \cdots, a_{r}\right)$.

Theorem (Nenov 2001, Lin 1972, others)
If $G \rightarrow\left(a_{1}, \cdots, a_{r}\right)^{v}$, then $\chi(G) \geq m$.
If $G \rightarrow\left(a_{1}, \cdots, a_{r}\right)^{e}$, then $\chi(G) \geq M$.

Special Case of Folkman Numbers

is just about graph chromatic number $\chi(G)$

Note: $G \rightarrow(2 \cdots, 2)^{v} \Longleftrightarrow \chi(G) \geq r+1$
For all $r \geq 1, F_{v}\left(2^{r} ; 3\right)$ exists and it is equal to the smallest order of $(r+1)$-chromatic triangle-free graph.
$F_{v}\left(2^{r+1} ; 3\right) \leq 2 F_{v}\left(2^{r} ; 3\right)+1$, Mycielski construction, 1955

small cases

$F_{V}\left(2^{2} ; 3\right)=5, \quad C_{5}$, Mycielskian, 1955
$F_{V}\left(2^{3} ; 3\right)=11$, the Grötzsch graph, Mycielskian, 1955
$F_{v}\left(2^{4} ; 3\right)=22$, Jensen and Royle, 1995
$32 \leq F_{v}\left(2^{5} ; 3\right) \leq 40$, Goedgebeur, 2017

50 Years of $F_{e}(3,3 ; 4)$

What is the smallest order n of a K_{4}-free graph which is not a union of two triangle-free graphs?

year	lower/upper bounds	who/what
1967	any?	Erdős-Hajnal
1970	exist	Folkman
1972	$10-$	Lin
1975	$-10^{10} ?$	Erdős offers \$100 for proof
1986	-8×10^{11}	Frankl-Rödl, almost won
1988	-3×10^{9}	Spencer, won \$100
1999	$16-$	Piwakowski-R-Urbański, implicit
2007	$19-$	R-Xu
2008	-9697	Lu, eigenvalues
2008	-941	Dudek-Rödl, maxcut-SDP
2012	$-100 ?$	Graham offers \$100 for proof
2014	-786	Lange-R-Xu, maxcut-SDP
2016	$20-785$	Bikov-Nenov / Kaufmann-Wickus-R

Most Wanted Folkman Number: $F_{e}(3,3 ; 4)$

and how to earn \$100 from RL Graham

The best known bounds:

$$
20 \leq F_{e}(3,3 ; 4) \leq 785
$$

- Upper bound 785 from a modified residue graph via SDP.
- Ronald Graham Challenge for $\$ 100$ (2012): Determine whether $F_{e}(3,3 ; 4) \leq 100$.
Conjecture (Exoo, around 2004):
- $G_{127} \rightarrow(3,3)^{e}$, moreover
- removing 33 vertices from G_{127} gives graph G_{94}, which still looks good for arrowing, if so, worth $\$ 100$.
- Lower bound: very hard, crawls up slowly 10 (Lin 1972), 16 (PUR 1999), 19 (RX 2007), 20 (Bikov-Nenov 2016).

Graph G_{127}

Hill-Irving 1982, a cool K_{4}-free graph studied as a Ramsey graph

$$
\begin{aligned}
& G_{127}=\left(\mathcal{Z}_{127}, E\right) \\
& E=\left\{(x, y) \mid x-y=\alpha^{3}(\bmod 127)\right\}
\end{aligned}
$$

Exoo conjectured that $G_{127} \rightarrow(3,3)^{e}$.

- resists direct backtracking
- resists eigenvalues method
- resists semi-definite programming methods
- resists state-of-the-art 3-SAT solvers
- amazingly rich structure, hence perhaps will not resist a proof by hand ...

Other Computational Approaches

each with some success

- Huele, 2005-17: SAT-solvers, VdW numbers, Pythagorean triples, Science of Brute Force, CACM August 2017.
- Codish, Frank, Itzhakov, Miller (2016): finishing $R(3,3,4)=30$, symmetry breaking, BEE (Ben-Gurion Equi-propagation Encoder) to CNF, CSP.
- Lidický-Pfender (2017), using Razborov’s flag algebras (2007) for 2- and 3-color upper bounds.
- Surprising new lower bounds by heuristics: Kolodyazny, Kuznetsov, Exoo, Tatarevic (2014-2017).
- Ramsey quantum computations, D-Wave? (2020-).

Papers to look at

- SPR, revision \#15 of the survey paper Small Ramsey Numbers at the EIJC, March 2017.
- Xiaodong Xu and SPR, Some Open Questions for Ramsey and Folkman Numbers, in Graph Theory, Favorite Conjectures and Open Problems, Problem Books in Mathematics
Springer 2016, 43-62.
- Rujie Zhu, Xiaodong Xu, SPR,

A small step forwards on the Erdős-Sós problem concerning the Ramsey numbers $R(3, k)$, DAM 214 (2016), 216-221.

Thanks for listening!

