
A Study on Developer Perception of Transformation Languages
for Refactoring

Christian D. Newman
Software Engineering

Rochester Institute of Tech
Rochester, NY 14623 USA

cnewman@se.rit.edu

Mohamed Wiem Mkaouer
Software Engineering

Rochester Institute of Tech
Rochester, NY 14623 USA

mwmvse@rit.edu

Michael L. Collard
Computer Science

The University of Akron
Akron, OH USA

collard@uakron.edu

Jonathan I. Maletic
Computer Science

Kent State University
Kent, OH 44240 USA
jmaletic@kent.edu

ABSTRACT
Although there is much research advancing state-of-art of
program transformation tools, their application in industry source
code change problems has not yet been gauged. In this context,
the purpose of this paper is to better understand developer
familiarity and comfort with these languages by conducting a
survey. It poses, and answers, four research questions to
understand how frequently source code transformation languages
are applied to refactoring tasks, how well-known these languages
are in industry, what developers think are obstacles to adoption,
and what developer refactoring habits tell us about their current
use, or underuse, of transformation languages. The results show
that while source code transformation languages can fill a needed
niche in refactoring, research must motivate their application. We
provide explanations and insights based on data, aimed at the
program transformation and refactoring communities, with a goal
to motivate future research and ultimately improve industry
adoption of transformation languages for refactoring tasks.

CCS CONCEPTS
• General and reference→Surveys and overviews

KEYWORDS
Software Maintenance, Software Evolution, Source Code
Manipulation, Refactoring

ACM Reference format:

Christian D. Newman, Mohamed Wiem Mkaouer, Michael L.
Collard, and Jonathan I. Maletic. 2018. A Study on Developer
Perception of Transformation Languages for Refactoring. In
Proceedings of the 2nd International Workshop on Refactoring
(IwoR ’18), September 4, 2018, Montpellier, France. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3242163.3242170

1 INTRODUCTION
As software ages, it must be updated to conform with new

requirements, changing environments (e.g., updated operating

system, new API), and other shifting development needs. These all
fall under the umbrella of software maintenance, which is the
costliest phase of the software development lifecycle. One common
activity to maintain software is refactoring [1]. Refactoring is a
change applied to the structure of source code which 1) does not
change the observable behavior and 2) improves code
characteristics such as comprehensibility and complexity.

Developers may apply refactorings manually or automatically;
performing and testing changes to the code by hand or using a tool
to execute changes in a (semi) automated, systematic fashion. In
the situation where the change to be applied is to a large body of
code, manually refactoring is expensive and error prone [2, 3]. For
this reason, it seems reasonable to assume automated tools for
refactoring would be popular in development, or at least
significantly more prevalent than manual application when a tool
is available to automate the change. However, numerous studies
have shown that developers do perform manual refactorings more
often [3-5]. That is, standard refactoring tools are widely
underused considering the theoretical and proven benefits (i.e.,
faster, highly consistent changes, no missed changes).

The research presented in [3-5] focuses broadly on refactoring
tools without differentiating between types of them. In this paper,
we discuss two different types of refactoring tools. The first type
represents standard refactoring tools; these are tools that are
common in IDEs such as Visual Studio, Eclipse, etc. These tools
define a finite set of refactorings that are apllied by having the
developer fill out a set of fields. Some IDE’s additionally allow the
user to leverage an API and a general-purpose language (e.g.,
Python) to help define refactorings. An alternative type of
refactoring approach involves the use of transformation languages;
languages such as RASCAL [6], TXL [7], and srcML/srcTL[8]. A
transformation language differs from a standard refactoring tools
as it uses a Domain Specific Language (DSL) as the primary way of
describing and applying a refactoring.

Transformation languages have been involved as a source of
automation for refactoring [2, 9], so their applicability to
refactoring problems is known in research and in some parts of the
industry. The core advantages to using transformation languages
are: 1) the flexibility to define custom refactorings using
transformation languages; and 2) a DSL that is specialized to make
the definition of transformations clean and easy to comprehend/re-
use. That is, a specialized DSL for transformation can be used to
define custom refactorings, which is more flexible than many
standard refactoring tools. Moreover, since the DSL is specialized
for the domain of transformations, it should be easier to
comprehend than writing an equivalent custom refactoring using
a general-purpose language.

The need for the flexibility of these languages is supported by
interest in techniques that automatically generate transformations,
all of which emphasize learning a change, such as refactoring, and
automatically applying it in an unseen context. Additionally, in
previous research, developers have reported that automatically

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
IWOR’18, September , 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5974-0/18/09...$15.00
https://doi.org/10.1145/3242163.3242170

34

IwoR ’18, September 4, 2018, Montpellier, France C.D. Newman, M.W. Mkaouer, M.L. Collard, J.I. Maletic

applied refactorings tend to 1) be small and part of a larger,
manually applied refactorings task and 2) that one challenge
associated with refactoring is the lack of tool support for defining
new refactoring types [10]. This, along with research on generating
transformations, implies that standard refactoring tools do not
fully encompass the breadth or complexity of the refactorings
developers need to handle in practice.

In this paper, we investigate the perceived lack of
transformation languages in use by developers and compare it with
the usage of refactorings tools. Specifically, we surveyed 50
developers; asking, for example, which transformation languages
and standard refactoring tools they are familiar with, which they
have used, and what types of refactorings they commonly apply in
their day-to-day operations. To the best of our knowledge, this is
the first survey that aims to understand the use of transformation
languages for refactoring in an industrial setting. We answer the
following research questions:
1. Are refactoring tools more well-known than source code

transformation languages?
2. How often do developers use transformation languages

versus standard refactoring tools in their development
activities?

3. What do developers perceive as obstacles to the adoption of
transformation languages and refactoring tools?

4. What standard refactoring practices our participants do
perform?

The rest of this paper is structured as follows. Section 2
motivates the problem, Section 3 presents our Research
Methodology, Section 4 discusses the results of the survey, Section
5 discusses the study limitations, and Section 6 concludes.

2 MOTIVATION
The problem with manual source code changes for

refactorings, and in particular applications of refactorings to large-
scale systems, is that they are time-consuming and error-prone.
Developers must search (possibly millions of lines of code) for the
appropriate segments of code that need to be refactored, develop a
solution for each individual situation (combining and reusing
solutions when possible), apply the change, perform regression
tests to guarantee consistent behavior with the previous version,
and then integrate the code with the main branch once everything
has been finalized.

Reducing the manual maintenance effort while refactoring has
been the focus of a recent study [2]. We examine this work more
closely as a documented example of the advantages of using an
automated approach in an industry setting. In that paper, the
authors explored several maintenance problems faced by ABB Inc.
and designed refactorings in a transformation language (XSLT) to
resolve a set of problems. One of the problems they explored occurs
due to updates to the C++ standard. Several years ago, a change to
the C++ standard dictated that C++’s operator new should throw
an exception instead of its previous behavior; returning 0 or null.
This caused the need for adaptive maintenance; maintenance
whose goal is to update the code base due to a change in the
environment. Initially, ABB solved this problem manually. They
assigned developers to the task of changing all calls to operator
new such that they were wrapped in a try-catch block instead of
checking their return value for null.

The original change encompassed around 1.7K individual calls
to operator new and took one developer approximately a month to
fully complete (i.e., applying each change, regression testing, code
review, re-integration). However, the developer missed
approximately 300 cases of the call to operator new in their original

effort. These 300 cases were eventually corrected through future
changes to the code base.

We highlight this work as a clear example that the manual
effort is both time-consuming and difficult to carry out. Collard et
al. took the original code (i.e., before the fixes were applied) and
used a program transformation constructed by combining the
srcML format [11] with XSLT; a transformation language for XML.
Their transformation approach fixed all 1.7k calls to operator new
in around 11 minutes and did not miss any cases. As such, this is a
clear example of the advantages of the automated process. Not only
did it apply changes faster and more consistently, but also the
transformation script is reusable.

TABLE 1. PARTICIPANT PROFESSIONAL DEVELOPMENT EXPERIENCE IN
YEARS

Years of
Experience

% Count

0-2 8.82% 7
3-5 26.47% 14
6-10 20.59% 8
11+ 44.12% 21

Total 100.00% 50

TABLE 2. PARTICIPANT LEVEL OF EDUCATION

Level of Education % Count
Less than high school 0.00% 0
High school graduate 2.94% 1

Some college 8.82% 4
2-year degree 2.94% 2
4-year degree 38.24% 21

Master’s degree 32.35% 16
Doctorate 14.71% 6

Total 100% 50

Some refactoring tools do support this kind of customization

using a general-purpose language. For example, Python Rope has
a restructurings feature that allows users to write transformations
using Python. We feel this is (some additional) evidence that users
want this kind of flexibility in their tools. Transformation
languages fit this problem domain very well as they explicitly
support customizing the changes they apply. However, researchers
have anecdotally noticed that transformation languages are not
applied to industry code change problems [12]. This survey seeks
to confirm this anecdotal notion and begin answering critical
questions: What we, as researchers, do to increase the adoption of
transformation languages? What are the reasons for lack of
adoption of transformation languages? Are transformation
languages ill-equipped, too hard to comprehend, or unneeded for
the refactoring problems developers face?

Previous literature gives insight into whether they are
unneeded. It shows that 1) transformation language technology
provides scalable solutions to medium and large maintenance
problems [2]; 2) the need for customizable, scalable solutions for
modifying source code is evident in the increased interest in
generating transformations and interviews with developers [10]
who note that current tools only automate small portions of a
largely manual refactoring effort; and 3) these last few facts
indicate that a technology is required to fill this need.
Transformation languages are such a technology.

An additional use case for transformation languages presents
itself in support of generating transformations [13-15]. The basis

35

A Study on Developer Perception of Transformation Languages… IwoR ’18, September 4, 2018, Montpellier, France

of generating transformations is to use examples of a change to
generate some sequence of generic code edits that can be used to
apply that same change but in a new context. However, research
has to make these languages more attractive and usable to
developers. One way to accomplish this is to use what
transformation languages currently exist to understand why
adoption has been so limited and addressed the problem
appropriately. We aim to begin this process here.

3 RESEARCH METHODOLOGY
In order to answer our research questions, we conducted. a

survey of 50 developers. TABLE 1. and TABLE 2. show their
experience and level of education. Participants volunteered to be
part of the survey by following a link they received through word
of mouth. That is, we gave the link to several companies, and
through those companies, it was spread through developer
chatrooms and emails. We requested that those forwarding the
survey only give it to other professional developers (i.e., their
career is development) and not students or faculty members. The
survey was left online for a total of four months to allow ample
time for the link to spread and for participants to finish. Before
starting the survey, participants were given two pieces of
information. 1) We gave participants a link to Fowler’s refactoring
webpage [1] as an optional reference for some of the questions. We
instructed participants to use the webpage as a reference if they
needed it and to answer questions to the best of their abilities if
they were unsure about anything. 2) We introduced the concept of
transformation languages and standard refactoring tools by
defining each similarly to how we defined them in Section 1. Since
the survey compares these to one another, it is important that
participants be able to differentiate the concepts. The survey data
is available via this link to Google drive.

4 RESEARCH QUESTIONS
As stated, our research questions primarily aim to understand

the current-day adoption of transformation languages in the
software development life cycle. To this end, we use standard
refactoring tools as a comparison point due to the similarity in
purpose and function. There are four research questions; we start
with RQ1 below.
RQ1: Are refactoring tools more well-known than source
code transformation languages?

Standard refactoring tools are pervasive in development
environments such as Visual Studio and Eclipse. This question
allows us to understand how many participants are familiar with
transformation languages and compare this to their familiarity
with tools that can be used for a similar purpose; standard
refactoring tools. We obtain the answer to RQ1 by asking
developers to report which languages and refactoring tools they
are familiar with. The data is in Figure 2 and Figure 1. For standard
refactoring tools, Visual Studio is the most familiar to developers.
This is followed by JetBrains IDEs (Resharper, Pycharm, etc.),
Eclipse, Rope, Notepad++ and Refactor! Pro. We compare this
result with data in Figure 1, which shows which transformation
languages the participants are familiar with. We note that we
allowed participants to write in languages or tools that are not
listed in the survey. This mitigates the threat of us simply not
naming a tool/language that looks familiar to a participant. All
write-ins are contained in the figures.

The first observation we make is that the number of
participants reporting that they are not familiar with any
transformation languages is higher (21), compared to the number
of participants that are not familiar with any standard refactoring
tool (10). Further, out of all transformation tools listed, XSLT is the

0 10 20 30 40 50

Never

Sometimes

About half the time

Most of the time

Always

0 10 20 30

TOM
Coccinelle/Tarantula

Rascal/ASF+SDF
Stratego/Spoofax

DMS
TXL

None
XSLT

0 5 10 15

Never

Sometimes

About half the time

Most of the time

Always

Figure 1: Participant familiarity with transformation
languages. Participants were able to pick as many
languages as they recognized. (n=50)

Figure 4: Frequency of transformation language usage. The
responses show that only about 14% of the participants
used transformation languages “Sometimes” or more, with
about 86% never using them. (n=50)

Figure 2: Participant familiarity with refactoring tools.
Participants were able to pick as many tools as they
recognized. (n=50)

Figure 3: Frequency of refactoring tools usage. The
responses show that 72% of participants used refactoring
tools “Sometimes” or more, with about 28% never using
them. (n=50)

0 10 20 30 40

Notepad++
Refactor! Pro

Klocwork
Rope

Eclipse
None

Jetbrains IDEs
Visual Studio

36

https://docs.google.com/spreadsheets/d/1uAM-9iuvwALwlH45h75UABs4G_RGOgPvEyJnyM5Ze-Q/edit?usp=sharing

IwoR ’18, September 4, 2018, Montpellier, France C.D. Newman, M.W. Mkaouer, M.L. Collard, J.I. Maletic

most recognized. XSLT is a transformation language for XML
documents. When combined with XML markup languages that are
specialized for source code, such as srcML [11], it can be used to
perform program transformations. There are two ways to look at
this result. The first is that participants are familiar with XSLT
because they have used it for other XML transformation tasks (on
HTML perhaps). The second, far less likely option, is that some
may have used it with an XML-based language like srcML to apply
program transformations. From the data in Figure 1, it is not
possible to draw conclusions.

After XSLT, the number of participants familiar with
transformation languages specifically designed for source code
(i.e., TXL, RASCAL) is notably lower than with standard
refactoring tools. If we take the sum of all data points minus those
reporting None in Figure 2 and do the same for Figure 1, then we
get respectively a total of 64 and 45. Visual Studio refactoring tools
are definitely used to apply automated changes to source code, but
XSLT is not necessarily used as a transformation language for
source code. Without XSLT, the sum of participants familiar with
transformation languages (Figure 1) drops significantly to 19. For
this reason, we have to determine how XSLT was used in order to
draw any conclusions. To do this, we move to RQ2 and postpone
the answer to RQ1 until then.
RQ2: How often do developers use transformation
languages versus standard refactoring tools in their
development activities?

As stated, our research questions primarily aim to understand
the current-day adoption of transformation languages for applying
changes to the code. We use refactorings, once again, as a
comparison point to contextualize usage of transformation
languages. Figure 3 contains the results for standard refactoring
tools and Figure 4 contains the results for transformation
languages. Comparing the two figures, we observe that, while
developers use standard refactoring tools to several degrees of
frequency, the vast majority of them report never using
transformation languages; not even languages we may not have
mentioned explicitly in the survey. In total, only 7 of the
participants report at least sometimes using a transformation
language. This contrasts with the 36 that reported at least
sometimes using a standard refactoring tool.

The survey questions that RQ2 is concerned with allowed
participants to comment when they report either sometimes or
never using standard refactoring tools and/or transformation
languages. We selected a subset of these comments and grouped
them by similarity. Text in square brackets ([]) is added by us for
contextual clarity. We start with comments made for sometimes or
never using standard refactoring tools (labeled RC 1-11). There are
roughly three camps. In the first, users are unaware of standard
refactoring tools or are not trained to use standard refactoring
tools:
RC1: “I didn't know there were tools to assist with refactoring. I've

always done it manually.”
RC2: [use of standard refactorings tools is] “not enforced, never

motivated to, rarely/never trained on how to”
RC3: “In general I create small scripts and time usually prohibits

researching/learning such tools.”
In the second group, users did not trust the result of using a
standard refactoring tool to apply changes and noted a preference
for simple refactorings:
RC4: “When I do use refactoring, it is for refactoring. Very rarely

extract method or extract variable. I never use the other
refactoring tools because it is too difficult to understand what

they will do. And sometimes they break the code such that it does
not even compile anymore.”

RC5: “The projects I work on tend to be simple enough so that
refactoring tools are not needed, or the information needed to
make these tools usable is not available, such as a not very well
defined API where changing the name of a function could result
in errors.”

RC6: “For simple tasks (e.g. renaming that impacts multiple classes)
I trust the refactoring tool to provide proper support and that it
can handle every transformation automatically without me
having to check immediately. For more complex refactorings, I
always want to have a good test suite to back me up.”

RC7: “Distrust of tools – would prefer to make my own code
changes.”

RC8: “Mostly for just renaming”
In the third group, users did not feel they needed to use standard
refactoring tools due to the size or type of their code base or the
efficiency/availability of the tools in their IDE.
RC9: “I work with small scripts/codebases and coworkers don't use

such tools either.”
RC10: “I find that the IDEs that include them are just too slow on a

large industry codebase.”
RC11:” Most of my work was in embedded/real-time SW

development. Often OO languages were not used. Additionally,
refactoring tools were not part of the culture where I worked. I
cannot ever remember an instance when they were discussed.”
The results and comments on standard refactoring tools imply

that they are used in development, but there is still some level of
unawareness, lack of trust, and some preference for using these
tools on smaller/simpler problems versus larger problems amongst
the developer population. Next, we look at comments for
sometimes or never using transformation languages (labeled TC 1-
18). We break them up into three groups. One group of developers
generally report that standard refactoring tools are enough for the
automatable change problems they face or that there is little
motivation to try a transformation language due to lack of support
in their current toolset and lack of training/education about
transformation languages:
TC1: “Because IDE tooling has language semantic knowledge.”
TC2: “I've only used tools to do the listed refactorings as they work

well in Visual Studio”
TC3: “Other than in-built IDE support, I only use XSLT. Other

languages are too complex or obscure.”
TC4: “Not already present in my IDE and I don't need to do

transformations that are large enough to seem worth the effort
of seeking out another tool.”

TC5: “Not used with the tools I use.”
TC6: “Too complex (not easy to install/conFig./use).”
TC7: “The learning curve to come to grips with these tools/languages

most often seems like more effort than performing a
change/refactoring manually. Additionally, manual effort while
tedious affords more control.”

TC8: “Not much exposure to transformation languages in corporate
environment”

A second group report being unaware of transformation languages
or their applicability to refactoring.

37

A Study on Developer Perception of Transformation Languages… IwoR ’18, September 4, 2018, Montpellier, France

TC9: “I don't know of any that are available to me, and that will
work on my codebase.”

TC 10: “No familiarity with the concept.”
TC11: “I've simply never worked with one.”
TC12: “Probably awareness. I have never heard of most of these

transformation languages. I have had to use XSLT in the past,
but the language is very complicated and it takes a lot of effort
to use, especially since XSLT must be written in XML. XSLT is
not something I go to unless required by a job.”

TC13: “I've never learned (or even been exposed to) such a
language.”

And a third group worry about the result of applying a
transformation language or note use cases to which a
transformation language might apply, but ultimately state that
they rarely or never see those cases.
TC14: “Generally, simple refactorings such as a renaming

classes\methods\etc, extracting methods, moving classes, etc are
done using IDE tooling. So you never really consider the
underlying tech that's actually performing the refactoring. For
larger refactorings or architecture changes, we manually make
changes code changes. Occasionally we'll write scripts that
modify our code for us using scripting languages like bash, cmd,
python, ruby, etc. But those are few and far in between.”

TC15: “I'm worried it would screw up all the code.”
TC16: “Never had the case where many changes of the same type

needed to be made which is why I would use a transformation
language.”

TC17: “I haven't encountered a problem that I'd really need a large
scale fix for something like this. Although if I had a tool like this
built in I might use it for searching more then anything else.”

TC18: “Tools are good enough, a language would probably help for
a serious refactoring work that may scale up to full project
transformation”

TC19:” I typically work with a small codebase where any refactoring
takes a small amount of time. If I worked with a much larger
project, then I would spend the time to write a transformation
rather than manually refactoring.”
Comparing both comments and data from the figures, more

participants are unaware of or feel warier of transformation
languages than standard refactoring tools and generally seem to
favor the idea of a refactoring tool than a language for applying

code changes. TC Group 1 saw little motivation to use a more
flexible tool given their experiences or feel that languages are
too complex; TC Group 2 felt an overall lack of training in
and/or lack of awareness of transformation languages, which
perhaps makes it hard for them to gauge whether they would
use one or even why they might use one; TC Group 3 worried
about the resulting code post-transformation or felt there may
be use cases, but had never run into one.

Some interesting comments to point out are TC 4, 14, 16,
17,18, and 19. TC 14 makes an observation very similar to an
observation made in Kim et al.’s study [10]. Specifically, they
observed that larger architectural refactorings are done
manually, while automated refactorings tend to be smaller. The
observation in [10] notes that automated refactorings tend to

be small/low level and applied as part of a more substantial, mostly
manual architectural refactoring. TC 4, 16, 17, 18, and 19 support
this line of reasoning; implying or outright stating in their
comments that they might use a transformation language for large-
scale changes, meaning that they see this as a niche that standard
refactoring tools are not currently filling.

The answer to RQ2 is that when developers do automatically
apply changes to their code, they prefer using standard refactoring
tools or manually applying changes more often than
transformation languages. Additionally, we have enough
information to answer RQ1. Given that 43 developers report never
using a transformation language to refactor, that only leaves 7
developers that report at least sometimes using a transformation
language for refactoring. This means that a maximum of 7
developers might have used XSLT for this purpose. The answer to
RQ1 is that developers surveyed are more familiar with standard
refactoring tools than transformation languages.
RQ3: What do developers perceive as obstacles to the
adoption of transformation languages?

At this point, we understand that participants are more
familiar with standard refactoring tools and tend to prefer them
over transformation languages for applying refactorings. The
purpose of RQ3 is to begin understanding more about what
participants feel are barriers-of-entry to using transformation
languages and, for comparison, standard refactoring tools. Since
not all developers are familiar with transformation languages,
answering this question was optional. We answer this question
using Figure 5. As part of the survey, we list a generic set of
potential reasons for why a developer might avoid using a
transformation language or standard refactoring tool. The generic
reasons we provided are as follows:
• Difficulty: language/tool is too hard to use
• Applicability: language/tool does not implement, or cannot

implement, required refactoring
• Availability: language/tool does not work on required

language, or in required IDE
• Awareness: unaware of the existence of languages/tools for

refactoring.
If the participant felt that none of the reasons listed are

obstacles, we prompted them to list their own. We also allowed
participants to select more than one reason. With respect to
standard refactoring tools, participants are nearly evenly split
between difficulty (9), applicability (6), availability (8), and
awareness (10). For transformation languages, there is more
variance: difficulty (11), applicability (0), availability (2), and
awareness (17). Finally, there are a total of 11 users that felt none
of the reasons we provided are obstacles. When asked to expand
on what they meant, only 6 responded. Two felt that
transformation languages are not worth the effort, given their

Figure 5: Perceived obstacles to using a transformation language
or refactoring tool. Participants were able to make multiple
selections. If they selected none, we prompted them to explain
what they felt were obstacles.

0 5 10 15 20

Refactoring tool (Difficulty)
Refactoring tool (Applicability)

Refactoring tool (Availability)
Refactoring tool (Awareness)

Transformation (Difficulty)
Transformation (Applicability)

Transformation (Availability)
Transformation (Awareness)

None

38

IwoR ’18, September 4, 2018, Montpellier, France C.D. Newman, M.W. Mkaouer, M.L. Collard, J.I. Maletic

experience or position. One is indifferent; seeing no obstacles. The
last feels lack of support is the main obstacle (Labeled C1-4). Text
in square brackets ([]) is added by us for contextual clarity.
C1: [With respect to transformation languages,] “Effort involved is

not worth the benefit for most tasks. Good programming
practices also limit the effectiveness of these tools.”

C2: [Transformation languages are] “Not necessary for the kinds of
code I write.”

C3:” Nothing? I'm too indifferent to most things in life to really feel
like anything is specifically an obstacle. I just work around
things and don't care.”

C4:”Languages not implementing [transformation] language
services for existing tools.”
We did not report the other two written comments because

they did not include enough information to understand what the
participant was trying to say. There are some insights we can
derive from what we know so far. First, participants did feel that
transformation languages are powerful enough to solve their
refactoring problems (0 voted for applicability as an obstacle).

Next, the most frequently selected obstacles preventing
developers from adopting transformation languages are: Lack of
awareness (17) and difficulty (11), respectively. The same two are
the two top obstacles for refactoring tools: Awareness (10) and
difficult (9). These two are perceived problems for both, but more
so for transformation languages, particularly regarding awareness.
Applicability (0) and Availability (2) are generally not considered
obstacles for transformation languages compared to refactoring
tools: Applicability (6), Availability (8).

We did not ask for comments when users selected difficulty or
awareness as an obstacle, but for some additional context, we
looked at comments those users left on a previous question, where
they explained why they sometimes or never use transformation
languages (i.e., TC1-18 above). There is a total of 26 responses. 11
users generally report lack of awareness of transformation
languages, 8 users report that either they are unsure of whether
learning one would be worth it, or they did not have sufficient
motivation to learn one; 5 users report that they are worried about
the complexity/difficulty of using a transformation language, and
two users left no comment.

11 participants (no intersection with the previous twenty 6)
selected None. 4 of them gave a thorough enough response for us
to report above (C1-4). To help us gain further insight, we looked
at comments made in previous questions by those who selected
None (e.g., TC1-18 above). 3 of these participants report using
transformation languages and felt there are no problems. 5 of them
felt there is simply no need for them and 3 reported a lack of
opportunity or motivation to try transformation languages. That
is, 8 of the 11 who voted None felt that there is no obstacle to
adoption; they simply have no need or motivation to try
transformation languages and, even if one were available and easy-
to-use, it appears that they do not want use one. By contrast, one
person who voted None felt there is no need for refactoring tools.

Most of the users who voted for difficulty as an obstacle have
very similar comments to 11 of the users who voted None. One
explanation for this similarity may be that while those who voted
None feel there is zero need for transformation languages in their
tasks, those who voted for difficulty felt that learning a
transformation language is currently too much cost for the payoff.
It might be they would reconsider if the perceived difficulty is
minimized or the perceived benefit is increased.

The answer to RQ3 is as follows: More participants reported
lack of awareness of transformation languages than refactoring
tools; awareness was the most significant obstacle. More also
report difficulty as a problem they attributed to transformation
languages than refactoring tools, and more felt that there is
nothing that will convince them (i.e., no obstacles to overcome) to
use transformation languages compared to refactoring tools.

TABLE 3. TOTAL PREFERENCE FOR MANUAL OR AUTOMATIC
APPLICATION OF REFACTORINGS ACROSS ALL REFACTORING TYPES.

Fully
Automatic

Mostly
Automatic

Half/Half Mostly
Manual

Fully
Manual

139 61 41 65 160
RQ4: What do the standard refactoring practices of our
participants look like?

In RQ3, we tried to understand what users felt are obstacles to
the adoption of transformation languages. In RQ4, we answer the
same question except use answers to previous RQs in conjunction
with data about refactoring habits to help us understand how these

Figure 6: Frequency at which participants currently
automatically or manually apply common refactorings.

Figure 7: Types of refactorings that participants most want to see
automated. Participants could select more than one. Write-ins
were added this figure.

0 5 10 15 20 25

Extract Local Variable

Rename Local Variable

Inline Local Variable

Rename Class

Encapsulate Field

Rename Field

Convert Local Variable to…

Extract Constant

Extract Method

Rename Method

Fully Automatic Mostly Automatic
Half/Half Mostly Manual
Fully Manual

0 5 10 15 20 25 30

Rename Method
Rename Class
Rename Field

Rename Local Variable
Extract Method

Extract Local Variable
Encapsulate Field

Convert Local Variable to…
Extract Constant

Inline Local Variable
Extract Class

Extract Interface
Create Derived Type

Implement Missing…
Pull Members Up

39

A Study on Developer Perception of Transformation Languages… IwoR ’18, September 4, 2018, Montpellier, France

habits might affect participant perception of transformation
languages. To do this, we use data from Negra et al. [3].

First, we generated a list of common refactorings based on data
from Negara’s study. We then ask our participants to perform the
following task: Please indicate the extent to which you manually or
automatically apply the following refactorings. The results of the
question are given in Figure 6 and TABLE 3. They show that
participants generally prefer either fully automating a refactoring
or fully applying a refactoring manually rather than going halfway
or even most of the way in either direction. They also show a
nearly even split between the preference for manually applying
refactorings and automatically applying them. We conclude that,
among the participants, anything more complex than rename
operations is more likely to be manually applied.

Second, using the same list of common refactorings, we asked
participants to perform the following task: Please indicate which
refactorings you consider most important to automate. We begin by
comparing Figure 7 to Figure 6. At first glance, it is easy to see the
rename refactorings are still a high priority. Looking at Extract
Method, we notice that in Figure 6, 11 developers report automating
it. However, in Figure 7, 19 developers report wanting to see it
automated. This is the largest increase among any frequency
between the two figures. Participants primarily want rename-type
refactorings automated. Only two non-rename refactorings that
saw an increase between Figure 6 and Figure 7: Extract Method and
Convert Local Variable To Field. RQ4’s answer is that participants
are most comfortable with automating rename refactorings; they
preferred to manually apply most other more complex refactorings
except Extract Method and Convert Local Variable To Field.

5 IMPLICATIONS
We now discuss the obstacles derived from this study and then

ways to remediate these obstacles.

5.1 Obstacles to Adopting Transformation
Languages

Transformation languages provide no significant benefit
for the refactorings that developers are comfortable
automating; developers do not trust complex automated
changes that may benefit from a transformation language

This is most clearly confirmed in RQ3/RQ4 and seen in Figure
6 and Figure 7, where the top three refactorings developers want
to automate are renames. Renames are high-level refactorings, i.e.,
they only affect the signature of the code element (e.g., class,
method, field) and they do not change its implementation. Rename
refactorings are very well supported by existing refactoring tools
and would not become simpler to apply with a transformation
language. Tasks with higher complexity, such as the new operator
example in Section II, benefit more from a transformation
language, but previous work, as well as data from Section 4 ,
imply that developers are uncomfortable with medium or large,
fully-automatically applied changes [10, 16]; they prefer to be
allowed to modify and oversee these changes in real time.
Transformation languages are perceived as difficult

11 developers felt that transformation langauges are too
difficult to use, but we found that these users also reported never
having used a transformation languge for refactoring. We
compared their comments from RQ1/RQ2 to the comments of the
11 developers that had reported there being no obstacle to adopting
transformation languages and found that they were very similar:
Transformation languages are not part of their IDE, they have no
experience with them, they are most comfortable applying simpler
refactorings automatically. This indicates that difficulty, in this
case, maybe a cost-benefit measure; participants assume that

transformation languages will be too hard to
install/config/learn/apply compared to the potential benefit they
provide. This is supported by the previous factor: if developers only
use/trust simpler automated refactorings, there is no reason to
undergo the difficulty of learning a language—they will do more
complex refactorings manually.
Exposure to transformation languages is low

Using RQ1, and RQ2, we observe that familiarity with
transformation languages is lower than with refactoring tools.
Additionally, in RQ3 we learned that, among developers who felt
there were obstacles to adopting transformation languages,
awareness was the highest reported obstacle of all obstacles for
refactoring tools and transformation languages.

5.2 Remediating these Obstacles
We now prescribe avenues of research which the authors think

will help encourage greater adoption of transformation languages
for refactoring problems. We reiterate that industry is looking for
a solution to these refactoring problems; developers want safe,
customizable, generalizable refactoring engines; transformation
languages are appropriate for this.
Increase developer confidence in refactoring and
transformation tools

Developer confidence is an issue for both refactoring tools and
transformation languages. Researchers are already working on
safety of refactoring tools [17], which will help encourage their use
by developers. Research on transformation languages must also
demonstrate that methods to ensure refactoring safety will also
work on languages or extend/create new methods. Guaranteeing
safety will reduce cost of adoption and increase the attractiveness of
refactoring engines.
Study how user-friendly modern transformation
languages are and improve on them if required

Many transformation languages already exist for various
purposes. There is not much research into their usability, however.
Developers have a difficult job as it stands, and typically need to be
proficient in several languages. If we are going to say that they
should know more, then research should be able to argue how
transformation languages should be practically applied and how it
can most effectively help developers perform refactoring tasks.
This means cooperating with industry to design languages that are
as easy to learn as possible without sacrificing expressiveness and
applicability. A visible, well-designed language will lower the barrier
of entry and perhaps convince developers to experiment.
Study the application of transformation languages on
larger change-tasks

Combining RQ3/RQ4, participant comments (Section 4), and
previous work [10], one consistent issue we see is that larger
refactoring tasks (e.g., api migration, architectural/design changes)
tend to be applied manually. Research should help make the case
that larger, typically manually applied refactorings can be done
more easily, more quickly, and more safely using a language.
Previous work already shows that it is possible [2, 18], but more
data is required to quantify how much better languages will
perform with respect to maintainability (e.g., is the changed code
safe and comprehendible?) and acceptableness (e.g., will
developers accept the changes?) after an applied change. Safe, well-
designed transformation languages that can clearly solve a set of
problems developers face will stand the greatest chance of being
adopted and used.

6 THREATS TO VALIDITY
One potential threat is the bias of our sample due to

distribution via email. We mitigated this by asking the initial batch

40

IwoR ’18, September 4, 2018, Montpellier, France C.D. Newman, M.W. Mkaouer, M.L. Collard, J.I. Maletic

of respondents to forward this survey to other colleagues and
professional developers they know. We also sent the survey to
several companies across several states and countries.
Additionally, the IP addresses recorded by Qualtrics indicate that
respondents did not cluster significantly in terms of geography;
respondents were from places such as California, the Carolinas,
Ohio, New York, Michigan, Colorado, Florida, Washington and
Canada. Also, some participants were employed at companies such
as Progressive, ABB, Microsoft and Google.

7 RELATED WORK
One of the earliest papers to discuss the static nature of

standard refactoring tools is by Kniessel and Koch [19], where they
propose composing simple refactoring operations into larger, more
complex refactoring operations. Several studies investigate the use
of refactoring tools by developers and conclude that refactoring
tools are underused to begin with [3-5]. Specifically, Negara et al.
[3] did a study on manual and automated refactorings; comparing,
among other things, the frequency, proportion, and the most
popular of each type. Murphy et al. differentiate floss refactoring
and root-canal refactoring [5]. Vakilian et al. [18] study automated
refactorings and find similar patterns as Murphy. Moser et al. [20]
performs a case study and find that refactoring increases quality
and improves productivity. Kim et al. [10] did an empirical study
at Microsoft. In the study, 46% of developers agreed that
“refactorings supported by automated tools differ from the kind
they perform manually.” Previous studies on developer perception
of refactorings focus on code smells [21, 22].

Several mature transformation tools exist. Rascal [6] was
designed by Paul Klint. The authors of Rascal explicitly discuss and
motivate its application to refactoring. Spoofax [23] is designed by
Elco Visser and has seen use in refactoring previously [9]. Li and
Thompson [12] present a transformation language using an Erlang
tool called Wrangler to perform refactorings. Coccinelle supports
refactoring on Linux [24, 25]. DMS is an infrastructure for program
transformation; used for large scale migration previously [26].
srcML is a markup language for source code, used to modify code
using various transformation languages in the past [2, 8, 27].

8 CONCLUSIONS
The goal of this study was to investigate the use of

transformation languages in industry. We chose to use refactorings
as the point of comparison due to the amount of data about
refactorings, categories of refactorings, and refactoring tools. We
argued that transformation languages can serve a useful purpose
for refactoring. Unfortunately, there was very little previous
research on whether transformation languages are used in
industry for refactoring and how they can be improved to more
fully support developers. To investigate these questions, we
surveyed 50 professional developers, discussed obstacles to the
adoption of transformation languages and paths to remediation.

REFERENCES
[1] M. Fowler, Refactoring: improving the design of existing code: Addison-

Wesley Longman Publishing Co., Inc., 1999.
[2] M. L. Collard, J. I. Maletic, and B. P. Robinson, "A lightweight

transformational approach to support large scale adaptive changes,"
presented at the Proceedings of the 2010 IEEE International Conference on
Software Maintenance, 2010.

[3] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, "A comparative
study of manual and automated refactorings," presented at the Proceedings
of the 27th European conference on Object-Oriented Programming,
Montpellier, France, 2013.

[4] E. Murphy-Hill, C. Parnin, and A. P. Black, "How we refactor, and how we
know it," presented at the Proceedings of the 31st International Conference
on Software Engineering, 2009.

[5] E. Murphy-Hill and A. P. Black, "Refactoring Tools: Fitness for Purpose,"
IEEE Softw., vol. 25, pp. 38-44, 2008.

[6] P. Klint, T. v. d. Storm, and J. Vinju, "RASCAL: A Domain Specific Language
for Source Code Analysis and Manipulation," presented at the Proceedings
of the 2009 Ninth IEEE International Working Conference on Source Code
Analysis and Manipulation, 2009.

[7] J. R. Cordy, "The TXL source transformation language," Sci. Comput.
Program., vol. 61, pp. 190-210, 2006.

[8] C. D. Newman, "A SOURCE CODE TRANSFORMATION LANGUAGE TO
SUPPORT SOFTWARE EVOLUTION," Kent State University, 2017.

[9] M. D. Jong and E. Visser, "Implementing Refactorings in the Spoofax
Language Workbench," SERG Technical Report, pp. 1-19, 2013.

[10] M. Kim, T. Zimmermann, and N. Nagappan, "An Empirical Study of
Refactoring Challenges and Benefits at Microsoft," IEEE Transactions on
Software Engineering., vol. 40, pp. 633-649, 2014.

[11] M. L. Collard, M. J. Decker, and J. I. Maletic, "srcML: An Infrastructure for
the Exploration, Analysis, and Manipulation of Source Code: A Tool
Demonstration," presented at the Proceedings of the 2013 IEEE
International Conference on Software Maintenance, 2013.

[12] H. Li and S. Thompson, "Let's make refactoring tools user-extensible!,"
presented at the Proceedings of the Fifth Workshop on Refactoring Tools,
Rapperswil, Switzerland, 2012.

[13] N. Meng, M. Kim, and K. S. McKinley, "LASE: locating and applying
systematic edits by learning from examples," presented at the Proceedings
of the 2013 International Conference on Software Engineering, San
Francisco, CA, USA, 2013.

[14] R. Rolim, G. Soares, L. D'Antoni, O. Polozov, S. Gulwani, R. Gheyi, et al.,
"Learning syntactic program transformations from examples," presented at
the Proceedings of the 39th International Conference on Software
Engineering, Buenos Aires, Argentina, 2017.

[15] N. Meng, M. Kim, and K. S. McKinley, "Sydit: creating and applying a
program transformation from an example," presented at the Proceedings of
the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, Szeged, Hungary, 2011.

[16] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide,
"Recommendation system for software refactoring using innovization and
interactive dynamic optimization," in Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, 2014, pp. 331-
336.

[17] T. Mens, S. Demeyer, and D. Janssens, "Formalising Behaviour Preserving
Program Transformations," Berlin, Heidelberg, 2002, pp. 286-301.

[18] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E.
Johnson, "Use, disuse, and misuse of automated refactorings," presented at
the Proceedings of the 34th International Conference on Software
Engineering, Zurich, Switzerland, 2012.

[19] G. Kniesel and H. Koch, "Static composition of refactorings," Sci. Comput.
Program., vol. 52, pp. 9-51, 2004.

[20] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, "A Case
Study on the Impact of Refactoring on Quality and Productivity in an Agile
Team," in Balancing Agility and Formalism in Software Engineering, M.
Bertrand, R. N. Jerzy, and W. Bartosz, Eds., ed: Springer-Verlag, 2008, pp.
252-266.

[21] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia, "Do They
Really Smell Bad? A Study on Developers' Perception of Bad Code Smells,"
presented at the Proceedings of the 2014 IEEE International Conference on
Software Maintenance and Evolution, 2014.

[22] A. F. Yamashita and L. Moonen, "Do developers care about code smells? An
exploratory survey," 2013 20th Working Conference on Reverse
Engineering (WCRE), pp. 242-251, 2013.

[23] L. C. L. Kats and E. Visser, "The spoofax language workbench: rules for
declarative specification of languages and IDEs," SIGPLAN Not., vol. 45, pp.
444-463, 2010.

[24] J. Lawall, G. Muller, and R. Urunuela, Tarantula: Killing Driver Bugs Before
They Hatch, 2005.

[25] Y. Padioleau, J. L. Lawall, and G. Muller, "SmPL: A Domain-Specific
Language for Specifying Collateral Evolutions in Linux Device Drivers,"
Electron. Notes Theor. Comput. Sci., vol. 166, pp. 47-62, 2007.

[26] R. L. Akers, I. D. Baxter, and M. Mehlich, "Invited application paper: re-
engineering C++ components via automatic program transformation,"
presented at the Proceedings of the 2004 ACM SIGPLAN symposium on
Partial evaluation and semantics-based program manipulation, Verona,
Italy, 2004.

[27] V. Augustine, "Automating adaptive maintenance changes with SrcML and
LINQ," presented at the Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
Cary, North Carolina, 2012.

41

