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Abstract
Diagnostic error prevention is a long-established
but specialized topic in clinical and psychological
research. In this paper, we contribute to the field
by exploring diagnostic decision-making via mod-
eling physicians’ utterances of medical concepts
during image-based diagnoses. We conduct ex-
periments to collect verbal narratives from derma-
tologists while they are examining and describing
dermatology images towards diagnoses. We pro-
pose a hierarchical probabilistic framework to learn
domain-specific patterns from the medical concepts
in these narratives. The discovered patterns match
the diagnostic units of thought identified by domain
experts. These meaningful patterns uncover physi-
cians’ diagnostic decision-making processes while
parsing the image content. Our evaluation shows
that these patterns provide key information to clas-
sify narratives by diagnostic correctness levels.

1 Introduction
Studies in the field of psychology and health sciences
show evidence that overconfidence may cause diagnostic er-
ror when a physician overlooks key clues and prematurely
reaches a diagnosis [Berner and Graber, 2008]. This can
be explained by a case in the dual-process theory where the
physician’s intuitive system dominates her decision-making
process over analytical system [Croskerry, 2009]. To dis-
entangle the underlying factors that may relate to diagnostic
correctness and diagnostic confidence, we collect physicians’
verbal narratives during image-based diagnoses and model
the uttered medical concepts for their reasoning processes.

We first design two experiments to elicit physicians’ diag-
nostic verbal narratives which contain their verbal descrip-
tions of image content when inspecting each photographic
dermatological image toward a diagnosis (Section 3.1). Ex-
periment I contains additional labels for a diagnostic correct-
ness study, and Experiment II for a diagnostic confidence
study (Section 3.3). To extract meaningful behavioral pat-
terns, we then model physicians’ use of domain concepts and
their reasoning order of these concepts during diagnoses. In
particular, we remove non-medical tokens in both studies us-
ing the unified medical language system (UMLS) [Fung and

Bodenreider, 2012], so as to only consider physicians’ ut-
terances of medical concepts in each verbal narrative (Sec-
tion 3.2). The remaining medical concept sequences in the
two studies are separately modeled using a hierarchical prob-
abilistic framework we develop (Section 4). In this manner
we discover the stereotypical and idiosyncratic patterns that
commonly exist in both studies, and these patterns represent
the verbal narratives at a higher level. In this automatically
discovered high-level representation, the diagnostic decision-
making processes are quantified and visualized (Section 5).

To evaluate and interpret the patterns in the application do-
main, we compare them with the diagnostic thought units de-
fined and identified by medical doctors [McCoy et al., 2012]
(Section 5.1). These thought units are standardized seman-
tic labels to abstract the medical terms per their positions
and functions in diagnostic reasoning processes. Table 1
lists some examples. We also use the additional labels col-
lected from physicians during or after experiments to iden-
tify groups of diagnostic narratives in terms of the diagnos-
tic correctness and confidence (Section 3.3). An evaluation
study shows the importance of the discovered patterns to clas-
sify narratives into different correctness levels (Sections 5.2).
This paper contributes to research in the field as follows:

• We naturally elicit expert spoken narratives through in-
scenario experiments.

• We extract domain-specific concepts from narratives to al-
low modeling at the semantic level.

• We model expert’ utterances of medical concepts during
image-based diagnoses to gain insights into cognitive rea-
soning strategies.

Thought Unit Labels (Abbr.) Instances

Ty
pe

I

Patient DEMographics (DEM) elderly, caucasian, woman
Body LOCation (LOC) arm, upper lip, knuckles

Lesion CONfiguration (CON) linear, annular, grouped
SECondary finding (SEC) crust, ulcer, erythematous
Lesion DIStribution (DIS) solitary, bilateral, extensive

Ty
pe

II PRImary lesion type (PRI) papule, plaque, patch
DIFferential diagnosis (DIF) X, Y or Z

Final Diagnosis (DX) this is X

Table 1: Two types of thought units.



2 Related Work
Current research on diagnostic accuracy relies on the anal-
ysis of either research interviews or clinical chart records
[Galanter and Patel, 2005]. For example, Bowen studied
reports of clinicians and medical students to explore educa-
tional strategies to transfer classroom knowledge to clinical
decision-making [Bowen, 2006]. We propose an objective
data collection paradigm and an automated approach to ana-
lyzing diagnostic decision-making.

Natural language processing models, such as bag-of-word
and N-gram, have been used to analyze clinical texts. Since
different practitioners express similar meanings in a vari-
ety of ways both syntactically and lexically, the medical
datasets tend to be sparse. To tackle this, topic modeling
approaches, such as latent semantic analysis (LSA) [Deer-
wester et al., 1990] and latent Dirichlet allocation (LDA)
[Blei et al., 2003], transform original vocabulary to latent
variables (a.k.a., topics) whose mixtures summarize the doc-
uments more abstractly. Despite the advantage to produce
high-level representations, topic modeling approaches do not
consider the word order within each document.

To recognize temporal patterns in the documents and
speech data, hidden Markov model (HMM) can be used
[Rabiner, 1989]. It learns a sequential structure of hidden
states (i.e., patterns), each being a probability distribution
over the vocabulary. We propose to use HMMs to model
physicians’ spoken narratives, because the order of thoughts
(i.e., cognitive states) is crucial to diagnostic decision-making
[Croskerry, 2009; Berner and Graber, 2008]. To automati-
cally determine the optimal number of hidden states, Teh et
al. developed a Bayesian non-parametric HMM using hierar-
chical Dirichlet processes [Teh et al., 2006] and Van Gael et
al. developed the beam sampler for it to limit the computa-
tional costs [Van Gael et al., 2008]. This paper extends Teh et
al.’s model and the beam sampler to a multi-sequence variant
to allow learning from a group of medical concept sequences
(see Section 4). This results in a desired sequential repre-
sentation, based on which we train classifiers to differentiate
narrative groups.

3 Datasets
3.1 Data elicitation experiments
To obtain expert data, we conduct two data elicitation ex-
periments where dermatology images are presented as visual
stimuli for physicians to inspect. During the experiments,
each physician is instructed to describe the image content to
a student seated nearby as if teaching.
• Experiment I contains 48 dermatology images covering a

wide range of diagnoses, and it is used to explore diagnos-
tic decision-making that relate to diagnostic correctness.
We record 16 physicians’ verbal image descriptions in this
experiment, and hence we have 48 × 16 = 768 verbal de-
scription trials.

• Experiment II focuses on only a few disease categories by
30 images, and it is used to study the decision making re-
lated to diagnostic confidence. There are 29 physicians,
and after removing 3 trials due to data collection failures
we have 867 verbal description trials.

(a) Basal cell car-
cinoma diagnostic
image case (image
courtesy of Dr. Cara
Calvelli).

(SIL) um this is a (SIL)
pearly lobulated (SIL) pink

(SIL) papule with telangiectasias

multi-lobulated papule with

telangiectasias (SIL) on the
::::
upper

::::
cheek (SIL) of (SIL) an elderly

individual (SIL) say . . . . . . . .nodular

. . . . .basal. . . . .cell . . . . . . . . . . .carcinoma it’s a . . . . . . . .nodular

. . . . .basal. . . . .cell . . . . . . . . . . .carcinoma (SIL) uh

(SIL) there is some . . . . . . . . . . . .surrounding

. . .sun. . . . . . . . .damage (SIL)
(b) A dermatologist’s narrative for the
image. (SIL) represents silent pause.

PRI ; SEC ;
:::
LOC ; DEM ; . . . .DX or . . . .DIF

Figure 1: A sample image (a) and a corresponding diagnostic
narrative (b) annotated by thought unit labels.

3.2 Linguistic data preprocessing
All verbal description trials are transcribed as diagnostic ver-
bal narratives with tokens and time-stamps included using
the speech analysis tool Praat [Boersma and Weenink, 2009].
We use a medical knowledge source (i.e., the UMLS) and
a Metathesaurus mapping tool (i.e., the MetaMap [Aronson,
2001]) to remove non-medical words and join adjacent words
(e.g., basal, cell, and carcinoma) into multiwords (e.g., basal
cell carcinoma) when necessary (see Figure 1-b). This turns
each narrative to a sequence of medical concepts.

3.3 Gold standard
Thought units: McCoy et al. collected medical doctors’ an-
notations that partition and label diagnostic reasoning records
into meaningful units of thought [McCoy et al., 2012]. These
thought units cover the terminology to standardize the de-
scription of skin lesions, including lesion arrangement, dis-
tribution, texture, color, primary lesion type, and diagnosis
[Lyons and Ousley, 2014]. We use this thought unit labeling
as a gold standard in our study to evaluate and interpret the
patterns discovered by the model. Since our image set con-
tains a wider range of diagnoses, their thought unit labels do
not cover our whole vocabulary.
Diagnostic correctness levels: We recruit three dermatol-
ogists to evaluate the narratives from the 16 participating
physicians in Experiment I in terms of their diagnostic cor-
rectness. A correctness score is assigned to each narrative,
which balances the correctness of described Type II thoughts
(i.e., primary lesion type, differential diagnosis, and final di-
agnosis). This score ranges from 0 to 3 and its distribution
across narratives is in Figure 2. We define the correctness
score below 1 (inclusive) as low-correctness and that above 2
(inclusive) high-correctness. These two levels of narratives in
Experiment I are classified using the patterns discovered by
the model, and the differences in narration patterns between
two classes are visualized in Section 5.
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Figure 2: The correctness score distribution across all narra-
tives.
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Figure 3: The self-reported diagnostic confidence score dis-
tribution across all narratives.

Diagnostic confidence levels: During Experiment II, each
participating physician is required to report her diagnostic
confidence at the end of narration. Figure 3 shows how the
diagnostic confidence scores are distributed across all narra-
tives. We define the bottom quartile (0%–50% confidence,
inclusive) as low confidence and the top quartile (85%–100%
confidence, inclusive) high confidence.

4 Hierarchical Dynamical Model
4.1 Hierarchical Dirichlet process
LDA can be used to discover latent topics for document mod-
eling, where each topic is a distribution of terms in vocabu-
lary. For each document, a mixture of topics is drawn from
a Dirichlet distribution, and then each term in the document
is drawn independently from that mixture. The hierarchical
Dirichlet processes (HDP) mixture model is a nonparametric
generalization of LDA to automatically determine the num-
ber of mixture components (topics), which is not known a
priori [Teh et al., 2006]. This enables the number of topics to
be unbounded. HDP uses a Dirichlet process to capture the
uncertainty in the number of topics.

In particular, the Dirichlet process DP(α,G), specified by
a base distribution G and a concentration parameter α, char-
acterizes how the random variables are distributed according
to G. The base distribution G is the expected value of the
process, and it is selected to represent the countably-infinite
set of possible topics for the corpus, and then the finite dis-
tribution of topics for each document is sampled from this
base distribution. The Dirichlet process models data that tend
to repeat previous values in a rich get richer manner. More
specifically, each expected value is generated in proportion to

ni

α+
∑

i ni
(n denotes the number of previous occurrences and

i indexes each expected value). The concentration parameter
α is a positive real number that indicates the probability pro-
portion to generate a new value, α

α+
∑

i ni
, which enables the

Dirichlet process to model variables of unknown cardinality.
The DP models a group of data by variables of unknown

cardinality, and the HDP is useful to address the problems
that have multiple groups of data by tying the variables across
groups [Teh et al., 2006]. Each group of data is modeled us-
ing a mixture model, with mixture components shared across
all groups but mixing proportions being group-specific. The
basic building block of hierarchical Dirichlet processes is re-

Figure 4: The hierarchical Dirichlet process-hidden Markov
model that learns from multiple medical concept sequences
as a group.

cursion in which the base measure G for a Dirichlet process
Gj ∼ DP(α,G) is itself a draw from a Dirichlet process
G ∼ DP(γ,G0). This recursive construction enforces the
random measure Gj to place its atoms at the discrete loca-
tions determined by G.

4.2 HDP-HMM
To address the sequential property of the data, a canonical
HMM specifies a set of finite mixture distributions, one for
each value of the current state zt. Given zt, the observation
xt+1 is chosen by first generating the state zt+1 and then gen-
erating xt+1 conditional on zt+1. A Dirichlet process can be
used to replace the generating process of the finite mixture
model. However, in order to tie up all the potential states to
be able to access one from another, the hierarchical Dirichlet
processes has to be used [Teh et al., 2006]. This forms the
HDP-HMM, or infinite HMM (iHMM).

4.3 M-seq HDP-HMM
We develop a HDP-HMM variant that incorporates observa-
tions of multiple sequences, and we call it M-seq HDP-HMM,
or M-seq iHMM.

Particularly, since the preprocessing does not affect the
sequential order of the remaining medical concepts in the
narratives, we use HMMs as the likelihood to character-
ize the temporal dynamic nature of the medical concept se-
quences. In Figure 4, each learned hidden state sequence
{z(i)t }t=1,2,...,Ti

presents a subset of all the hidden states that
particularly corresponds to the observed medical concept se-
quence {x(i)t }t=1,2,...,Ti

. We use the hierarchical Dirichlet
processes proposed by Teh et al. as a prior distribution of the
model to flexibly discover more hidden states as additional
narratives are observed [Teh et al., 2006]. All narratives
in each experiment are used to learn such a hierarchically-
structured dynamical model.



We utilize the hierarchical prior in the following specifica-
tion based on our problem scenario. Let G denote the global
measure of an experiment (I or II), and it is distributed as
DP (γ,G0) with G0 the base measure and γ the concentra-
tion parameter. Each πk is conditionally independent given
G. This hierarchical construction can be formulated as,

G |G0 ∼ DP (γ,G0) (1)

πk |G ∼ DP (α,G)
k = 1, 2, . . . ,∞ (2)

In the ith narrative, each transition probability distribution
{πzt−1,zt=k}k=1,2,...,∞ of the hidden Markov model at the
lower level governs the transitions toward hidden states φk’s.

z
(i)
t | z

(i)
t−1, πzt−1 ∼ πzt−1 (3)

x
(i)
t | z

(i)
t , φzt ∼ F (φzt) (4)

4.4 Inference algorithm
We use Markov chain Monte Carlo sampler to do the poste-
rior inference over this model. In one iteration of the sam-
pler, each latent variable is visited and assigned a value by
drawing from the distribution of that variable conditional on
the assignments to all other latent variables as well as the
observation. In particular, based on the sampling algorithm
proposed in [Van Gael et al., 2008], we develop a sampling
solution that uses multiple concept sequences with arbitrary
lengths as observations. Specifically for each concept se-
quence {x(i)t }t=1,2,...,Ti

, auxiliary variables {u(i)t } are sam-
pled with probability density,

p(u
(i)
t |z

(i)
t−1, z

(i)
t ,π) =

δ(0 < u
(i)
t < π

z
(i)
t−1,z

(i)
t
)

π
z
(i)
t−1,z

(i)
t

δ(C) =

{
1, if C is true
0, otherwise

(5)

where each u(i)t serves as a dynamic threshold at t(i) to par-
tition the probability distribution {πzt−1,k}k=1,2,...,∞ into a
finite set of entries larger than u(i)t and an infinite set smaller
than u(i)t . Only the states k’s within the finite set are consid-
ered when sampling z(i)t that transits out of state z(i)t−1 during
dynamic programming. This reduces the number of potential
states to consider and hence makes the inference efficient.

p(z
(i)
t |x

(i)
1:t, u

(i)
1:t,π,φ) ∝ p(z

(i)
t , u

(i)
t , x

(i)
t |x

(i)
1:t−1, u

(i)
1:t−1,π,φ)

=
∑
z
(i)
t−1

p(x
(i)
t |z

(i)
t ,φ)p(u

(i)
t |z

(i)
t−1, z

(i)
t ,π)p(z

(i)
t |z

(i)
t−1,π)

p(z
(i)
t−1|x

(i)
1:t−1, u

(i)
1:t−1,π,φ), and by applying Eq. 5, we have:

=p(x
(i)
t |z

(i)
t ,φ)

∑
z
(i)
t−1:πz

(i)
t−1

,z
(i)
t

>u
(i)
t

p(z
(i)
t−1|x

(i)
1:t−1, u

(i)
1:t−1,π,φ)

(6)
Beside resampling the auxiliary variables {u(i)t } and the

state sequences {z(i)t } in each iteration, the algorithm also re-

samples the shared DP base measureG, the hyper-parameters
α and γ, the emission probabilitiesφ, and the transition prob-
abilities π. SpecificallyG is sampled proportional to an addi-
tional set of auxiliary variables {m·k}k=1,2,...,K , where each
mκk is independent of others given z,G, and α.

G = (G1 . . . GK ,

∞∑
k′=K+1

Gk′) ∼ Dir(m·1 . . .m·K , γ)

m·k =

K∑
κ=1

mκk

p(mκk = m|z, G, α) ∝ S(nκk,m)(αGk)
m

(7)

where S(·, ·) denotes Stirling numbers of the first kind. Sum-
ming over the infinite many states that never occur in any
hidden state sequences {z(i)t }, the conditional distribution πk·
given its Markov blanket z,G, and α is

πk· = (πk1 . . . πkK ,

∞∑
k′=K+1

πkk′)

∼ Dir(
∑
i

n
(i)
k1 + αG1 . . .

∑
i

n
(i)
kK + αGK , α

∞∑
k′=K+1

Gk′)

(8)
where n(i)kκ denotes the transition counts in the i-th state se-
quence from state k to κ. Each φk· depends on the state se-
quences {z(i)t }, the observed concept sequences {x(i)t }, and
the prior distribution H , and the φk·’s are independent given
z, x, andH .

φk· ∼ Dir(
∑
i

l
(i)
k1 +H1 . . .

∑
i

l
(i)
k|V | +H|V |) (9)

where l(i)kv denotes the emission counts in the i-th state se-
quence from state k to medical concept v. The whole vocab-
ulary set is V . We further sample the hyper-parameters α and
γ according to [Teh et al., 2006].

In each experiment we run the sampler 20 times with ran-
dom initialization of the state sequences. Each state randomly
chooses between 1 and the maximum length of all sequences.
We use 2000 iterations as burn-in and empirically choose var-
ious hyperpriors for α and γ according to the convergence
behaviors in previous runs. The hidden states inferred from
the model are the diagnostic narration patterns mentioned in
earlier sections, and states and patterns will be used inter-
changeably in the rest of this paper.

5 Results and Discussion
We summarize the state transitions within each narrative
group and visualize the salient differences between groups.
The involved states (patterns) appear frequently and they
match the thought units. Classification results show that the
diagnostic narration patterns contain key information in nar-
ratives to differentiate levels of diagnostic correctness.

5.1 The discovered verbal narration patterns
The state transition summaries for the two correctness levels
in Figure 5 presents a salient difference—the state transition



(a) High-correctness group (b) Low-correctness group

Figure 5: Normalized state transitions in narrative groups re-
garding diagnostic correctness. One salient transition to dis-
criminate both groups is from pattern 4 (the 4th row) to 1 (the
1st column).
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Figure 6: The correctness score distributions between the nar-
ratives with state transition (4→ 1) and those without.

(a) High-confidence group (b) Low-confidence group

Figure 7: Normalized state transitions in narrative groups re-
garding diagnostic confidence. Group (a) possesses slightly
more self-transitions of 1, 5, 10 and 11 than (b).

from pattern 4 to 1. These two patterns are interpretable—
Pattern 1 can be interpreted as primary lesion type (PRI), and
pattern 4 includes informative findings regarding color, size,
shape and texture of the lesion to assist determining the pri-
mary lesion type. Given the meanings of these patterns, we
find that the high-correctness narratives possess more transi-
tions from describing supportive findings to mentioning pri-
mary lesion type than the low-correctness narratives. We also
consider all the narratives in Experiment I, and separately vi-
sualize the ones with and without state transition 4 → 1 in
Figure 6. We notice two different distributions of correctness
scores, and we find that the narratives with this key state tran-
sition generally shift towards the higher correctness end. This
implies the importance of locating key clues before determin-
ing a primary lesion type in order to make a correct diagnosis.
Similar patterns are discovered in parallel from the diagnos-
tic confidence study in Experiment II. Since these patterns

appear in both experiments and match the thought units, we
recognize them as Signature Patterns. Diagnostic confidence
study also presents different state transitions between low and
high confidence levels, which involve interpretable patterns
(see Figure 7)—Patterns 1 and 5 presents primary lesion type
and informative findings. Pattern 10 can be interpreted as
confidence marker, and pattern 11 as diagnosis or differential
diagnoses.

5.2 Narrative correctness classification
We classify the narratives at low and high correctness lev-
els based on various feature combinations with two classi-
fiers, and Table 2 summarizes the classification performances.
We use cross-validation to tune the trade-off parameter of the
lasso-regularized logistic regression. Cross-validation is also
used to determine the optimal number of hidden states for the
canonical HMM. We find that the infinite HMM works better
than the canonical HMM to capture the important temporal
patterns for classification. Concatenating all features boosts
the classification performance, as the LDA and M-seq iHMM
capture high-level information complementary to the fine de-
tails in Bag-of-Word (TF-IDF). Both classifiers suggest high
importance of the patterns learned from M-seq iHMM, and
Table 3 lists highest-ranked features and their interpretations.

In Figure 8, we analyze both high-correctness narratives
(B and D) and low ones (A and C). The narratives (A) and
(B) are successfully classified. (C) is misclassified as high-
correctness, because it mentions the correct primary lesion
type but fails to give a correct diagnosis nor differential diag-
noses. (D) is misclassified as low-correctness, because it only
makes a correct diagnosis without mentioning the primary le-
sion type. These examples show that the signature patterns
dominate the classifier, and hereby fail to capture the cor-
rectness related to diagnoses. This is because Experiment I
covers 46 diagnoses by 48 images, which makes each disease
name appear infrequently. We omit the diagnostic confidence
classification due to space limits.

6 Conclusions
This paper explores diagnostic decision-making by model-
ing physicians’ utterances of medical concepts during image-
based diagnoses. We develop automated approaches to dis-
cover diagnostic narration patterns from expert data. Our
model discovers patterns that exist in both datasets and match
the expert-defined diagnostic thought units. These patterns
are also important features for diagnostic correctness classi-
fication. The approaches proposed in this paper can facili-
tate education in the medical fields, research in cognition and
decision-making, and medical image classification based on
physicians’ thoughts.

Since the concepts in the same narrative are essentially cor-
related, we plan to relax the strong Markovian assumption
in the model by considering semantic relatedness of medical
concepts [Liu et al., 2012; Bollegala et al., 2015] and de-
veloping an additional variant in the future. We will further
explore medical image difficulty levels [Guo et al., 2014] and
physicians’ expertise levels [Wu et al., 2015] as they are rel-
evant factors in diagnostic decision making and error preven-
tion.



Figure 8: Example narratives in the diagnostic correctness study. Left: the remaining medical concept sequences in four
narrative examples. Middle: the corresponding transition probability matrices out of the overall 17 patterns discovered from all
narratives in Experiment I. Right: the shared narration pattern matrix. The two Signature Patterns are highlighted.

``````````Feature
Classifier Regularized Logistic Regression Random Forest

Accuracy (%) AUC of ROC Accuracy (%) AUC of ROC
TF-IDF 61.8 0.63 44.9 0.65

LDA 64.0 0.63 62.9 0.67
HMM 59.6 0.62 56.2 0.58

M-seq iHMM 64.0 0.68 65.2 0.64
TF-IDF + M-seq iHMM 67.4 0.69 75.3 0.78

TF-IDF + LDA + M-seq iHMM 67.4 0.71 75.3 0.78

Table 2: Narrative correctness classification performances. The positive class for ROC is high-correctness.

Rank Feature (Feature interpretations in detail)
1 Pattern 4 in M-seq iHMM (erythemas, pinch purpura, annulare, ...)
2 Topic 45 in LDA (hand, dorsal, hyperkeratotic, ...)
3 Term 32 in TF-IDF (papules)
· · · · · ·

Table 3: Ranked features by random forest classifier.
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