
An Empirical Investigation of How and Why Developers
Rename Identifiers

Anthony Peruma
Rochester Institute of Technology
Rochester, New York, United States

axp6201@rit.edu

Mohamed Wiem Mkaouer
Rochester Institute of Technology
Rochester, New York, United States

mwmvse@rit.edu

Michael J. Decker
Bowling Green State University

Bowling Green, Ohio, United States
mdecke@bgsu.edu

Christian D. Newman
Rochester Institute of Technology
Rochester, New York, United States

cnewman@se.rit.edu

ABSTRACT
Renaming is vital to software maintenance and evolution. Develop-
ers rename entities when their original names no longer fit their
behavioral role within the program. This may happen if the entity’s
original name was of poor quality or if the system has evolved such
that the original name needs to be updated to reflect some of this
evolution. In the end, the reason for the rename ultimately falls
under increasing understandability and comprehension. Because
comprehension is so important, and identifiers are the primary way
developers comprehend code, it is critical to understand empirically
how and why identifier names evolve. Armed with an understand-
ing of these two facets of identifier evolution, researchers will be
able to train algorithms to recognize, recommend, or even auto-
matically generate high-quality identifier names. We present an
empirical study of how method, class and package identifier names
evolve to better understand the motives of their evolution. The
empirical validation involves a set of 524,113 rename refactorings,
performed on 3,795 Java systems. In a nutshell, our findings demon-
strate that most rename refactorings narrow the meaning of the
identifiers for which they are applied. Further, we analyze commit
messages to contextualize these renames.

CCS CONCEPTS
• General and reference→ Empirical studies;

KEYWORDS
rename refactoring, natural language processing, program compre-
hension

ACM Reference Format:
Anthony Peruma, Mohamed Wiem Mkaouer, Michael J. Decker, and Chris-
tian D. Newman. 2018. An Empirical Investigation of How and Why Devel-
opers Rename Identifiers . In Proceedings of the 2nd International Workshop

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IwoR ’18, September 4, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5974-0/18/09. . . $15.00
https://doi.org/10.1145/3242163.3242169

on Refactoring (IwoR ’18), September 4, 2018, Montpellier, France. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3242163.3242169

1 INTRODUCTION
The majority of software life-cycle resources are allocated to pro-
gram maintenance [12, 15]. Maintenance heavily relies on program
comprehension since developers typically spend a significant por-
tion of their time in understanding the code they are maintaining
before applying changes, debugging, documenting, etc. It is clear
that making it easier to comprehend code will ease many mainte-
nance activities and improve developer productivity. One of the
primary ways for a developer to come to terms with what a body of
code is doing is through the identifiers in the code. It has been stated
that identifiers make up an estimated 70% of characters within a
software system [14]. Because of this, their meaningful naming is
critical to the program’s comprehension. When an identifier’s name
no longer appropriately describes the role of the identifier in the
software system, a developer will change the name. This change is
called the rename refactoring. Rename refactorings are a common
type of refactoring and are part of Fowler’s taxonomy [1]. Rename
refactorings modify non-functional attributes of a software system
(i.e., the name of the identifier). In renaming an identifier, the new
name should be better suited to describe the identifier’s role in
the current state of the system than the old name. The study of
rename refactorings is gaining more attention in research; it is well
understood that we need a stronger understanding of how natural
language is used to support comprehension and how it evolves with
the software.

Many techniques to support comprehension rely on the analysis
of identifiers [16, 17, 31, 32]. Furthermore, many previous studies
have investigated naming practices, patterns, and how to improve
analysis of identifier names [9, 10, 18, 21, 27]. In particular, a number
of papers explore the idea of debugging, appraising, and generating
identifier names [2, 4, 19]. These have a direct, positive impact
on approaches that synthesize programs [6, 25, 29], which must
understand how developers describe code elements (e.g., name iden-
tifiers, comment on methods) in order to generate natural language
that developers will accept (i.e., text that optimizes developer com-
prehension). Thus, there is a need in the research community for
analyzing identifier naming practices, especially when performed
by developers in real-world scenarios.

26

https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1145/3242163.3242169

IwoR ’18, September 4, 2018, Montpellier, France A. Peruma, M.W. Mkaouer, M.J. Decker, C.D. Newman

In this paper, we present an analysis on the evolution of method,
class, and package identifiers using rename refactorings over the
history of 3,795 Java systems and a total of 524,113 identifiers. The
goal of this study is to extend a portion of the work done by Ar-
naoudova et al. [8] to a much larger number of systems and combine
analysis based on their taxonomy with commit messages to inves-
tigate why developers rename identifiers in particular ways. We
aim to begin understanding why, for example, a developer chooses
to narrow or generalize the meaning of an identifier. To do so, we
address 5 research questions. Similarly to Arnaoudova et al. [8], the
first three research questions are primarily defined to explore our
findings about rename practices. The last two questions analyze the
rename refactorings we have collected to classify the developer’s
rename practices using the context of their development efforts as
well as to provide preliminary results for our future research.

RQ1: What Types of Lexical Changes Are Typically Ap-
plied By a Rename Refactoring? What proportion of renames
are just a change to a single or to multiple terms in an identifier,
what proportion are changes to the order of terms, changes in plu-
rality, changes in capitalization, or addition of separators. For this
research question, we want to know at a high-level what renames
look like. This will give us an idea of how complex renames tend to
be and give us some measure of how much (in terms of constituent
words) identifiers tend to change.

RQ2: What Kinds of Semantic Changes Occur to Terms
Composing IdentifiersWhenTheyAreRenamed?What types
of changes to an identifier’s meaning are most frequent? The goal of
this question will be to explore how often an identifier’s meaning is
broadened, narrowed, preserved, completely changed, added to, or
removed from. The answer to this question will help us determine
typical renaming behavior and help provide finer-grain insight into
rename activity.

RQ3: What Kinds of Grammar Changes Occur to Terms
Composing Identifiers When They Are Renamed? We want
to know when there is a change in the part of speech tag for any
individual term in an identifier. The answer to this question helps
complete our view of what changed. A change in part of speech does
not always mean the term completely changed; some part of speech
changes are due to a change in the original term’s conjugation.
Most importantly, we want to know if it can help us determine
when a semantic change has occurred.

RQ4: To What Extent Can Commit Messages Be Used to
Contextualize Different Types of Semantic Change Rename
Refactorings? If we use topic modeling on a corpus of commit
messages grouped by semantic change category, can we begin rea-
soning about what types of activities are undertaken by developers
when they make different types of semantic changes?

RQ5: What Trends Do We See in the Way Identifiers Are
Renamed? Finally, taking all of the data we have gathered, can
we identify any development activities that correlate with different
types of semantic changes made to identifiers? This question uses
the data we gathered and uses it to help us understand what causes
different types of semantic changes made to identifiers during soft-
ware evolution.

The results help gain an understanding of the causes and conse-
quences of rename refactorings. In particular, we see the results as

a first step towards better supporting tools that try to understand
developer behavior when it comes to naming. This will eventually
help increase adoption of technology that supports identifier name
evolution and the creation of better guidelines for how renames
should be applied and supported during maintenance.

2 ANALYSIS OF RENAMES
Arnaoudova et al [8] created a taxonomy of operations carried
out during rename refactorings. We use this taxonomy to examine
rename refactorings and categorize them into the different types
prescribed by this taxonomy. In this section, we will briefly discuss
the taxonomy, but encourage the reader to read the original work
for a more thorough discussion of each category. The taxonomy is
made up of five high-level categories which are presented below.

2.1 Taxonomy for Rename Refactorings
Entity Kind: This category is concerned with what source code
entity a given identifier represents. For example, the identifier may
be the name of a type, class, getter, setter, etc.

Form of Renaming: This category is interested in the lexical
change made to the identifier. They break this down into a few
subcategories: Simple, complex, reordering, and formatting. Simple
changes are those that only add, remove, or change one term in the
identifier; complex are those that add, remove or change multiple
terms. Reordering is where two or more terms in an identifier
switch positions (i.e., GetSetter becomes SetterGet), and formatting
changes are those where there is no renaming but a letter in a term
changes case or a separator (e.g., underscore) is added or removed.

Semantic Changes: These are changes due to adding/removing
terms or modifying terms (e.g., to another term that is a synonym of
the original) such that the meaning of the identifier may have been
modified. The following heuristics are used to figure out whether
the idenifier’s semantics have been preserved or modified.

We consider meaning preserved if one of the following holds:
1) The change added/removed a separator, 2) the change expanded
an abbreviation, 3) the change collapsed a term into an abbreviation,
4) the old term was changed to a new term which is a synonym
of the old term, 5) multiple old terms were changed to multiple
new terms which are synonyms OR use or removal of negation
preserves meaning of the identifier (i.e., ItemNotVisible becomes
ItemHidden).

We considermeaningmodified if one of the following holds: 1)
Generalize meaning– the old term is renamed to a hypernym of itself
OR a term (i.e., adjective or noun) was removed which generalizes
the identifier (e.g., GetFirstUnit becomes GetUnit). 2) Narrowing
meaning– the old term is renamed to a hyponym of itself OR a term
was removed which narrows the meaning of the identifier (e.g.,
GetUnit becomes GetFirstUnit). 3) We consider meaning changed
(i.e., not narrowed or generalized) when an old term is changed to a
new term which is unrelated to the old; when a new term is the old
term’s meronym/holonym, or antonym; OR when multiple terms
are changed AND a negation reverses a synonym of the old term.
4) Add meaning via the addition of one or more new term to the
identifier AND the addition does not fall into one of the categories
above (e.g., narrow meaning). 5) Remove meaning via removal of

27

An Empirical Investigation of How and Why Developers Rename Identifiers IwoR ’18, September 4, 2018, Montpellier, France

one or more terms from the identifier AND the removal does not
fall into one of the categories above (e.g., generalize meaning).

Grammar Changes: These are modifications which cause the
part of speech categorization of a term to change. For example, if
FireCannon() becomes CannonFired() then fire changed from a verb
to an adjective.

There is also a none category, for when changes did not fall into
any of the above categories but also did not imply a modification
of meaning. Examples of these are formatting changes, change in
case, etc.

2.2 Contextualizing Rename Refactorings
Developers rename identifiers for multiple reasons. Through careful
analysis of rename refactorings, one can gain insight into how
developers choose their words, why they choose certain types of
words over others, and how to mimic this process automatically.
In this subsection, we show examples of how developer activity
recorded in commit messages is reflected in their rename choices.

By analyzing the following method rename: setDisableBinLog-
Cache → setEnableReplicationCache, we observe that the meaning
of the name has changed; the developer has modified the name by
changing disable to enable. This change is reflected in the commit
message entered by the developer: “Changes replication caching to
be disabled by default" Similarly, the renaming of a class from Key
→ EntityKey demonstrates an act of narrowing the meaning of the
identifier. Once again, the purpose of this rename is reflected in the
commit message: “Rename Key to EntityKey to prepare specialized
caches".

Developers may also rename identifiers to 1) better represent the
existing functionality and not when they are changing or narrowing
it, or 2) adhere to naming standards or correcting a spelling/grammatical
mistake. For example, here the developer renamed the class TestProx-
yController → ProxyControllerTest by reordering the term names
to “...fixed names that were not in standards". In the next example,
the developer preserves the meaning of a method by renaming it
from inactivate → deactivate, through the use of a synonym. This
is, again, reflected in the commit message: “Renaming method to
proper English...", where renaming to ‘proper English’ indicates that
the meaning has not been modified but should now be easier to
comprehend.

Of course, examining every single commit message is infeasible
due to the sheer number of them in the set of rename refactorings
used in this study. Therefore, we use a topic modeling algorithm
called Latent Dirichlet Allocation (LDA) to help us understand the
main topics in a large set of documents (commit messages). The
aim is to use words in commit messages (such as those above) to
identify the reason behind different semantic changes.

3 RELATEDWORK
Since the choice of adequate naming for identifiers is critical for
code understandability [13], several studies have focused on sug-
gesting more meaningful names for identifiers when identifying
poorly named code elements. Liblit et al. [22] discusses naming in
several programming languages and makes observations about how
natural language influences the use of words in these languages.
Høst et al. [19] designed automated naming rules using method

signature elements, i.e., return type, parameters names and types,
and control flow. Theymined several projects and identified naming
bugs, i.e., violations of their naming rules. Similarly, Arnaoudova
et al. [9] defined a catalog of linguistic anti-patterns that are found
to deteriorate the quality of code understanding. They have shown
the negative impact of linguistic anti-patterns by conducting two
empirical studies with software developers and finding that the
majority of programmers perceive anti-patterns as poor naming
practices [7].

Arnaoudova et al. [8] proposed REPENT, an approach to ana-
lyze and classify identifier renamings. They mined several rename
attribute operations and then contrasted between the old and new
namings using the lexical database Wordnet [26]. The authors have
shown the impact of proper naming on minimizing software devel-
opment effort.

Allamanis et al. [3] used statistical language models in mining
natural source code naming conventions. They extended their work
to suggest renaming methods based on their bodies and renaming
classes based on its own methods. Their recommendation uses a
neural probabilistic language model to input a set of words, coded
in a vector, which is fed to a hidden layer of the neural network.
The output layer evaluates the conditional probability of each word
in the vocabulary given the input sequence.

Liu et al.[23] proposed an approach that monitors the rename
activities performed by developers and then recommends a batch
of rename operations to all closely related code elements whose
names are similar to that of the renamed element by the developer.
Then, they extended their approach to make it independent from
conducted renaming operations [24].

4 EXPERIMENTAL SETUP
We conduct a two-phased approach to answer our research ques-
tions. The initial phase consists of the retrieval of open-source
Java projects and the detection of refactoring operations that oc-
cur throughout the development history of each retrieved project.
The second phase of the experiment involves the analysis of the
detected renaming operations as a means of understanding the
type of approaches utilized by developers when changing identifier
names. Figure 1 depicts the flow of steps involved in this experiment.
Described below are details of each phase.

Start
Cloned

repositories Extract commit log

Detect refactoringsDetect reanming
forms/complexity

Detect renaming
semantic types

Generate re-
naming topics

Detect renaming
part of speech Stop

Figure 1: Overview of Experiment Methodology

28

IwoR ’18, September 4, 2018, Montpellier, France A. Peruma, M.W. Mkaouer, M.J. Decker, C.D. Newman

4.1 Data Collection & Refactoring Detection
To ensure that our study accurately captures real-world identifier
renaming operations it was imperative that our research be based
on a representative dataset. To this extent, our study utilizes the
list of GitHub based Java projects made available by [5]. To identify
refactoring operations performed by developers on these projects,
we use RefactoringMiner [30] on each project. By enumerating
through the commit history of each project, RefactoringMiner is
able to detect over 1,000,000 refactoring operations in 3,795 projects.
As shown in Table 1, from the detected refactoring types, 43.36%
refactoring operations are related to renaming operations (i.e., Pack-
age, Class and Method renaming). Furthermore, developers tend to
performmore rename operations onmethod names when compared
to class or package names; with projects, on average, containing
approximately 9 package, 47 class, and 122 method renames. Hence,
not surprisingly, the number of commits associated with method
renames is also significantly higher. However, the occurrences of
the different types of rename refactorings in the projects, contained
in our dataset, have similar distributions.

Table 1: Detected Refactorings - Data Overview

Refactoring Operation Count Percentage
Refactoring operation occurrences

Rename Package 18,372 1.52%
Rename Class 129,206 10.69%
Rename Method 376,535 31.15%
Others 684,857 56.65%

Projects containing refactoring operations

Rename Package 1,875 16.32%
Rename Class 2,735 23.80%
Rename Method 3,086 26.86%
Others 3,795 33.03%

Commits containing refactoring operations

Rename Package 12,516 2.44%
Rename Class 54,590 10.66%
Rename Method 122,600 23.94%
Others 322,479 62.96%

4.2 Rename Analysis
To understand the renaming changes made by developers, we per-
form a tool-based taxonomy analysis on the original and renamed
identifier names. Since we were unable to obtain a copy of REPENT,
we attempt to stick as close to the tools and technologies they
report using in the original study [8]. To this end, we utilize the
Natural Language Toolkit (NLTK, https://www.nltk.org/), which
has an implementation of Wordnet [26], to obtain semantic and
part of speech details about the identifier names.

Prior to performing our analysis, we perform preprocessing on
the original and new names of the renamed identifiers. Given that

most identifier are composed of multiple terms, our approach in-
volved splitting each name into a list of terms (i.e., tokenization).
To perform the splitting, we utilize the Ronin splitter algorithm im-
plemented in the Spiral package [20]. Table 2 provides an overview
of the most frequent number of terms that constitute the name of
the identifier for packages, classes, and methods.

Table 2: Most Frequent Number of Terms Forming an Iden-
tifier Name

Identifier
type

Terms in
orig. name

Terms in
new name

Total
occ Percentage

Package 1 1 12,672 68.97%
Class 3 3 17,387 13.46%
Method 3 3 66,080 17.55%

Our semantic analysis follows the approach presented in [8]. We
compare each term of the original and new identifier for semantic
relationships such as synonyms, hyponym, hypernym, antonym,
meronyms, and holonyms. If a relationship does not exist, we
perform a stem-based check between the two identifiers and re-
compare them. We utilize the Porter, Lancaster, and Snowball stem-
ming algorithms for this purpose. We also perform a lemmati-
zation check using NLTK’s algorithm. We used multiple stem-
ming/lemmatization techniques to try and find as many matches as
possible. For every detected match, each of which we call amatched
term, we also derive the part of speech associated with the new
and original terms. Additionally, we use their heuristics [8] to de-
termine semantic changes as summarized in Section 2 and fully
described in the original work. Specifically, we identify renames
that preserve, change, narrow, broaden, adds, or removes meaning
from the old to the new identifier. We also detect the complexity of
the rename (# terms changed), term reordering, formatting changes,
and addition/removal of terms.

5 EVALUATION
This section reports on the findings we observed when analyzing
the rename refactorings.

5.1 RQ1: What Types of Lexical Changes Are
Typically Applied By a Rename
Refactoring?

As shown in Table 3, the majority of renamings fall under the Sim-
ple category, meaning developers change only one term via rename.
Furthermore, a breakdown of Simple renamings shows that approx-
imately 57% of the renamings involved replacing a single term in
the name (e.g., core → engine) while 24% involve the addition of a
term (e.g., QueueFactory→ TaskQueueFactory) and 19% involve
the removal of a term (e.g., RewriteEventBase → RewriteBase).
Complex renamings are the next most frequent categorization at
35% of detected renamings. We observe that the two most common
types of complex renaming patterns are the addition of two terms
along with the removal of a single term (e.g., RecentURLEvent →
RecentResourceNamesEvent) and the removal of two terms along
with the addition of a single term (e.g., FormOpenIdLoginServlet

29

https://www.nltk.org/

An Empirical Investigation of How and Why Developers Rename Identifiers IwoR ’18, September 4, 2018, Montpellier, France

→ FormAuthLoginServlet) occurring at 18% and 17% respectively
in the dataset. Formatting and reordering are the least frequent,
indicating that most renames are not just changes to the format
(e.g., adding separator or change capitalization). All in all, while
simple renamings are the most common, complex renamings are
very common as well; both should be high priority for study.

Table 3: Forms of Identifier Renamings

Form Package Class Method Total %

Formatting 210 3,271 24,236 27,717 5.29%
Reordering 3 2,479 2,223 4,705 0.90%
Simple 14,072 77,722 21,5651 307,445 58.66%
Complex 4,087 45,734 134,425 184,246 35.15%

Total 18,372 129,206 376,535 524,113 100.00%
Percentage 3.51% 24.65% 71.84% 100.00%

5.2 RQ2: What Kinds of Semantic Changes
Occur to Terms Composing Identifiers
When They Are Renamed?

Table 4 contains the distribution of different categories of semantic
changes made by rename refactorings. We observe from this table
that developers most frequently narrow the meaning of identifiers
(44.8%) when performing a rename. One reason for this may be
that developers initially construct identifier names that reflect a
generalized or incomplete understanding of the ultimate function-
ality, and through updates they specialize the name of the identifier
to reflect increasing understanding or specialization of the entity
(i.e., class, method). Another reason may be that the system evolves
and functionality specializes as a part of this evolution. Conversely,
renamings that broadened the meaning of the word accounted
for approximately 11% of matches; significantly less than narrow
meaning.

Looking at the preserved meaning category, approximately 42%
of matches in this category are synonym based. For example, when
the developer renames the class from DefaultLocationProvider →
DefaultLocationSupplier, the developer replaces the term Provider
with a synonym, Supplier. Another 36% of the term matches are
only after stemming (comprising of 20%, 16%, and 0.07% Porter, Lan-
caster and Snowball matches respectively). For example, renaming
a method name from checkInitialize → checkInitialized results in a
stem match for the terms Initialize and Initialized using the Porter
stemming algorithm. Moreover, the last 22% of the term matches
are detected only after using the NLTK WordNet Lemmatizer. Con-
versely, we find remarkably few instances where a rename changes
the meaning of an identifier (0.24%) according to the heuristics we
use.

Finally, we also detect occurrences of identifier renamings that
either added or removed a meaning to the identifier name. For
example, a developer renaming of a method from targetNode →
getTargetNode adds the term get to the new name to better describe
the purpose of the method. Similarly, renaming a method name
from applyTo→ apply removes the term To from the new name. Add
meaning is more common (16.6%) than remove meaning (2.73%).

This lends support to the idea that identifiers generally narrow in
meaning over time.

Table 4: Frequency of Semantic Change Rename Refactor-
ings

Category Package Class Method Total %

Preserve 1,091 9,659 30,054 40,804 7.8%
Change 4 112 1,140 1,256 0.2%
Narrow 744 77,606 156,804 235,154 44.9%
Broaden 467 16,489 41,283 58,239 11.1%
Add 310 11,910 74,657 86,877 16.6%
Remove 131 2,045 12,158 14,334 2.7%
None 15,625 11,385 60,439 87,449 16.7%

Total 18,372 129,206 376,535 524,113 100%
Percentage 3.51% 24.65% 71.84% 100%

5.3 RQ3: What Kinds of Grammar Changes
Occur to Terms Composing Identifiers
When They Are Renamed?

As depicted in Figure 2, the majority of matched terms in the
renamed identifiers demonstrate grammar (i.e., part of speech)
changes. For example, a part of speech change occurs when re-
naming the class from ProfilingDataSource → ProfiledDataSource.
The term Profiling in the original name is a present participle verb.
This term is replaced with a past participle verb, Profiled, in the
new name.

30.18 %

No Change

69.82 %

Changed

Figure 2: Part of Speech Changes for 42,060 Matched Terms

The most common grammar changes are depicted in Table 6,
where we see that verb → noun, noun (singular) → noun (plural),
and verb (present) → verb (past) make up the bulk of all grammar
changes. Given this, an important follow up question is whether
these actually indicate a change or modification of the identifier’s
meaning with respect to the heuristics we use. While changing
from singular→ plural or past→ present are not likely candidates,
changing from verb→ noun may correlate with some modification
in meaning.

We investigated this question, and while verb→ noun changes
are very common, there is very little evidence that the grammar

30

IwoR ’18, September 4, 2018, Montpellier, France A. Peruma, M.W. Mkaouer, M.J. Decker, C.D. Newman

change is indicative of a change or modification in the meaning
of the identifier. In fact, there is a significant amount of evidence
that any grammar change indicates preservation of the identifier’s
meaning after a rename. As reported in Table 5, the majority of the
part of speech changes fall under the preserve meaning semantic
category. A breakdown on the preserve meaning-based changes
shows that synonym-based matches contributed to most of the part
of the speech changes, closely followed by lemmatized matches; an
overview is provided in Table 6. This suggests that the grammar
changes are primarily causedwhen a term in an identifier is changed
to a closely related term (i.e., synonym) or a different inflection of
the term (i.e., lemma or stem).

Table 5: Total Number of Grammar Changes Detected Cor-
related with Semantic Change

Semantic change type Total Percentage

Grammar change preserved meaning 29,110 99.13%
Grammar change changed meaning 256 0.87%

Table 6: Most Frequent Preserve-Meaning Part of Speech
Changes

Preserve meaning
match type

Original term
part of speech

New term
part of speech Total Percentage

Synonym Verb Noun (singular) 13,178 45.27%
WordNet Lemmatizer Noun (singular) Noun (plural) 8,752 30.07%
Porter Stemmer Verb (present) Verb (past) 5,226 17.95%
Lancaster Stemmer Verb (past) Noun (singular) 1,927 6.62%
Snowball Stemmer Noun (singular) Adverb 27 0.09%

5.4 RQ4: To What Extent Can Commit
Messages Be Used to Contextualize
Different Types of Semantic Change
Rename Refactorings?

To begin understandingmore aboutwhy identifiermeanings change
in different ways (e.g., narrow in meaning), we use commit mes-
sage text associated with a refactoring based rename. Our approach
involves the use of Latent Dirichlet Allocation (LDA) [11] to dis-
cover and generate topics contained within the commit messages
automatically. To this end, we utilize the LDA implementation con-
tained within gensim [28], a Python-based topic modeling library.
To ensure the generation of reliable topics, the commit messages
are first pre-processed before the generation of the LDAmodel. The
pre-processing task includes the removal of stopwords (via NLTK’s
corpus of stopwords), removal of numeric values and stemming
of individual words. We then agglomerate all commit messages
into seven corpora; one for each of the semantic change categories
(i.e., preserve, change, narrow, broaden, etc) and run LDA on each
corpus independently.

We show an overview of the topics generated by LDA in Ta-
ble 7 for each of the seven types of semantic change classifications
described in this paper including the none category. Next to each
word in parenthesis is the probability score assigned by LDA. While
we generate five words and five topics for each semantic change

category, Table 7 only presents the top 2 topics (labeled A and B)
for each category due to space constraints. Lastly, it is worth noting
that for each topic we present the number of words processed to
show how many words LDA uses to form these topics. Almost
every category has more than 100k words with the exception of
Remove meaning and Change meaning. Change meaning, in partic-
ular, containes very few words and the quality of the output from
LDA suffers as a result.

The first observation we note in Table 7 is that the words test, re-
name, and fix have a relatively higher score according to LDA. This
indicates that developers perform renames in test- or fix-related
commits very often. In the case of fix, it seems likely that the re-
names occurr after a developer addressed some issue and felt that
identifier names need to be modified in light of the changed code. It
also seems relatively frequent for developers to explicitly state that
they are performing a rename within the commit message, since
the term rename appears as the most relevant word frequently.

Examining the rest of the table, there is more variance in the
words that appear. Words like ad and add (where ad is a stemmed
version of add) appear relatively frequently in the narrow, broaden,
and add meaning categories. This may indicate that adding code
correlates with these types of renames. Because narrow meaning
is the most common semantic change type (Table 4), it could be
that as code evolves and grows, identifier names tend to narrow
in meaning overall and, failing that, they become longer. That is,
they specialize as code specializes. This does not hold in all cases,
seeing as how add and ad occur with a broaden meaning, which
makes up 58k (11%) of semantic change renamings we detected.
Change meaning has too few words in its corpora compared to the
other categories. The results from LDA are weaker relative to other
categories and the terms that appear in its topics are not exclusively
unique to it.

Preserve and Remove meaning lack ad or add in their commit
messages at the topic level, which is not surprising. If we assume
adding tends to modify meaning somehow (i.e., narrow, broaden,
add) then Preserve and Remove should not include these terms.
Instead, terms like rename and refactor are more common in these
and Add meaning than in others. Interestingly, Remove meaning
does not include terms like remove, delete, etc. It is also the category
with the second least number of terms LDA has to work with after
Change meaning. Thus, like Change meaning, results here are less
likely to generalize well compared to some of the other categories.
The only other term in Removemeaning that is relatively significant
compared to other topics is method.

Finally, the None category contains a number of terms that are
linked with package renamings. This may indicate that the heuris-
tics we use from the taxonomy underperform on package renam-
ings. Regardless, package renamings are more likely to end up in
the None category. In this regard, this preliminary observation is
subject of investigation in our future work in order to correctly
categorize package renamings.

To summarize, there are interesting trends in the way identifiers
are renamed and the types of activities developers are undertaking
according to commit messages. While it is difficult to pinpoint the
developer’s intention by only analyzing at the level of code, our
findings do provide avenues for future research.

31

An Empirical Investigation of How and Why Developers Rename Identifiers IwoR ’18, September 4, 2018, Montpellier, France

Table 7: LDA Generated Topics for Semantic-Based Renam-
ings

Topic Word #1 Word #2 Word #3 Word #4
Classification Type: Preserve Words Processed: 101,378

A renam
(0.073)

method
(0.023)

clean
(0.013)

refactor
(0.012)

B test
(0.067)

fix
(0.060)

refactor
(0.027)

issu
(0.019)

Classification Type: Change Words Processed: 3,274

A test
(0.027)

fix
(0.015)

ad
(0.014)

chang
(0.013)

B name
(0.022)

chang
0.019)

fix
(0.016)

class
(0.014)

Classification Type: Narrow Words Processed: 473,541

A test
(0.081)

fix
(0.030)

ad
(0.022)

add
(0.014)

B fix
(0.049)

ad
(0.029)

add
(0.026)

support
(0.024)

Classification Type: Broaden Words Processed: 99,163

A test
(0.086)

ad
(0.032)

fix
(0.023)

chang
(0.016)

B add
(0.034)

support
(0.022)

ad
(0.015)

api
(0.013)

Classification Type: Add Words Processed: 141,678

A test
(0.090)

ad
(0.034)

fix
(0.023)

class
(0.012)

B fix
(0.086)

renam
(0.046)

issu
(0.034)

method
(0.029)

Classification Type: Remove Words Processed: 30,373

A test
(0.082)

chang
(0.017)

fix
(0.015)

name
(0.015)

B renam
(0.029)

method
(0.029)

refactor
(0.025)

chang
(0.016)

Classification Type: None Words Processed: 187,878

A test
(0.066)

fix
(0.062)

name
(0.026)

packag
(0.019)

B renam
(0.049)

java
(0.017)

core
(0.016)

org
(0.013)

5.5 RQ5: What Trends Do We See in the Way
Identifiers Are Renamed?

In RQ1, using Table 3, we find that most changes are simple; they
only change one term (59% are simple). However, a significant
number of them change multiple terms (35% are complex). This is
to say that a large number of renames modify two or more terms,
which is the majority of terms with respect to the most frequent
size of identifiers in method and classes (Table 2). Additionally, from
RQ2, using Table 4, we know that a significant portion of these
narrow, broaden, or add (45%, 17%, and 11% respectively) to the
meaning of the identifier. To get a better handle on this data, we turn
to Table 8, which shows how many simple and complex renamings
are categorized under each category of semantic changes. The table
shows that the majority of both complex and simple renamings
narrow the meaning of their identifiers, with Add meaning and

Broaden meaning being the next two most common. We also know
from RQ4 that commit messages most frequently reference adding,
fixing, tests in reference to these three categories.

We can surmise from this that future work should take a closer
look at all categories, but these three in particular (at least, at the
level of methods, classes, and packages). While analyzing the com-
mit message gives us a high-level view of why different types of
renames are applied in practice, a more fine grain analysis is re-
quired to understandwhat is going on at the level of source code.We
can use data from these commit message trends to begin exploring
the relationship between, for example, adding code and narrow-
ing the meaning of identifiers. Additionally, in RQ3 we observe
that grammar changes are strongly correlated with preservation
of identifier meaning. While more study is required, this result is
interesting and can be used to model grammar changes that indicate
preservation versus those which require further investigation.

The conclusion we draw for this research question is that rename
refactorings (whether simple or complex) clearly narrow the mean-
ing of identifiers more often than not. More research is required to
fully understand why and what types of changes or activities pref-
ace different types of semantic changes, but having identified the
most prolific categories and gained some high-level understanding
of what developers report when performing these changes, we can
now focus on these activities to help us understand how changes
to (and particularly addition of) code affect the decision to rename
and how to differentiate between source code level additions that
cause, for example, a narrowing of identifier meaning.

Table 8: Renaming-Complexity for Semantic Changes

Category Simple Complex Total Percentage

Preserve 18,577 21,853 40,430 8.22%
Change 616 612 1,228 0.25%
Narrow 146,391 86,512 232,903 47.37%
Broaden 48,934 9,297 58,231 11.84%
Add 58,428 28,082 86,510 17.59%
Remove 9,459 4,875 14,334 2.92%
None 25,040 33,015 58,055 11.81%
Total 307,445 184,246 491,691 100.00%
Percentage 62.53% 37.47% 100.00%

6 THREATS TO VALIDITY
The focus of this study is limited to open source Java projects and
so may not be representative. However, we mitigate this threat
by performing the study on a large and diverse (in size, age, and
committers) corpus of systems. The type and accuracy of detected
renaming refactorings are limited to RefactoringMiner. However,
RefactoringMiner is frequently used in research, has high preci-
sion/recall scores, and the analysis of a large quantity of method,
class, and package identifiers are beneficial. Additionally, our study
on the semantic characteristics of renamed identifiers is limited
to the WordNet corpus and algorithms in NLTK. Other tools for
analyzing identifiers may give varying results. We tried to obtain
REPENT for use in this study; however, it was unavailable. Instead,
we use a toolset very close to what was used in REPENT [8].

32

IwoR ’18, September 4, 2018, Montpellier, France A. Peruma, M.W. Mkaouer, M.J. Decker, C.D. Newman

Finally, our results did differ from the original study [8] in one
way that is significant to this study: The distribution of semantic
changes. For example, we found very few change meaning renames,
but Arnaoudova et al. found that theywere one of themost common.
We found many narrow meaning renames, but Arnaoudova found
few. We did not directly compare to their work because of the fact
that Arnaoudova considered all identifiers while we only considered
method, class, and package identifiers. They also did not report
numbers for identifiers separated by where they were found (e.g.,
in a class name). Combined with the fact that we could not use
REPENT, we felt it was inappropriate to directly compare results.

7 CONCLUSIONS AND FUTUREWORK
We present a study that analyzes the identifier names of 500k re-
name refactorings on Java methods, classes, and packages; fitting
each rename to this taxonomy and then contextualizing these re-
names by analyzing commit messages. We believe that a firm grasp
of what these renames manifest is important because techniques
that recommend, appraise, or generate identifiers are trying to
mimic any developer-centric activity in order to predict what a de-
veloper would accept. By investigating what causes a developer to,
for example, perform complex renamings that broaden the meaning
of an identifier versus simple renamings that narrow an identifier’s
meaning, we can more accurately model how developers think
about identifier names and their evolution. Further, we can more in-
telligently suggest words that adequately fit in the type of changes
and maintenance tasks developers are assigned to.

In our future study, we plan to extend this work to include
more types of identifiers. We will also begin using static analysis
techniques to analyze source code changes that influence different
types of renamings. We would like to see how changes to the code
surrounding an identifier influence the renaming action taken by
developers and will use some of the results from this study to help
direct the process. This may mean looking at refactorings and other
changes that occur in tandem with rename refactorings.

REFERENCES
[1] Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1999.
[2] S. L. Abebe and P. Tonella. Automated identifier completion and replacement. In

2013 17th European Conference on Software Maintenance and Reengineering, pages
263–272, March 2013.

[3] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning natural coding con-
ventions. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 281–293. ACM, 2014.

[4] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Suggesting accurate method
and class names. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pages 38–49, New York, NY, USA, 2015.
ACM.

[5] M. Allamanis and C. Sutton. Mining source code repositories at massive scale
using language modeling. In Proceedings of the 10thWorking Conference onMining
Software Repositories, pages 207–216. IEEE Press, 2013.

[6] J. Andersen, A. C. Nguyen, D. Lo, J. L. Lawall, and S. C. Khoo. Semantic patch
inference. In 2012 Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pages 382–385, Sept 2012.

[7] V. Arnaoudova, M. Di Penta, and G. Antoniol. Linguistic antipatterns: What
they are and how developers perceive them. Empirical Software Engineering,
21(1):104–158, 2016.

[8] V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol, and Y. G.
GuÃľhÃľneuc. Repent: Analyzing the nature of identifier renamings. IEEE
Transactions on Software Engineering, 40(5):502–532, May 2014.

[9] V. Arnaoudova, M. D. Penta, G. Antoniol, and Y. G. GuÃľhÃľneuc. A new family of
software anti-patterns: Linguistic anti-patterns. In 2013 17th European Conference
on Software Maintenance and Reengineering, pages 187–196, March 2013.

[10] D. Binkley, M. Hearn, and D. Lawrie. Improving identifier informativeness using
part of speech information. In Proceedings of the 8th Working Conference on
Mining Software Repositories, MSR ’11, pages 203–206, New York, NY, USA, 2011.
ACM.

[11] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

[12] B. W. Boehm. Software engineering economics. IEEE Transactions on Software
Engineering, SE-10(1):4–21, Jan 1984.

[13] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp. Exploring the influence of
identifier names on code quality: An empirical study. In Software Maintenance
and Reengineering (CSMR), 2010 14th European Conference on, pages 156–165.
IEEE, 2010.

[14] F. Deissenbock and M. Pizka. Concise and consistent naming [software system
identifier naming]. In 13th International Workshop on Program Comprehension
(IWPC’05), pages 97–106, May 2005.

[15] L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional,
2(3):17–23, May 2000.

[16] S. Haiduc, J. Aponte, and A. Marcus. Supporting program comprehension with
source code summarization. In 2010 ACM/IEEE 32nd International Conference on
Software Engineering, volume 2, pages 223–226, May 2010.

[17] E. Hill. Integrating Natural Language and Program Structure Information to
Improve Software Search and Exploration. PhD thesis, Newark, DE, USA, 2010.
AAI3423409.

[18] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. Pollock, and K. Vijay-
Shanker. Amap: Automatically mining abbreviation expansions in programs to
enhance software maintenance tools. In Proceedings of the 2008 International
Working Conference on Mining Software Repositories, MSR ’08, pages 79–88, New
York, NY, USA, 2008. ACM.

[19] E. W. Host and B. M. Ostvold. Debugging method names. In Proceedings of the
23rd European Conference on ECOOP 2009 — Object-Oriented Programming, Genoa,
pages 294–317, Berlin, Heidelberg, 2009. Springer-Verlag.

[20] M. Hucka. Spiral: splitters for identifiers in source code files. 2018.
[21] D. Lawrie and D. Binkley. Expanding identifiers to normalize source code vocab-

ulary. In 2011 27th IEEE International Conference on Software Maintenance (ICSM),
pages 113–122, Sept 2011.

[22] B. Liblit, A. Begel, and E. Sweetser. Cognitive perspectives on the role of naming
in computer programs. In In Proc. of the 18th Annual Psychology of Programming
Workshop, 2006.

[23] H. Liu, Q. Liu, Y. Liu, and Z.Wang. Identifying renaming opportunities by expand-
ing conducted rename refactorings. IEEE Transactions on Software Engineering,
41(9):887–900, 2015.

[24] H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo. Nomen est omen: Exploring
and exploiting similarities between argument and parameter names. In Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on, pages 1063–
1073. IEEE, 2016.

[25] N.Meng,M. Kim, and K. S. McKinley. Lase: Locating and applying systematic edits
by learning from examples. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 502–511, Piscataway, NJ, USA, 2013. IEEE
Press.

[26] G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39–41, 1995.

[27] C. D. Newman, R. S. AlSuhaibani, M. L. Collard, and J. I. Maletic. Lexical categories
for source code identifiers. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 228–239, Feb 2017.

[28] R. Řehůřek and P. Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/
publication/884893/en.

[29] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki,
and B. Hartmann. Learning syntactic program transformations from examples.
In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE),
pages 404–415, May 2017.

[30] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions of
github contributors. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, pages 858–870,
New York, NY, USA, 2016. ACM.

[31] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker. Towards
automatically generating summary comments for java methods. In Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering,
ASE ’10, pages 43–52, New York, NY, USA, 2010. ACM.

[32] B. Zhang, E. Hill, and J. Clause. Towards automatically generating descriptive
names for unit tests. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 625–636, Sept 2016.

33

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

	Abstract
	1 INTRODUCTION
	2 ANALYSIS OF RENAMES
	2.1 Taxonomy for Rename Refactorings
	2.2 Contextualizing Rename Refactorings

	3 RELATED WORK
	4 EXPERIMENTAL SETUP
	4.1 Data Collection & Refactoring Detection
	4.2 Rename Analysis

	5 EVALUATION
	5.1 RQ1: What Types of Lexical Changes Are Typically Applied By a Rename Refactoring?
	5.2 RQ2: What Kinds of Semantic Changes Occur to Terms Composing Identifiers When They Are Renamed?
	5.3 RQ3: What Kinds of Grammar Changes Occur to Terms Composing Identifiers When They Are Renamed?
	5.4 RQ4: To What Extent Can Commit Messages Be Used to Contextualize Different Types of Semantic Change Rename Refactorings?
	5.5 RQ5: What Trends Do We See in the Way Identifiers Are Renamed?

	6 THREATS TO VALIDITY
	7 CONCLUSIONS AND FUTURE WORK
	References

