
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 1

Adversarial Action Prediction Networks
Yu Kong, Member, IEEE, Zhiqiang Tao, Student Member, IEEE and Yun Fu, Senior Member, IEEE

Abstract—Different from after-the-fact action recognition, action prediction task requires action labels to be predicted from partially
observed videos containing incomplete action executions. It is challenging because these partial videos have insufficient discriminative
information, and their temporal structure is damaged. We study this problem in this paper, and propose an efficient and powerful deep
network for learning representative and discriminative features for action prediction. Our approach exploits abundant sequential context
information in full videos to enrich the feature representations of partial videos. This information is encoded in latent representations
using a variational autoencoder (VAE), which are encouraged to be progress-invariant. Decoding such latent representations using
another VAE, we can reconstruct missing information in the features extracted from partial videos. An adversarial learning scheme is
adopted to differentiate the reconstructed features from the features directly extracted from full videos in order to well align their
distributions. A multi-class classifier is also used to encourage the features to be discriminative. Our network jointly learns features and
classifiers, and generates the features particularly optimized for action prediction. Extensive experimental results on UCF101,
Sports-1M and BIT datasets demonstrate that our approach remarkably outperforms state-of-the-art methods, and shows significant
speedup over these methods. Results also show that actions differ in their prediction characteristics; some actions can be correctly
predicted even though only the beginning 10% portion of videos is observed.

Index Terms—Action Prediction, Action Recognition, Sequential Context, Variational Autoencoder, Adversarial Learning.

F

1 INTRODUCTION

P REDICTING an action before the action execution ends
in real-world videos is an emerging and important

computer vision problem with a wide range of applications
such as visual surveillance and traffic accident avoidance. In
contrast to action recognition, action prediction approaches
do not have the luxury of waiting for the entire action exe-
cution before having to infer the action label. For example,
it would be beneficial if an intelligent system on a vehicle
can predict a traffic accident before it happens; opposed to
recognizing the dangerous accident event thereafter. More
importantly, it is essential that the intelligent system can
make accurate predictions at the very beginning stage of a
video, for instance, when only the beginning 10% frames
of a full video is observed. The prediction results would
have dual benefits, not only would it demonstrate the
comprehension of the entire action executions, but it would
also serve an efficient and proactive alerting of forthcoming
actions before they are fully executed.

Despite its importance, action prediction is a very chal-
lenging task because its input data are temporally incom-
plete, and decisions must be made based on such incomplete
action executions. Nevertheless, certain actions are pre-
dictable at their early stage if particular temporal patterns
are observed and temporal context is available. Consider,
for example, a video of a triple jump. We could imagine

• Yu Kong is with B. Thomas Golisano College of Computing and Infor-
mation Sciences, Rochester Institute of Technology, Rochester, NY. This
work was primarily done when Yu Kong was with Department of ECE,
Northeastern University, Boston, MA.
E-mail: yu.kong@rit.edu.

• Zhiqiang Tao is with Department of ECE, Northeastern University,
Boston, MA.
E-mail: zqtao@ece.neu.edu.

• Yun Fu is with Department of ECE and College of CIS, Northeastern
University, Boston, MA.
E-mail: yunfu@ece.neu.edu.

Manuscript received February 9, 2018; revised February 30, 2018.

that a player is very likely to jump after running since
we have seen this type of sport elsewhere1. The sequential
context of the full video observation provides us with the
knowledge that the triple jump action consists of running
and jumping, and how the action appearance evolves in
the temporal domain. This crucial information transferred
along the temporal axis is the key to action prediction as it
helps us to understand the action evolution in the full action
observation.

In this paper, we propose a novel Adversarial Action
Prediction Network (AAPNet), an extension of our previous
work DeepSCN [1]. Our goal is to learn representative
and discriminative features from partial videos for action
prediction. AAPNet encodes the sequential context infor-
mation of a video in a latent disentangled representation
that is invariant to appearance variations at various progress
levels. In a latent feature space, latent representations of
videos are clustered according to their action labels and
progress levels. When only the beginning portion of a video
is observed, the sequential context information in the latent
representation is discovered and transferred to the partial
video (see Figure 1), making the generated feature being
representative enough to convey the entire information in
the corresponding full video. In addition, the features and
the classifiers are jointly trained, making the features dis-
criminative and optimized for action prediction. Therefore,
AAPNet enriches the feature representation for the partial
video, and improves its discriminative power even though
the representation is extracted from incomplete sequences.

AAPNet is based on variational autoencoder [2], [3] and
adversarial learning [4], and is developed to accommodate
sequential data. We use two variational autoencoders and
share one encoder. The encoder is trained to disentangle

1. We acknowledge that the scene gist also plays an important role
here.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 2

Observed Unobserved
t

0 Full observations

Information transfer
Partial video features

…

Discriminator

Full
 vi

deo
fea

tur
es

high-jump

bicycling

volleyball

Fig. 1. Our AAPNet predicts the action label given an unfinished action
video. Given features extracted from a partially observed video, AAPNet
gains extra discriminative information from fully observed video, and
generate more representative and discriminative features for action
prediction.

the motion information that heavily depends on progress
levels from the latent representation. It encourages the
representation to encode primitive motion information that
is shared among all progress levels as much as possible,
thereby progress-invariant. Two decoders are utilized in our
framework to generate the corresponding partial observa-
tion and full observation, respectively. The partial observa-
tion decoder regularizes the latent features to capture action
evolutions in the input partial video. This will provide
the full observation decoder with prior information about
the partial observation, and help generate a representative
feature representation that contains the entire motion infor-
mation of the corresponding full video. To align the feature
distribution of the generated full observation with the true
full observation, we adopt an adversarial learning scheme
and use a discriminator to differentiate the fake generated
feature and the true feature directly extracted from full
videos. The discriminator also classifies the features into
various action categories, and thus is helpful for generat-
ing discriminative features for action prediction. The entire
network learns feature representations and classifies actions
jointly. Extensive results show that AAPNet outperforms
state-of-the-art action prediction methods.

Our work focuses on short-duration prediction such as
“biking” and “diving”, while [5] focuses on long-duration
compositional action prediction where an action can be fur-
ther decomposed into semantic meaningful primitives. For
example, an activity “make an omelet” can be decomposed
into primitives “crack”, “pour”, “stir”, etc. We simulate
sequential data arrival while [6] assumes data are randomly
observed in a sequence. We aim at predicting the label for a
partially observed video. By comparison, [7], [8], [9] predict
what will happen in the future, and [10], [11] localizes the
starting and ending frames of an incomplete event.

The main contribution of this paper is the develop-
ment of the adversarial action prediction network, which
generates representative and discriminative features given
partial action videos. It builds upon the popular variational
autoencoder framework [2] to learn representative features
by mapping partial video features into the feature space
of full videos. The discriminative power of the learned
features are further enhanced by learning action classifiers
and feature learners jointly. In addition, we learn latent
progress-invariant features to capture appearance informa-
tion in partial videos using an encoder, and provide the
corresponding full video features with a strong prior infor-
mation. A particular technical challenge in our network is
how to generate target features from such progress-invariant

features. Inspired by the conditional GAN, we use a feature
generator conditioned on the target progress level of full
videos to address this problem. Extensive results on various
datasets show superior results of our method over state-of-
the-art action prediction methods.

This paper is an extension of our previous work [1].
These extensions include: a refined network architecture
for action prediction; redefined encoder and decoders; a
new discriminator for aligning feature distributions; an
improved objective function; a joint training scheme for
learning features and classifiers; and more experimental
results on various datasets.

2 RELATED WORK

Action recognition methods take as input fully observed
videos and output labels of human actions. Existing ap-
proaches can be roughly categorized into low-level feature-
based approaches [12], [13], [14], [15], [16], [17] and mid-
level feature-based approaches [18], [19], [20], [21], [22].
Low-level features, such as dense trajectory [16] and poselet
key-frames [15], utilize local appearance information and
spatio-temporal structures, and have shown great success
in action recognition. Mid-level feature-based approaches,
such as semantic descriptions [18] or data-driven concepts
[20], have shown to be capable of recognizing more complex
human actions. Furthermore, some deeply learned features
[23], [24] were recently proposed to learn high-level infor-
mation for classification. However, most existing methods
expect to observe temporally complete action executions.
Their performance is unknown if they are given videos with
temporally incomplete action executions. There are some
interesting work [25], [26] that demonstrates reasonable
action recognition accuracy can be achieved using a few
frames in a video. This inspires us to study at what stage
an action can be predicted or action predictability in this work.

Action prediction methods [6], [9], [27], [28] were pro-
posed to predict the action given a partially observed video.
Ryoo [27] proposed integral and dynamic bag-of-words
approaches for action prediction. The former one models
feature distribution variations over time, while the latter
technique depicts the sequential nature of human activities.
Cao et al. [6] generalized human activity recognition. In their
work, frames were randomly removed in a video to simulate
missing data. They formulated the problem as a posterior-
maximization problem, where the likelihood is computed by
feature reconstruction error using sparse coding. However,
[6] suffers from high computational complexity as the infer-
ence is performed on the entire training data. Lan et al. [9]
designed a coarse-to-fine hierarchical representation to cap-
ture the discriminative human movement at different levels,
and used a max-margin framework for final prediction.
Kong et al. [28] proposed a structured SVM learning method
to simultaneously consider both local and global temporal
dynamics of human actions. By enforcing a label consistency
of temporal segments, the performance of prediction can be
effectively improved.

The proposed approach is significantly different from
existing action prediction and early detection approaches
[6], [9], [10], [11], [27], [28]. The proposed AAPNet elegantly
gains extra sequential context information from full videos

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 3

A video'
1 T

Segment'

Partial'video

x

x(k)
Progress'level''
Observation'ratio'r = k/K = 0.3

g = k = 3

Fig. 2. Example of a temporally partial video, and graphical illustration
of progress level and observation ratio.

to partial videos, while [10], [11], [28] capture increasing
confidence score or decreasing detection loss in temporal
sequence. Action models are computed by averaging ac-
tion representations in training data [27], building action
dictionaries [6] or describing actions at both coarse and fine
levels [9]. By comparison, we build action models by trans-
ferring information from full videos in order to improve
the discriminative power of partial videos. In addition, our
approach learns features that are particularly optimized for
action prediction, while [6], [9], [27], [28] only use hand-
crafted features.

The prediction of future events was also investigated in
other applications, such as predicting events in recommen-
dation systems [29], [30], predicting future visual represen-
tation [31], and reasoning about the preferred path for a
person [32], [33]. Their goals are different from our work as
we focus on predicting the action labels of a video.

3 REVISIT OF DEEPSCN
This section reviews the DeepSCN proposed in our prior
work [1], and discusses its relationship to the new network
proposed in this paper.

3.1 Problem Setup
Our goal is to predict the action class y of an action video
x before the ongoing action execution ends [6], [27], [28].
We follow the problem setup described in [6], [9], [27], [28].
A complete video x containing T frames is uniformly seg-
mented into K segments (K = 10 in this work), mimicking
sequential video arrival at various observation ratios. Each
segment contains T

K frames. Note that for different videos,
their lengths T may vary, causing different lengths in their
segments. The k-th segment (k ∈ {1, · · · ,K}) of the video
ranges from the [(k − 1) · T

K + 1]-th frame to the (kT
K)-th

frame. A temporally partial video or partial observation x(k) is
a temporal subsequence that contains the beginning k out
of K segments of the video. The progress level g of the partial
video x(k) is k: g = k, and its observation ratio r is k

K : r = k
K

(see Figure 2). For a given partial video, its progress level
(or level) g and observation ratio r have g = r ×K .

3.2 Deep Sequential Context Network
Given N training videos {xi, yi}Ni=1, DeepSCN simulates
sequential data arrival, and temporally decompose each
training video xi into partial observations {x(k)

i }|Kk=1 at
various progress levels. Note that xK

i and xi are the same
full video: xK

i = xi. DeepSCN learns a feature mapping

function G : x(k) → z and a prediction function F : z → y,
where x(k) ∈ Rd is a partial video at progress level k,
z ∈ RD is the learned feature vector with high discrimi-
native power, and y ∈ Y is the action label.

Sequential context is one of the major components in
DeepSCN. Its key idea is to improve the discriminative
power of partial videos by gaining extra information from
full videos. The assumption is that if the features from a
partial video can be geometrically close to the features from
the full video, then their discriminative abilities would be
similar. DeepSCN defines the discrepancy between partial
observations {x(k)

i } and their corresponding full observa-
tions {x(K)

i } as
N∑
i=1

K∑
k=1

‖x(K)
i −Wx

(k)
i ‖22 = ‖X̄(K) −WX̄‖2F , (1)

where W is a feature transformation matrix of size d × d
learned during model training, and ‖ · ‖F is the Frobenius
norm. Matrices X̄(K) is a d×KN matrix containing all the
full observations and X̄ is also a d×KN matrix containing
all the partial observations:

X̄(K) = (x
(K)
1 , · · · ,x(K)

1︸ ︷︷ ︸
K times

, · · · ,x(K)
N , · · · ,x(K)

N),

X̄ = (x
(1)
1 , · · · ,x(K)

1 , · · · ,x(1)
N , · · · , x(K)

N).

(2)

By minimizing the discrepancy defined in Eq. (1), a par-
tial observation x

(k)
i is mapped onto a feature space using

the learned projection matrix W under the guidance of its
corresponding full observation xK

i or xi. The reconstructed
feature Wx

(k)
i is expected to be geometrically closer to its

corresponding full observation xK
i . Therefore, the learned

feature vector Wx
(k)
i will gain extra crucial information

for action prediction from the full observation x
(K)
i , and its

discriminative power is thus enhanced.
Robust features. During information transfer, noise

could be introduced to partial observations, which may
degrade the prediction performance. DeepSCN overcomes
this problem by regularizing W and constructing robust
features for partial videos that are insensitive to noise.
Recent work in robust feature learning [34], [35] shows
that robust features should be able to be reconstructed
from partial and random corruption. Inspired by this idea,
DeepSCN reconstructs features of partial observations with
the mapping matrix W:

N∑
i=1

K∑
k=1

‖x(k)
i −Wx̃

(k)
i ‖22 = ‖X̄−WX̃‖2F , (3)

where x̃
(k)
i is the corrupted version of the original data x

(k)
i

obtained by setting a fraction of the feature vector x(k)
i to 0

with probability p > 0. Matrix X̃ is the corrupted version
of X̄ defined as X̃ = (x̃

(1)
1 , · · · , x̃(K)

1 , · · · , x̃(1)
N , · · · , x̃(K)

N).
To reduce data variance, “infinite” passes of corruptions are
performed over the training data [34].

Label information. Partial observations in the same
category may vary greatly in appearance, duration, etc.
Therefore, the learned prediction model may not be able
to capture complex classification boundaries. DeepSCN ad-
dresses this problem by incorporating label information to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 4

our feature learner, and expecting the learned features of
partial observations at the same progress level in the same
category to be geometrically close to each other. The within-
class within-progress-level variance is defined in order to
regularize the learning of parameter matrix W:

Ψ(W) =
1

2

K∑
k=1

N∑
i,j=1

aij‖Wx
(k)
i −Wx

(k)
j ‖22 (4)

where X(k) = (x
(k)
1 , · · · ,x(k)

N) ∈ Rd×N , and the (i, j)-th
element aij is 1 if yi = yj and i 6= j; and 0 otherwise.

Putting Eq. (1), Eq. (3), and Eq. (4) together, optimal
parameter matrix W can be learned by

min
W
‖X̄−WX̃‖2F + α‖X̄(K) −WX‖2F + βΨ(W),

s.t. ∆(k+1) 6 ∆(k), k = 1, · · · ,K − 1, (5)

where α and β are trade-off parameters balancing the
importance of the corresponding terms, and ∆(k) is the
reconstruction error ∆(k) = ‖X(K)−WX(k)‖2F . As progress
level k increases, the partial video feature x(k) is geometri-
cally approaching the corresponding full video x(K). Conse-
quently, the amount of information transferred from the full
observation should be decreasing. Such prior knowledge is
incorporated using the constraints in optimization problem
(5). These constraints also implicitly capture temporal order-
ing information of inhomogeneous temporal units. Support
vector machine is trained independently from DeepSCN to
classify actions.

3.3 Discussion
One limitation of DeepSCN is that the features are learned
independently from the classifiers. DeepSCN learns features
by minimizing the reconstruction error which cannot be
used to measure the discrimination power of the learned
features. Even though it uses label information to separate
features in different action categories, it may not work well
for data under complex distributions. Therefore, the features
may not be particularly optimized for action prediction.

In addition, DeepSCN does not verify the distribution
discrepancy between the generated features and the true
features directly extracted from full videos. Although the
generated features can be geometrically close to the true fea-
tures from full videos, their distributions can be significantly
different, thereby affecting the prediction performance.

Furthermore, DeepSCN uses a unified encoder-decoder,
which may not be powerful enough for encoding complex
action videos. Consequently, the generated features are not
expressive for describing actions with large appearance and
pose variations.

4 ADVERSARIAL ACTION PREDICTION NETWORK

In this section, we present a novel Adversarial Action Pre-
diction Network (AAPNet) to address the aforementioned
problems. AAPNet is generic and compatible with both
deep features (e.g., C3D features [36]) and handcrafted
features (e.g., spatiotemporal interest points [37] and dense
trajectory features [14]). In this work, the input x(k) to
our approach is a partial video represented by a feature
vector. This feature vector can be obtained by performing 3D

convolutions over the partial video in C3D network, or by
the bag-of-words model over spatiotemporal interest points
and dense trajectories. The features we use for datasets will
be described in the experiments.

4.1 Network Architecture

The proposed AAPNet extends DeepSCN by redefining
some of the key components in DeepSCN. AAPNet inherits
the loss function in Eq. (5), and utilizes adversarial learning
scheme [3], [4] to learn more discriminative features for
action prediction. We expect to learn a “representative”
and “discriminative” feature for partial video x(k). Here,
a “representative” feature means the learned feature for a
partial video should be geometrically close to the feature
of its corresponding full video so that the learned feature
would encode most of the information that is contained
in the full video. In addition, the learned feature should
also be “discriminative” for action classification in order to
achieve high classification accuracy at the early stage of a
video observation.

We use a probabilistic framework to describe the idea
of feature generation in AAPNet. In a nut shell, we would
like to generate the feature of a full video x̂(K) from a
partial video feature x(k): p(x̂(K)|x(k)). However, directly
solving this problem is very challenging due to the large
appearance variations in the full video and randomness in
the unobserved portion in the full video. Instead, we utilize
a latent variable z in this work, which alleviates this problem
by summarizing all the possibilities in the full videos in
the training data. Using the latent variable z, the full video
feature x̂(K) can be generated by

p(x̂(K)|x(k)) =

∫
z
p(x̂(K), z|x(k)) dz

=

∫
z
p(x̂(K)|z)p(z|x(k)) dz (6)

AAPNet is proposed to achieve this goal. As shown
in Figure 3, the proposed AAPNet contains four major
components, an encoder E, a discriminator D, and two
decoders G1 and G2. Given a partial video x(k) at progress
level k, a convolutional neural network is first employed
to extract features from frames in the partial video. The
extracted frame features are averaged and then fed into
the proposed AAPNet. The encoder E in the AAPNet
maps partial video features x(k) into a progress-invariant
feature vector z: z = E(x(k)). The feature z is expected
to encode shared information that appears in all progress
levels. The partial video feature x̂(k) can be estimated from
the latent feature z using the decoder G1, conditioned on
its progress level k: x̂(k) = G1(z, k). The encoder E and
decoderG1 form an autoencoder for partial observations. To
reconstruct full observation x̂(K), we feed the latent feature
z and the expected progress level K into another decoder
G2: x̂(K) = G2(z,K), and then use a discriminator to tell
if the generated feature x̂(K) comes from multi-class data
distribution or not.

Compared with other GAN-like networks, we incorpo-
rate an encoder to avoid random sampling of latent fea-
tures z. As videos in the same class have large appearance
variations and camera motions, it would be challenging to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 5

Progress indicator

Partial video

?

CNN

Encoder

Latent feature
z

k

DecoderE G1

DDecoder G2 Discriminator

x̂(K)

x̂(k)

Lp

x(K)

fake

high-jump

basketball

volleyball

Lf

Full video

x(k)

LGAN

K

K

-
+

Fig. 3. Framework of the proposed adversarial action prediction network. AAPNet contains four major components, an encoder E, a discriminator
D, and two decoders G1 and G2. The network learns sequential context information from full videos, and transfer it to the features extracted from
partial videos, thereby making the learned features more representative and discriminative.

sample a video data from a simple distribution such as
Gaussian distribution. In this work, we use an autoencoder
E and G1 to better capture specific dynamic characteristics
of an action in the latent feature z. Consequently, the latent
feature z incorporates rich prior information of the partial
video that can be used to generate the corresponding full
video. The encoding function E of the autoencoder defines
an aggregated posterior distribution of q(z) on the hidden
code vector of the autoencoder [3] as follows:

p(z) =

∫
x(k)

p(z|x(k))pd(x(k)) dx(k), (7)

where p(z|x(k)) is the encoding distribution and pd(x(k)) is
the data distribution. The aggregated posterior p(z) encodes
the information of the partial video that is necessary for
generating full video features.

The use of two decoders G1 and G2 allows us to learn
progress-invariant feature z from partial videos. Guided by
the two decoders, the latent feature z needs to balance the
information encoded in it in order to minimize the losses.
This would regularize the latent feature z to encode most
of the information shared between partial and full videos,
making it progress invariant.

4.2 Network Components

Encoder E takes a partial observation x(k) as an input.
The input x(k) is essentially a feature vector obtained by
performing C3D [36] on temporal segments followed by
average pooling over segment features, or by using bag-
of-words model on top of interest points [37] and dense
trajectories [16]. Inspired by [2], we first compute hidden
layers h from input x(k) using a fully-connected layer, and
then compute the mean µ and variance σ2 from the final
hidden layer h to compute the latent feature vector z using
the reparameterization trick:

h = φ(fc1(x(k))) (8)

z = µ+ σ2 � ε,where µ = φ(fc2(h)), σ2 = φ(fc3(h)) (9)

Here, φ(·) denotes an activation function, which is a leaky
version of a rectified linear unit in this paper. fc(·) defines
a fully-connected layer. µ, σ denote the parameters of the

approximate posterior, and ε ∼ N (0, I). Eq. (8) defines a
multi-layer perceptron (MLP) with one hidden layer, and it
can be easily extended to multiple layers.

Partial Observation Decoder G1 decodes the partial
observation x̂(k) from the input latent feature vector z and
the progress level k of the partial observation. We define the
decoder G1 as a MLP with hidden layers, and use sigmoid
function as the activation function. The encoder E and the
decoder G1 comprise a partial observation autoencoder. Its
takes a partial video feature vector x(k) as input, outputs the
reconstructed feature vector x̂(k) through an intermediate
latent feature vector z.

Full Observation Decoder G2 translates the input latent
feature vector z and the progress level K of the partial
observation to the full observation x̂(K). Similar to decoder
G1, we also define the decoder G2 as a MLP with sigmoid
function as the activation function.

The encoder E and the full observation decoder G2

constitute a full observation autoencoder, which aims at
reconstructing full observations from partial observations.
The two autoencoders learn a feature space that is shared
by partial observations and full observations. Using the de-
coders G1 and G2, the latent feature vector z is optimized to
reconstruct both partial observations and full observations.
Consequently, it is regularized to extract progress-invariant
information from videos. The decoder G1 provides a prior
information for generating full observations. Without the
decoder G1, shared information between partial and full
observations may not able to be learned, and thus the
features of full observations may not be able to be learned.

Discriminator D is basically used to differentiate the full
observation x̂(K) generated by G2 from the true full obser-
vation x(K), conditioned on the progress level K of the full
observation. We define |Y | + 1 classes in this discriminator
D, where |Y | is the number of actions in a dataset, and
the extra one category is reserved for a fake category. If
the discriminator D categorizes the given input as “real”,
then it classifies its action using the first |Y | classes D1:|Y |;
otherwise, it categorizes the input as “fake”, which is the
extra one category. Note that the first |Y | classes D1:|Y |
in the discriminator D are also used to predict actions in
testing. This will be discussed in Section 4.5.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 6

Discriminator D enable us to learn a better representa-
tion x̂(K) from a partial observation x(k) so that it encodes
all the information in the full observation x(K) and cannot
be distinguished from the full observation x(K). In addition,
the multi-class classifiers further improve the discrimination
power of the features and make them particularly optimized
for action prediction. In this work, we use a fully-connected
layer without hidden layers in the discriminator D. We do
not use hidden layers in here as it generally achieves poor
prediction performance in this work.

4.3 Loss Function

Adversarial learning [4] is a popular learning formulation
for deep learning. It creates a competition game, in which a
discriminator determines a sample is real (from data distri-
bution) or fake (from model distribution), while a generator
tries to produce fake samples without being detected. This
competition game will finally generate indistinguishable
samples. Inspired by this idea, using an appropriate loss
function, we can encourage the distributions of the features
from partial video and from full video to be similar, and
thus improve the prediction performance.

Adversarial loss LGAN is optimized to train the encoder
E, the decoder G2 and the discriminator D. The encoder
E is trained to generate progress-invariant feature z, and
the decoder G2 is trained to generate full video features
from the feature z manipulated by the progress label k. Our
discriminator D ∈ R|Y |+1 is used for action classification
with |Y | as the total number of actions in the training set,
and the additional dimension for the fake class. Given a
video feature vector x extracted from real (partial or full)
videos, the discriminator D aims to infer its action label;
while if the feature vector x̂ is generated from the decoder
G2, the discriminator D attempts to classify the generated
feature x̂ as fake. We define the adversarial loss LGAN as

LGAN =Ex(k),k∼pdata(x(k),k)[logD1:|Y |(x̂
(k))

+ logD|Y |+1(x(K))]

+Ex(k),k∼pdata(x(k),k)[log(1−D|Y |+1(G2(E(x(k)))))].
(10)

Here, D1:|Y |(·) denotes the discriminator for the first |Y |
classes used for classifying actions, and D|Y |+1(·) is the
discriminator for the (|Y |+ 1)-th fake class.

Full observation reconstruction loss Lf is inspired by
the Sequential Context component in Eq. (1). As shown in
[6], [28], it is essential to improve the discriminative power
of features extracted from partial observations in order to
achieve high prediction performance. This is even more
important for predicting the beginning portion of a video
since a large number of useful cues for classification are not
observed in the early stage of the video. Furthermore, the
features extracted from the beginning portion of a video
cannot fully convey the information of the entire video.

Intuitively, people are more confident about the action
category if more frames are observed. Recent studies [6], [9],
[27], [28] show that the best prediction performance is gen-
erally made when all the frames are observed. This suggests
that full observations contain all the useful information for
classification. Motivated by this observation, in this work,
we propose to minimize the difference between the real full

video feature x(K) from training data and the fake full video
feature x̂(K) generated from its corresponding partial video
feature x(k). A standard practice in learning the encoder-
decoder is to use the Euclidean distance between the input
and the generated output, i.e.,

Lf = Ex(k),k∼pdata(x(k),k)‖x(K) −G2(E(x(k)),K)‖22. (11)

A partial video observation x(k) is first encoded onto
a latent feature vector z = E(x(k)), and then decoded by
the full video generator G2 conditioned on the progress
level of the expected full video: G2(E(x(k)),K). By mini-
mizing the discrepancy defined in Eq. (11), the partial video
observation x(k) is mapped onto the feature space of full
videos using the encoder E and the generator G2. The
generated feature x̂K = G2(E(x(k)),K) is expected to be
geometrically closer to its corresponding full observation
x(K). Consequently, the generated feature x̂(K) will gain
extra information for action prediction, and thus its discrim-
inative power is enhanced.

Partial observation reconstruction loss Lp is inspired
by the Robust Feature component defined in Eq. (3). In
this work, we measure the reconstruction performance for
partial observations x(k) made by the encoder E and the
partial observation generator G1. A standard practice in
learning the encoder-decoder is to use the Euclidean dis-
tance between the input and the generated output, i.e.,

Lp = Ex(k),k∼pdata(x(k),k)‖x(k) −G1(E(x(k)), k)‖22, (12)

where x(k) is a partial video feature at progress level k.
Here, the encoder E maps the input partial video feature
x(k) into a feature vector z, and then the generator G1

reconstructs the feature x̂(k) from z.
Eq. (11) measures the reconstruction error for the gen-

erated full video feature, while Eq. (12) is used for the
generated partial video feature. Similar to Eq. (1) and Eq. (3),
minimizing Eq. (11) and Eq. (12) allows us to find a com-
mon latent feature space for partial observations and full
observations. Given a partial observation x(k), in Eq. (11),
the encoder E projects the feature into a latent feature
vector z. Minimizing Eq. (11) and Eq. (12) makes the latent
feature z to be able to reconstruct both the corresponding
partial observation x̂(k) and full observation x̂(K), under
the manipulation of the desired progress level k and K ,
respectively. Therefore, the latent feature z lies in the com-
mon feature space, and is progress-invariant. Note that
Robust Feature component defined in Eq. (3) uses “infinite”
passes of corruptions to reduce data variance and learn
robust features. In this work, we use Dropout regularization
scheme instead.

In summary, the objective function of the proposed net-
work is given by

min
E,G1,G2

max
D
LGAN + αLp + βLf , (13)

where α and β are trade-off parameters for balancing the
importance of the corresponding components.

4.4 Model Learning
This section specifies the learning of encoder parameter θe,
partial video generator parameter θg1, full video generator
parameter θg2, and discriminator θd.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 7

As illustrated in the above section, our training is defined
by three loss functions, 1) loss of GAN, LGAN, loss of partial
video reconstruction Lp, loss of full video reconstruction Lf .
The key idea behind our generative-adversarial training is
to introduce a video generatorG2 that can transfer progress-
invariant feature extracted from a partial video into its
corresponding full video feature.

We formulate an adversarial learning algorithm that
iteratively optimizes the following three objectives:

1. Update encoder and partial video generator parameters
{θe, θg1}. We minimize the partial video reconstruction loss
Lp to optimize parameters {θe, θg1}. The encoder E and the
decoder G1 are trained to reconstruct partial video features.
Meanwhile, the encoder E is also regularized to generate
progress-invariant feature as it also needs to generate full
video feature, which will be discussed in the following.

2. Update discriminator parameter {θd}, optimize LGAN .
We solve the following optimization problem to update
parameter {θd}, maxD LGAN

3. Update encoder and full video generator parameters
{θe, θg2}. We minimize minG2

LGAN + Lf .
E,G1, G2 and D improve each other during the al-

ternative training process. With D being more powerful
in differentiating generated (fake) full video features and
real full video features and classifying actions, G2 strives
to produce full-dynamics preserved features to compete
with the discriminator D. To achieve this, the encoder E
is optimized to generate progress-invariant latent feature z
as it is optimized to minimize the reconstruction loss for
both partial videos and full videos. The encoder E and the
partial video decoder G1 are driven to encode dynamics in
partial videos into latent feature z. The full video feature
decoder then learns how to map the latent feature z to full
video features corresponding to input partial videos.

Multi-scale Temporal Data. Actions appear in various
paces and thus introduce temporal intra-class variations. To
alleviate this problem, we introduce a mixture of temporal
neighboring segments to the training data in order to con-
sider various cases of partial videos with different paces.

Specifically, when training a partial video x(k) at
progress level k, we will take a group of partial
videos {x(k+∆)}|∆ as its training data, where ∆ ∈
[−1,+1]. For example, we will consider partial videos
{x(k−0.2),x(k),x(k+0.8)} as the training data for the training
video x at progress level k. This can be considered as a video
augmentation scheme. We expect these additional partial
videos can better address intra-class action variations. These
partial videos have varied video lengths and small temporal
shifts, and we use average pooling to generate a feature
vector from these partial videos.

4.5 Action Prediction

The flowchart for action prediction is shown in Figure 4.
Given a testing video with an unknown progress level k
and an unknown action label y, a feature extraction method
is first employed on this video and represent it as a fea-
ture vector. For example, we can use C3D method [36] to
extract a group of features for temporal segments, and then

Partial video

?

CNN x(k)

z

K K

Decoder G2Encoder E DDiscriminator
high-jump

basketball

volleyball

Fig. 4. Flowchart for making prediction for a given testing partial video.

use average pooling to generate a feature vector x 2. The
feature vector x is then fed into the proposed AAPNet to
learn more informative features that are contained in the
corresponding full video, and in the meanwhile classify its
action. The encoder E generates latent progress-invariant
feature z from the input feature x: z = E(x). Then, the full
observation decoder G2 concatenates the latent progress-
invariant feature z and the target progress level k = 1.0 in
one-hot format, and produce the generated feature vector x̂,
which is considered to be close to the true full observation
x(K). The generated vector x̂ is fed into the discriminator
D to generate the scores D1:|Y |(x̂) for each action category.
In addition, the input partial video x is also fed into the
discriminator D to generate the scores D1:|Y |(x). The two
scores are averaged to provide the score for the test partial
video x.

4.6 Comparison with DeepSCN
The proposed AAPNet shares similar ideas to our prior
work DeepSCN but uses different components. The key idea
of the two methods is to enrich the partial video feature and
reconstruct its corresponding full video feature. The major
differences are discussed in the following.

Adversarial learning. DeepSCN does not use adver-
sarial learning to align the distributions of the generated
features and the true features from full videos; while it is
used in AAPNet to verify the distribution discrepancy. In
addition, DeepSCN trains SVM separately, while AAPNet
trains a multi-class classifier jointly with feature learning,
and makes features optimized for action prediction.

Partial video reconstruction loss. DeepSCN uses Eq. (3)
to reconstruct partial video feature from a partial video fea-
ture, which minimizes the reconstruction loss represented
by the Euclidean distance between the original partial video
and the generated partial video: ‖x(k)

i −Wx̃
(k)
i ‖22. It uses

a unified linear mapping as the encoder and decoder W.
Similar to this idea, AAPNet also minimizes the Euclidean
distance in Eq. (12) between the two: Lp = ‖x(k) −
G1(E(x(k)), k)‖22. However, instead of using a simple lin-
ear mapping as in DeepSCN, we use multiple non-linear
mappings in an autoencoder E and G1 to reconstruct the
partial video. This improves the representative power of the
reconstructed partial video, and provides a more accurate
prior information extracted from the partial video.

Full video reconstruction loss. DeepSCN uses Eq. (1)
to reconstruct full video feature from partial video feature.

2. We use x instead of x(k) here because the progress level k is
unknown in the test video.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 8

Similar to the partial video reconstruction loss discussed
above, DeepSCN minimizes the Euclidean distance ‖x(K)

i −
Wx

(k)
i ‖22 to learn a linear mapping W. The proposed AAP-

Net uses separate encoder and decoder in Eq. (11) to learn
the feature mapping: Lf = ‖x(K) − G2(E(x(k)),K)‖22. In
addition, DeenSCN uses the same mapping W for recon-
structing both partial and full video features, while AAPNet
uses different decoders G1 and G2 for the two purposes.

Label information. DeepSCN uses a Laplacian matrix
in Eq. (4) to regularize hidden features in the same class
at the same progress level to be similar. This solution may
not be effective for data under more complex distributions
because some complex data samples may not be able to be
regularized to be close to a simple data sample. By compar-
ison, AAPNet considers label information in a multi-class
classifier D1:|Y |, and uses the classification loss to guide
feature learning. This process makes features particularly
optimized for action prediction.

5 EXPERIMENTS

5.1 Dataset and Experiment Setup

We evaluate our approach on three datasets: UCF101 dataset
[38], Sports-1M dataset [39], and BIT-Interaction dataset [18].
UCF101 dataset consists of 13, 320 videos distributed in
101 actions. Sports-1M dataset contains 1, 133, 158 videos
divided into 487 classes. BIT dataset consists of 8 classes of
human interactions, with 50 videos per class. It should be
noted that N videos will be 10N videos to action predic-
tion approaches due to the modeling of 10 progress levels.
This larger volume of data increases the complexity of the
prediction problem, and will validate the scalability of our
approach. However, a majority of existing action prediction
approaches [6], [27], [28] are not able to deal with large
datasets as they are not trained in a stochastic fashion. To
make a fair comparison, we use the first 50 classes in the
Sports-1M datasets, and sample 9, 223 videos. This results
in 92, 230 partial videos to prediction approaches.

Our approach works with both deep features and hand-
crafted features. We extract C3D features [36] from partial
videos in UCF101 and Sports-1M dataset as C3D generates
features for both segments and full videos. Pre-trained C3D
model on Sports-1M dataset is used on UCF101 and Sports-
1M datasets. To demonstrate compatibility with hand-
crafted features, we extract spatiotemporal interest points
(STIPs) [37] and dense trajectory features (DTs) [14] from
partial videos in BIT dataset. Bag-of-words model (with 500
visual words) is adopted to encode STIPs and DTs features.

We follow the split scheme of [36] for UCF101 and [39]
for Sports-1M datasets, respectively. The prediction perfor-
mance on various splits are averaged and reported in this
paper. The first 15 groups of videos in UCF101 are used
for training; the next 3 groups for cross-validation; and the
remaining 7 groups for testing. We also follow the same
experiment settings in [28] for BIT dataset, and use the first
34 videos in each class for training (in total 272 training
videos) and use the remaining for testing. The number
of hidden layers M in E,G1, G2 is 2, default parameters
settings are α = 1, β = 1 on all the three datasets.

5.2 Prediction Performance
We compare with DeepSCN [1], Dynamic BoW (DBoW)
and Integral BoW (IBoW) [27], MSSC and SC [6]3, and
MTSSVM [28]. C3D [36] method, SVMs with linear ker-
nel, intersection kernel (IKSVM), chi-square kernel, and
marginalized stacked autoencoder (MSDA) [34] are used as
baselines. IBOW, DBOW, MTSSVM, and all baselines require
the ground-truth progress levels to be known in testing. To
perform a fair comparison, the ground-truth progress levels
of testing videos are known to all comparison methods, and
all the comparison methods on one dataset are fed with the
same features. K IKSVMs are adopted for DeepSCN and
MSDA, each of which is used for one single progress level,
as in [1].

UCF101 dataset. Results in Figure 5(a) show that our
method consistently outperforms all the comparison meth-
ods. Our method achieves an impressive 59.85% predic-
tion results when only 10% frames are observed, which is
14.83% higher than DeepSCN and 19.80% higher than the
MTSSVM. This clearly demonstrates the effectiveness of us-
ing the full observation decoder G2 and the discriminator D
in AAPNet. Although an observation with only 10% frames
of its full video contains little discriminative information,
the discriminatorD encourages the full observation decoder
G2 to generate visual features that are similar to features in
the full video. This significantly enhances the discrimina-
tive power of the partial observation. In addition, AAPNet
learns features and classifiers jointly, making the feature rep-
resentation optimized for action classifiers. The performance
of our method at observation ratio 0.3 is already higher than
the best performance of all the other comparison methods
except DeepSCN. The performance of our AAPNet at ob-
servation ratio 0.6 outperforms DeepSCN with full observa-
tions. These remarkable results demonstrate the superiority
of our method over comparison methods. It should be noted
that DBoW achieves extremely low performance on this
dataset. This is possibly because its action models computed
by averaging features are not expressive enough to capture
highly diverse action dynamics in the same category. End-
to-end C3D performs slightly better than C3D+SVM because
it is end-to-end trained and has certain techniques for im-
proving the classification performance such as non-linear
activation ReLU and regularization dropout.

We also analyze the prediction performance of our AAP-
Net on RGB and flow data. A two-stream network named
TSN [40] is used to provide frame feature vectors for RGB
and flow videos. As shown in Table 1, C3D+AAPNet per-
forms better than TSN+AAPNet at the beginning portions
of videos. C3D uses 3D convolutions to capture information
in a longer temporal span than TSN. This is useful for aggre-
gating discriminative information in the temporal domain,
especially when the information is limited in the beginning
portions of videos. When more frames are observed, TSN
performs better than C3D as it captures more descriptive
information through its RGB and flow streams. The predic-
tion performance of the flow stream is consistently better
than the RGB stream in all the observation ratios.

Sports-1M dataset. Results in Figure 5(b) demonstrate
the superiority of our method over all the comparison

3. The code is available at http://www.visioncao.com/publications.html.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Observation ratio
0

10

20

30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n

ac
cu

ra
cy

 (%
)

DeepSCN
C3D
C3D+Linear SVM
C3D+IKSVM
C3D+Chi-square SVM
Integral BoW
Dynamic BoW
MTSSVM
MSSC
MSDA
Our method

(a) UCF101 dataset

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Observation ratio
0

10

20

30

40

50

60

70

80

R
ec

og
ni

tio
n

ac
cu

ra
cy

 (%
)

DeepSCN
C3D
C3D+Linear SVM
C3D+IKSVM
C3D+Chi-square SVM
Integral BoW
Dynamic BoW
MTSSVM
MSSC
MSDA
Our method

(b) Sports1M dataset

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Observation ratio
0

10

20

30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n

ac
cu

ra
cy

 (%
)

DeepSCN
Linear SVM
IKSVM
Chi-square SVM
Integral BoW
Dynamic BoW
MTSSVM
MSSC
SC
MSDA
Our method

(c) BIT-Interaction dataset

Fig. 5. Prediction results on (a) UCF101, (b) Sports-1M, and (c) BIT dataset. Note that these prediction approaches are optimized for partial videos
and thus cannot be directly compared to action recognition approaches given full videos (observation ratio r = 1.0). Please refer to the supplemental
material for the numbers in the figure.

TABLE 1
Prediction results (%) on UCF101 dataset using C3D, TSN, RGB

stream and flow stream in TSN as the CNN component in our
architecture. Observation ratios are r ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.

Methods Avg. 0.2 0.4 0.6 0.8 1.0

C3D [36]+AAPNet 85.03 80.85 86.47 88.34 89.85 91.99
TSN [40]+AAPNet 85.06 80.44 86.07 88.34 90.85 92.02

RGB stream [40]+AAPNet 75.38 68.54 76.37 78.91 81.05 84.38
Flow stream [40]+AAPNet 76.76 69.84 78.85 79.96 83.82 85.38

methods. Our AAPNet achieves 60.98% accuracy when only
10% frames are observed, 5.96% higher than DeepSCN,
suggesting the superiority of using the discriminator D to
differentiate the generated fake full observations and true
full observations. This helps to generate more representative
features. Note that the accuracy of 60.98% is already higher
than MSSC, IBoW, and DBoW with full observations. Our
AAPNet achieves an impressive 72.81% when only 50%
frames are observed, higher than the best performance in
10 cases of all the other comparison methods. Note that
our AAPNet makes accurate predictions at an early stage,
demonstrating the effectiveness of its deep architecture,
and joint learning of features and classifiers. AAPNet out-
performs MSDA, showing the benefits of learning extra
information from full videos. Our method consistently out-
performs MTSSVM, MSSC, DBoW, and IBoW, suggesting
the benefit of learning sequential context information.

It should be noted that the performance of our method
and C3D+SVMs methods given full videos cannot be di-
rectly compared with the original C3D method [36]. We use
all the frames in this work while [36] randomly sampled
5 two-second clips from a video. C3D performs slightly
better than C3D+SVM on Sports-1M dataset since C3D is
trained in an end-to-end fashion. In addition, non-linear
activation ReLU and regularization dropout are also helpful
in improving classification accuracy on this large data.

It is interesting to see that there is a huge drop in
performance for UCF101 at 10% observation ratio compared
to Sports-1M dataset. This indicates that the beginning

segments in UCF101 are less discriminative than the ones in
Sports-1M. The underlying reason is that the average length
of a segment in UCF101 is much shorter (17.6 frames vs over
650 frames) than that of a segment in Sports-1M dataset.
Therefore, the beginning segments in UCF101 videos may
contain less discriminative information compared to the
beginning segments in Sports-1M videos, which causes the
performance drop.

BIT dataset. Results in Figure 5(c) show that our method
consistently outperforms all the other comparison methods
on this small dataset. Our method achieves 39.84% accuracy
at observation ratio r = 0.1, 2.44% higher than the runner-
up DeepSCN method. At observation ratio r = 0.3, the
prediction performance improvement of our AAPNet over
DeepSCN is 5.47%, which is the largest performance gap
between these two methods in 10 cases. In 10 cases, AAPNet
achieves an average performance improvement of 2.10%
over DeepSCN. At r = 0.6, our method achieves an im-
pressive result of 88.28%, higher than the best performance
of all the other comparison methods except DeepSCN on
10 observation ratios. Our method remarkably outperforms
MSSC and SC [6] in all the 10 cases, demonstrating its ability
of learning more discriminative features for action predic-
tion. The most noticeable improvement occurs at r = 0.5
where the performance increases over MSSC and SC are
32.03% and 33.59%, respectively. Our AAPNet achieves
notably higher performance compared with DBoW and
IBoW. We achieve 64.84% accuracy with only the first 30%
frames of testing videos being observed, which is higher
than DBoW and IBoW at all observation ratios. End-to-end
C3D does not outperform C3D+SVM possibly because the
dropout regularization is not necessary on small the dataset
and using it would hurt the performance.

5.3 Running Time
The total training and testing time of the proposed AAPNet,
DeepSCN [1], MTSSVM [28] and MSSC [6] are summarized
in Table 2. This may not be a fair comparison because
these methods are implemented in different programming
languages; AAPNet is implemented in Python and the other

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10

20

30

40

50

60

70

80

90

100

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#550

CVPR
#550

CVPR 2017 Submission #550. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Training and testing time (hours) of comparison methods
on UCF101, Sports-1M, and BIT datasets. The number of layers in
our method is set to 2 on UCF101 dataset, 2 on Sports-1M dataset,
and 3 on BIT dataset, respectively.

Methods UCF101 Sports-1M BIT
MTSSVM [13] 140h 50h 0.12h

MSSC [2] 420h 770h 0.2h
Ours 4h 2.5h 0.002h

4.4. Instantly, Early, and Late Predictable Actions

It should be noted that actions differ in their prediction
characteristics. Discriminative patterns of actions may ap-
pear early or late in an action video. This affects the portion
of a video that needs to be observed before being classified
correctly, i.e., the predictability of an action.

We analyze the predictability of actions in UCF101
dataset, and study at what stage an action can be predicted.
We define three categories of action videos according to
their predictability: instantly predictable (IP), early pre-
dictable (EP), and late predictable (LP). An action video is
IP means that the video can be predicted after only observ-
ing the beginning 10% portion of the video. EP means that
an action video is not IP but can be predicted if the begin-
ning 50% portion of the video is observed. LP means that an
action video is neither IP nor EP, and can only be predicted
if more than 50% portion of the video is observed.

Top 10 IP, EP, and LP actions in UCF101 dataset are
listed in Figure 5. Results show that actions “Billiards” and
“IceDancing” are the easiest actions among 101 actions; all
of their testing samples can be instantly predicted. In our
experiment, there are 33 action categories having over 50%
of their respective testing videos instantly predictable (cor-
rectly classified after only observing 10% of the frames).
Figure 5 also shows that all the testing samples in the 10 EP
actions can be early predicted. In fact, there are 87 actions
out of 101 actions having over 50% of their respective test-
ing videos that are early predictable (less than 50% video
frames need to be observed). The action “JavelinThrow”
can be considered as the most challenging class for predic-
tion as 29% of its testing samples require more than 50%
video frames to be observed in order to make accurate pre-
diction. In all the 3783 testing samples, 35.45% testing
samples are instantly predictable, and 43.78% are early pre-
dictable; only 2.09% are late predictable. The remaining
18.69% testing samples cannot be correctly predicted. This
suggests that a majority of action videos can be correctly
classified using our approach after observing the beginning
50% frames of the videos. On Sports-1M dataset, “eques-
trianism” is the easiest action and “artistic gymnastics” is
the most challenging action for prediction. On BIT dataset,
“bow” and “pat” are the easiest and the most challenging
actions, respectively. Please refer to the supplemental ma-
terial for the results on Sports-1M and BIT datasets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10

20

30

40

50

60

70

80

90

100

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#550

CVPR
#550

CVPR 2017 Submission #550. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Training and testing time (hours) of comparison methods
on UCF101, Sports-1M, and BIT datasets. The number of layers in
our method is set to 2 on UCF101 dataset, 2 on Sports-1M dataset,
and 3 on BIT dataset.

UCF101 Sports-1M BIT
MTSSVM [13] 140h 50h 0.12h

MSSC [2] 420h 770h 0.2h
Ours 4h 2.5h 0.002h

of a video that needs to be observed before being classified
correctly, i.e., the predictability of an action.

We analyze the predictability of actions in UCF101
dataset, and study at what stage an action can be predicted.
We define three categories of action videos according to
their predictability: instantly predictable (IP), early pre-
dictable (EP), and late predictable (LP). An action video is
IP means that the video can be predicted after only observ-
ing the beginning 10% portion of the video. EP means that
an action video is not IP but can be predicted if the begin-
ning 50% portion of the video is observed. LP means that
an action video is neither IP nor EP, and can only be pre-
dicted if more than 50% portion of the video is observed.
Note that these three categories are mutually exclusive.

Top 10 IP, EP, and LP actions in UCF101 dataset are
listed in Table 2. Results show that actions “Billiards” and
“IceDancing” are the easiest actions among 101 actions; all
of their testing samples can be instantly predicted. In our
experiment, there are 33 action categories having over 50%
of their respective testing videos instantly predictable (cor-
rectly classified after only observing 10% of the frames).
Table 2 also shows that all the testing samples in the 10 EP
actions can be early predicted. In fact, there are 87 actions
out of 101 actions having over 50% of their respective test-
ing videos that are early predictable (less than 50% video
frames need to be observed). The action “JavelinThrow”
can be considered as the most challenging class for predic-
tion as 29% of its testing samples require more than 50%
video frames to be observed in order to make accurate pre-
diction. In all the 3783 testing samples, 35.45% testing
samples are instantly predictable, and 62.46% are early pre-
dictable; only 2.09% are late predictable. This suggests that
a majority of action videos can be correctly classified using
our approach after observing half of the videos; not neces-
sary to observe the entire videos. On Sports-1M dataset,
“equestrianism” is the easiest action and “artistic gymnas-
tics” is the most challenging action for prediction. On BIT
dataset, “bow” and “pat” are the easiest and the most chal-
lenging actions, respectively. Please to the supplemental
material for detailed results on Sports-1M and BIT datasets.

4.5. Unknown vs Known Progress Level

Existing methods in [13, 24, 2] assume that the progress
levels of videos are known in testing (Scenario 2 in Sec-

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#550

CVPR
#550

CVPR 2017 Submission #550. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Training and testing time (hours) of comparison methods
on UCF101, Sports-1M, and BIT datasets. The number of layers in
our method is set to 2 on UCF101 dataset, 2 on Sports-1M dataset,
and 3 on BIT dataset. Time is estimated for MSSC by time =
#videos � t, where t is the running time per testing video. t =
400s on UCF101 dataset, and t = 1500s on Sports-1M dataset.

UCF101 Sports-1M BIT
MTSSVM [11] 140h 50h 0.12h

MSSC [2] 420h 770h 0.2h
Ours 3.5h 3h 0.002h

to their predictability: instantly predictable (IP), early pre-
dictable (EP), and late predictable (LP). An action video is
IP means that the video can be predicted after only observ-
ing the beginning 10% portion of the video. EP means that
an action video can be predicted if the beginning 50% por-
tion of the video is observed. LP means that an action video
can only be predicted if more than 50% portion of the video
is observed.

Top 10 IP, EP, and LP actions in UCF101 dataset are
listed in Table 2. Results show that actions “Billiards” and
“IceDancing” are the easiest actions among 101 actions; all
of their testing samples can be instantly predicted. In our
experiment, there are 33 action categories having over 50%
of their respective testing videos correctly classified after
only observing 10% of the frames. Table 2 also shows that
all the testing samples in the 10 EP actions can be early pre-
dicted. In fact, there are 87 actions out of 101 actions having
over 50% of their respective testing videos early predictable
(less than 50% video frames need to be observed). They are
few actions that are late predictable (more than 50% frames
need to be observed for prediction), such as “JavelinThrow”
and “HighJump”. The action “JavelinThrow” can be con-
sidered as the most challenging class for prediction as 29%
of its testing samples require more than 50% video frames
to be observed in order to make accurate prediction. In all
the 3783 testing samples, 35.45% testing samples are in-
stantly predictable, and 78.46% are early predictable; only
2.09% are late predictable. This suggests that a majority of
action videos can be correctly classified using our approach
after observing half of the videos; not necessary to observe
the entire videos.

4.5. Unknown vs Known Progress Level

Previous experiments assume that the progress levels of
testing videos are known to our method, which may not
be practical. In this experiment, we evaluate our method
in Scenario 1, where progress levels are unknown in test-
ing. All the partial videos are treated to be at the same
progress level, DeepSCN and only one single SVM model
are trained to predict the action label (the ONE method).
Its performance is compared with two other methods that
require progress levels to be given in testing: the RAND

Table 2. Top 10 instantly, early, and late predictable actions in
UCF101 dataset. Per. is the percentage (%) of testing samples
that is instant, early or late predictable.

Instantly Predictable Early Predictable Late Predictable
Billiards Billiards JavelinThrow

IceDancing CleanAndJerk HighJump
RockClimbingIndoor Diving FrontCrawl

PlayingPiano Fencing HeadMassage
PommelHorse FloorGymnastics Haircut

Rowing FrisbeeCatch PlayingViolin
Skijet HorseRace HandstandWalking

JugglingBalls HorseRiding PoleVault
SoccerJuggling IceDancing CricketBowling

TaiChi Kayaking BasketballDunk

method (progress levels are randomly generated) and the
TRUE method (ground truths are used in the testing phase).
Both of the RAND and TRUE methods train DeepSCN and
K SVMs described in Scenario 2 in Section 3.4.

Performance variations of the three methods are shown
in Table 3. Results show that the averaged performance
variation between the TRUE method and the ONE method
is within 2.2%. This demonstrates that the ONE method
can be used in practical scenarios where the progress lev-
els are unknown without too much performance decrease.
Thanks to the proposed DeepSCN, partial videos at vari-
ous progress levels can be accurately represented, thereby
making one single SVM good enough for predicting these
partial videos and making the progress levels unnecessary
in testing. In addition, the ONE method is 3⇥ faster than
the TRUE method as the ONE method only trains one SVM
while the TRUE method needs to train K SVMs. The aver-
aged performance gap between the RAND method and the
TRUE method is over 4.5%, indicating that the random gen-
erated progress levels may not be a good choice in practice.
The most significant difference between these two methods
is 8.63% at observation ratio 0.1.

4.6. Model Components

We compare with several variants of our full method, in-
cluding the method without self reconstruction in Eq. (3)
(no-SR method), the one with ↵ = 0 in Eq. (7), the one
with � = 0, and the one without the constraints in the
optimization problem (7) (no-CS method). The averaged
prediction results over 10 observation ratios and prediction
results over the beginning 5 observation ratios are summa-
rized in Table 4. Our method significantly outperforms the
no-SR method by 11.31% in the averaged results, demon-
strating the effectiveness of learning robust features from
the partial observation itself. The performance gap between
our method and the (↵ = 0) method shows the importance
of learning information from full observations. By setting

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10

20

30

40

50

60

70

80

90

100

Figure 5. Top 10 instantly, early, and late predictable actions in
UCF101 dataset. Action names are colored and sorted according
to the percentage of their testing samples that fall in the category
of IP, EP, or LP. For example, “JavelinThrow” has 29% testing
samples (higher than all the other actions) that require to observe
more than 50% video frames in order to make accurate prediction,
and thus it is the most challenging action for prediction using this
metric. This figure is best viewed in color.
Table 2. Top 10 instantly, early, and late predictable actions in
UCF101 dataset. Per. is the percentage (%) of testing samples
that is instant, early or late predictable.

Instantly Predictable Early Predictable Late Predictable
Billiards CleanAndJerk JavelinThrow

IceDancing Diving HighJump
RockClimbingIndoor Fencing FrontCrawl

PlayingPiano FloorGymnastics HeadMassage
PommelHorse FrisbeeCatch Haircut

Rowing HorseRace PlayingViolin
Skijet HorseRiding HandstandWalking

JugglingBalls Kayaking PoleVault
SoccerJuggling ParallelBars CricketBowling

TaiChi SkateBoarding BasketballDunk

tion 3.4). This is an impractical assumption since progress
levels of testing streaming videos are unknown in real-
world scenario. In this experiment, we evaluate our method
in a practical scenario, i.e. progress levels are unknown
in testing. We following the setting in Scenario 1 defined
in Section 3.4. All the partial videos are treated to be
at the same progress level, DeepSCN and only one single
SVM model is trained to predict the action label (the ONE
method). Its performance is compared with two other meth-
ods that require progress levels to be given in testing: the
RAND method (progress levels are randomly generated)
and the TRUE method (ground truth progress levels are
used in the testing phase). Both of the RAND and TRUE
methods train DeepSCN and K SVMs described in Sce-
nario 2 in Section 3.4.

Performance variations of the three methods on UCF101,
Sports-1M, and BIT datasets are shown in Table 3. Re-
sults show that the average performance variation between
the TRUE method and the ONE method is within 1% on

7

Figure 5. Top 10 instantly, early, and late predictable actions in
UCF101 dataset. Action names are colored and sorted according
to the percentage of their testing samples that fall in the category of
IP, EP, or LP. For example, “JavelinThrow” has 29% testing sam-
ples (higher than all the other LP actions) that are late predictable
(more than 50% video frames need to be observed in order to make
accurate prediction). This figure is best viewed in color.Table 2. Top 10 instantly, early, and late predictable actions in
UCF101 dataset. Per. is the percentage (%) of testing samples
that is instant, early or late predictable.

Instantly Predictable Early Predictable Late Predictable
Billiards Fencing JavelinThrow

IceDancing FrisbeeCatch HighJump
RockClimbingIndoor SoccerPenalty FrontCrawl

PlayingPiano VolleyballSpiking HeadMassage
PommelHorse HulaHoop Haircut

Rowing FieldHockeyPenalty PlayingViolin
Skijet BasketballDunk HandstandWalking

JugglingBalls CliffDiving PoleVault
SoccerJuggling Bowling CricketBowling

TaiChi TennisSwing ThrowDiscus

4.5. Unknown vs Known Progress Level

Existing methods in [13, 24, 2] assume that the progress
levels of videos are known in testing (Scenario 2 in Sec-
tion 3.4). This is an impractical assumption since the
progress levels of testing videos are unknown in real-world
scenario. In this experiment, we evaluate our method in a
practical scenario (Scenario 1 defined in Section 3.4), i.e.
progress levels are unknown in testing. All the partial
videos are treated to be at the same progress level, Deep-
SCN and only one single SVM model are trained to predict
action labels (the ONE method). Its performance is com-
pared with two other methods that require progress levels to
be given in testing: the RAND method (progress levels are
randomly generated) and the TRUE method (ground truth
progress levels are used in the testing phase). Both of the
RAND and TRUE methods train DeepSCN and K SVMs

Performance variations of the three methods on UCF101,
Sports-1M, and BIT datasets are shown in Table 2. Re-
sults show that the average performance variation between
the TRUE method and the ONE method is within 1% on

7

Fig. 6. Top 10 instantly, early, and late predictable actions in UCF101
dataset. Action names are colored and sorted according to the percent-
age of their testing samples falling in the category of IP, EP, or LP. This
figure is best viewed in color.

three methods are implemented in MATLAB. On a 3.4GHz
CPU, our AAPNet spends 1 hour in training and testing,
while DeepSCN uses 4 hours. MTSSVM and MSSC use 140
hours and 420 hours, respectively, which are two orders
of magnitude slower than AAPNet and DeepSCN. It takes
our AAPNet about 0.5 hours in training and testing videos
in Sports-1M dataset. By comparison, DeepSCN, MTSSVM,
and MSSC use 2.5, 50, and 770 hours, respectively, remark-
ably slower than our AAPNet method. On BIT dataset, our
AAPNet is slower than DeepSCN because it spends lots of
time in data loading, but it is still faster than MTSSVM and
MSSC on this dataset.

AAPNet also runs on GPU and it is much faster than
running on a CPU. On a Titan XP GPU, AAPNet spends 0.07
hour in training and testing UCF101 dataset, which is 14×
faster than running on a CPU. On Sports-1M dataset and
BIT, the speedup is 16× and 3.5×, respectively. The most
time-consuming component in our architecture is feature
extraction using C3D.

TABLE 2
Training and testing time (hours) of comparison methods on UCF101,

Sports-1M, and BIT datasets.

Methods CPU/GPU UCF101 Sports-1M BIT
MTSSVM [28] CPU 140h 50h 0.12h

MSSC [6] CPU 420h 770h 0.2h
DeepSCN [1] CPU 4h 2.5h 0.002h

Ours CPU 1h 0.5h 0.007h
Ours GPU 0.07h 0.03h 0.002h

5.4 Instantly, Early, and Late Predictable Actions

It should be noted that actions differ in their prediction char-
acteristics. Discriminative patterns of actions may appear
early or late in an action video. This affects the portion of
a video that needs to be observed before being classified
correctly, i.e., the predictability of an action. We analyze the
predictability of actions in three datasets, and study at what
stage an action can be predicted. We define three categories
of action videos according to their predictability: instantly
predictable (IP), early predictable (EP), and late predictable (LP).
An action video is IP means that the video can be predicted
after only observing the beginning 10% portion of the video.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10

20

30

40

50

60

70

80

90

100

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#550

CVPR
#550

CVPR 2017 Submission #550. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 3. Top 10 instantly, early, and late predictable actions in Sports-1M dataset. Per. is the percentage (%) of testing samples that is
instant, early or late predictable.

Instantly Predictable Early Predictable Late Predictable
equestrianism ribbon (rhythmic gymnastics) artistic gymnastics

candlepin bowling tricking dirt jumping
fencing uneven bars floor (gymnastics)

slopestyle ball (rhythmic gymnastics) bmx
sport aerobics skipping rope rope (rhythmic gymnastics)
track cycling freestyle bmx unicycle

bicycle trampolining vault (gymnastics)
speed skating unicycle ten-pin bowling
figure skating rings (gymnastics) bowls
skittles (sport) parallel bars road bicycle racing

observing the beginning half of the videos. Action “pat” can
be considered as the most challenging one in prediction as
19% of its testing samples are late predictable, higher than
all the other actions. In all the 128 testing videos, 13.28%
are instantly predictable, 55% are early predictable, 4.69%
are late predictable, and 27.03% testing samples cannot be
correctly classified.

References
[1] M. Chen, Z. E. Xu, K. Q. Weinberger, and F. Sha. Marginal-

ized denoising autoencoders for domain adaptation. In ICML,
2012. 1

3

Fig. 7. Top 10 instantly, early, and late predictable actions in Sports1M
dataset. Action names are colored and sorted according to the percent-
age of their testing samples that fall in the category of IP, EP, or LP.
For example, “artistic gymnastics” has 12% testing samples that are late
predictable (require to observe more than 50% video frames in order to
make accurate predictions). This figure is best viewed in color.

EP means that an action video is not IP but can be predicted
if the beginning 50% portion of the video is observed. LP
means that an action video is neither IP nor EP, and can
only be predicted if more than 50% portion of the video is
observed.

5.4.1 UCF101 Dataset
Top 10 IP, EP, and LP actions in UCF101 dataset are
listed in Figure 6. Results show that actions “Billiards” and
“IceDancing” are the easiest to predict; all of their testing
samples are instantly predictable. In our experiment, there
are 33 action categories having over 50% of their respective
testing videos instantly predictable (correctly classified after
only observing the beginning 10% frames). Figure 6 also
shows that 4 actions have all their testing samples early
predictable. In fact, there are 38 actions out of 101 actions
having over 50% of their respective testing videos that are
early predictable (less than 50% video frames need to be
observed). The action “JavelinThrow” can be considered as
the most challenging class to predict as 29% of its testing
samples are late predictable (more than 50% video frames
need to be observed), higher than all the other actions. In
all the 37, 830 testing partial videos, 35.45% of them are
instantly predictable, and 43.78% are early predictable; only
2.09% are late predictable. The remaining 18.69% partial
videos cannot be correctly predicted. This suggests that a
majority of action videos can be correctly classified using
our approach after observing the beginning 50% frames
of the videos. Please refer to the supplement for action
predicability results on RGB data and flow data.

It is interesting to see that there are 11 of the 24
classes in UCF101-24 dataset used in [41] falling in the cate-
gory of IP, which are “Biking”, “SkyDiving”, “IceDancing”,
“RopeClimbing”, “SalsaSpin”, “Skiing”, “Skijet”, “Soccer-
Juggling”, “Surfing”, “TrampolineJumping”, “WalkingWith-
Dog”4. This explains that [41] has rather flat progression for
action prediction accuracy. In addition, [41] makes predic-
tions based on the localized person, while our method does
not. Localization of the person help reduce a large amount
of background noise, and thus improves the performance.

5.4.2 Sports-1M Dataset
Top 10 IP, EP, and LP actions in Sports-1M dataset are
listed in Figure 7. Results show that actions “equestrianism”

4. Please note that Fig. 6 is not a complete list of instantly predictable
actions and thus some of the 10 actions here are not shown in Fig. 6.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 11

is the easiest action to predict among all the 50 actions;
83% of their testing samples can be instantly predicted. In
our experiment, there are 15 action categories having over
50% of their respective testing videos instantly predictable
(correctly classified after only observing the beginning 10%
of the frames). Figure 7 also shows that 39% testing samples
of “ribbon (rhythmic gymnastics)” and 25% testing samples
of “parallel bars” are early predictable. The action “artistic
gymnastics” can be considered as the most challenging class
to predict as 12% of its testing samples are late predictable
(require more than 50% video frames to be observed in
order to make accurate prediction), higher than all the other
actions. In all the 18610 testing partial videos, 42.24% test-
ing samples are instantly predictable, and 23.16% are early
predictable; only 3.22% are late predictable. The remaining
31.38% testing samples cannot be correctly classified. This
suggests that a majority of action videos can be correctly
classified using our approach after observing the beginning
half of videos.

5.4.3 BIT Dataet
The distributions of actions on BIT dataset in IP, EP, and
LP categories are listed in Figure 8. It should be noted that
an action (e.g.,“pat” and “handshake”) may appear in IP, EP,
and LP at the same time as some of its testing samples are IP,
but some of them are LP. This is because the discriminative
patterns in an action appear in different stages of videos.
For example, in some “pat” videos, hand motion occurs
instantly while in other video samples the motion occurs
at the end of the videos. Action “bow” contains 44% videos
that are IP, significantly higher than the other 6 actions listed
in IP. Therefore, “bow” can be considered as the easiest
action to predict. By comparison, action “boxing” has no
samples that are instantly predictable (and thus not listed
in IP). Note that the percentage of 8 actions falling in IP
in BIT dataset is significantly lower than the percentage in
UCF101 and Sports-1M datasets. The underlying reason is
that in BIT dataset people behave similarly in the beginning
stage in different actions (they tend to be standing still),
which may not be easily differentiated. Actions “hug” and
“high-five” have 88% of their testing samples that are early
predictable. The other 5 actions (excluding “pat”) all have
over 50% of their respective testing samples that are early
predictable. This suggests that a majority of action videos
can be correctly classified after observing the beginning half
of the videos. Action “pat” can be considered as the most
challenging one to predict as 19% of its testing samples are
late predictable, higher than all the other actions. In all the
1280 testing partial videos, 13.28% are instantly predictable,
55% are early predictable, 4.69% are late predictable, and
27.03% testing samples cannot be correctly classified.

5.5 Unknown vs. Known Progress Level

In practical scenarios, progress levels of testing partial
videos are unknown. Nevertheless, previous work in [1],
[42] shows that the availability of the progress levels of
testing partial videos has an impact on the performance
of action prediction methods. In this experiment, we are
interested in such an impact, and evaluate the performance
variation of our AAPNet in two scenarios where progress

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10

20

30

40

50

60

70

80

90

100

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#550

CVPR
#550

CVPR 2017 Submission #550. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ered as the most challenging one in prediction as 19% of its
testing samples are late predictable, higher than all the other
actions. In all the 128 testing videos, 13.28% are instantly
predictable, 55% are early predictable, 4.69% are late pre-
dictable, and 27.03% testing samples cannot be correctly
classified.

Table 3. Instantly, early, and late predictable actions in BIT dataset.
Per. is the percentage (%) of testing samples that is instant, early
or late predictable.

Instantly Predictable Early Predictable Late Predictable
bow hug pat

handshake high-five boxing
hug kick handshake
kick handshake

high-five boxing
pat push

push bow
pat

References
[1] M. Chen, Z. E. Xu, K. Q. Weinberger, and F. Sha. Marginal-

ized denoising autoencoders for domain adaptation. In ICML,
2012. 1

3

Fig. 8. Instantly, early, and late predictable actions in BIT dataset. Action
names are colored and sorted according to the percentage of their test-
ing samples that fall in the category of IP, EP, or LP. For example, “pat”
has 19% testing samples that are late predicable (require to observe
more than 50% video frames in order to make accurate predictions). This
is higher than all the other actions, and thus “pat” is the most challenging
action for prediction. This figure is best viewed in color.

levels are known and unknown in testing. Scenario 1: the
progress levels are available, we trainK AAPNets for action
prediction, where the k-th AAPNet corresponds to partial
observations at progress level k. In testing, the ground-truth
progress level k of a testing video x is required to choose
the k-th AAPNet to make predictions. This is referred to
as the TRUE method. Scenario 2: the progress levels are
unavailable, which is practical in real-world applications.
We train one single AAPNet for prediction. In testing, all the
partial videos are treated to be at the same progress level.
We call it the ONE method.

Performance variations of the two methods on UCF101,
Sports-1M, and BIT datasets are shown in Table 3. Results
show that the average performance variation between the
TRUE method and the ONE method is within 0.5% on
UCF101 and Sports-1M datasets, and it is within 1.5%
on BIT dataset. This demonstrates that ONE method can
be used in practical scenarios without significant perfor-
mance decrease where the progress levels are unknown.
Thanks to the proposed AAPNet, partial videos at vari-
ous progress levels can be accurately represented, thereby
making one AAPNet powerful enough for predicting these
partial videos and making the progress levels unnecessary
in testing. In addition, training ONE method is significantly
faster than training TRUE method as ONE method only
trains one AAPNet while TRUE method needs to train
K AAPNets. The performance variation on BIT dataset
is relatively larger than UCF101 and Sports-1M datasets
because short video clips (most of the videos are less than
100 frames) and non-cyclic actions (such as “push” and
“handshake”) are present in the dataset. Using inaccurate
progress levels in testing would confuse action predictors,
and thus decreases the performance.

5.6 Convergence
We analyze the convergence speed of the proposed AAPNet
in training, and show results in Figure 9. We set the dimen-
sionalityDh of the hidden features h and the dimensionality
Dz of the latent feature z to 128, 256, 512 to see their
convergence differences. We train on UCF101 dataset (split
1) 10 times, and report the average performance.

Results in Figure 9(a) indicate that the three methods
converge after training for 6 epochs. After 6 epochs, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 12

TABLE 3
Prediction results (%) on UCF101, Sports-1M and BIT datasets using deep networks methods. Observation ratios r ∈ {0.1, 0.3, 0.5, 0.7, 1.0}. The

average performance is computed over all 10 observation ratios.

UCF101 Sports-1M BIT
avg. 0.1 0.3 0.5 0.7 1.0 avg. 0.1 0.3 0.5 0.7 1.0 avg. 0.1 0.3 0.5 0.7 1.0

TRUE 85.52 60.32 86.94 86.94 89.48 92.62 71.40 60.24 68.35 72.54 74.48 75.93 76.56 41.41 68.75 78.91 88.28 92.97
ONE 85.03 59.84 86.78 86.65 88.34 91.99 71.40 60.98 68.08 72.81 74.53 75.17 75.08 39.84 64.84 80.47 88.28 91.40

1 2 3 4 5 6 7 8 9 10

Epoch
75

80

85

90

R
ec

og
ni

tio
n

ac
cu

ra
cy

 (%
)

Dh=512,Dz=128
Dh=512,Dz=256
Dh=512,Dz=512

(a)

1 2 3 4 5 6 7 8 9 10

Epoch
75

80

85

90

R
ec

og
ni

tio
n

ac
cu

ra
cy

 (%
)

Dh=128,Dz=256
Dh=256,Dz=256
Dh=512,Dz=256

(b)

Fig. 9. Average prediction performance of our AAPNet in different train-
ing epochs. (a) The dimensionalityDz of the progress-invariant feature z
is set to 128, 256, 512. (b) The dimensionalityDh of the hidden feature h
is set to 128, 256, 512. The proposed AAPNet generally converges after
5 epochs, and its performance variation is within 1.2%.

prediction performance variations for the methods with
Dz = 128, 256, 512 are 0.98%, 1.21%, 0.69%, respectively.
Therefore, we do not need to train AAPNet for hundreds
of epochs as other deep networks did, and can save a lot
of training time. Similar convergence result can also be
found in Figure 9(b). After 6 training epochs, the prediction
performance variations of the three methods with Dh =
128, 256, 512 are 1.27, 1.00, 1.21, which are all within 1.5%.
Therefore, we only train AAPNet for 10 epochs through-
out this work as more training epochs do not necessarily
increase the prediction performance.

5.7 Effectiveness of Components and Parameters
We evaluate the effectiveness of model components in our
method, and the sensitivity to the parameters α and β on
UCF101 dataset. The sensitivity to the number of layers M
can be found in the supplemental material.

5.7.1 Components.
AAPNet has four major components, including the encoder
E, the partial observation decoder G1, the full observation
decoder G2, and the discriminator D. To validate their effec-
tiveness, we remove each of them from the full network and
create four variants, which are no-E method, no-D method,
no-G1 method, and no-G2 method. The averaged prediction
results over 10 observation ratios and prediction results over
observation ratios 0.1, 0.3, 0.5, 0.7, 1.0 are summarized in
Table 4. C3D method is utilized as a baseline.

Our method significantly outperforms the no-D method
by 6.83% on average, demonstrating the effectiveness of
adversarial learning to differentiate the generated full ob-
servations and the true full observations. This module en-
courages the network to generate full observations that are

similar to the true full observations, and thereby improving
the performance. The performance gap between our method
and the no-G2 method shows the importance of generating
full observations from the latent feature z using G2 as G2

can provide additional information to the latent feature z
and make the generated features closer to the features in the
corresponding full observation. The variant method no-G1

does not allow us to learn a shared feature space between
partial observations and full observations. Although we
can still reconstruct a full observation by minimizing the
full observation reconstruction loss, without G1, we are
not able to regularize the latent feature z to contain the
prior information in the partial observation. Therefore, the
network is not capable of providing the partial observations
with the correct information from its corresponding full
observation. The strength of the encoder E can be seen
from the performance variance between our method and the
no-E method. The encoder summarizes partial observations
of various observation ratios into a latent feature vector z,
which is beneficial for encoding actions of variable lengths.

TABLE 4
Comparison experiments among variants on partial videos of

observation ratios r ∈ {0.1, 0.3, 0.5, 0.7, 1.0}. The average
performance is computed over all 10 observation ratios.

Methods avg. 0.1 0.3 0.5 0.7 1.0

C3D 76.35 39.99 78.56 80.97 81.81 82.92
no-D 78.20 51.18 78.09 78.19 79.62 83.35
no-G2 80.93 56.09 82.82 83.06 84.51 88.18
no-G1 81.88 56.17 82.39 83.19 85.96 88.84
no-E 81.94 56.49 83.32 83.48 84.96 88.61
Ours 85.03 59.84 86.78 86.65 88.34 91.99

5.7.2 Parameters α and β

The sensitivity of our method to parameter α and β
is reported in Table 5. Parameters α and β are set to
0.001, 0.01, 0.1, 1, 10, 100, respectively. Results in Table 5(a)
indicate that our method is not sensitive to parameter
α > 0.01. The largest performance variation is only within
0.8%. The average performance slightly drops to 84.47% if
α = 0.001 as the learned model parameter will pay less
emphasis on learning robust features from partial observa-
tions themselves. This may generate less robust features for
prediction, and thus degrade the performance slightly.

Table 5(b) shows that our method is also not sensitive
to the parameter β. The largest average performance gap is
within 0.9%. The insensitivity of our method to parameter
β significantly saves time in parameter tuning.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 13

TABLE 5
Average prediction performance (%) of our method on UCF101 dataset

with various parameter α and β values.

(a) Performance with various α.
α 0.001 0.01 0.1 1 10 100

Acc. 84.47 85.14 84.76 85.03 84.86 85.56

(b) Performance with various β.
β 0.001 0.01 0.1 1 10 100

Acc. 85.41 85.84 85.36 85.03 85.60 85.93

5.8 Fusion Strategy
We also evaluate the performance fusion function g(·)
used for integrating the prediction scores given by given
test observation x and the generated observation x̂(K).
g(D1:|Y |(x), D1:|Y |(x̂

(K)). The fusion function g(·) is de-
fined as mean, max, and weighted average over the
two score outputs. Weighted average is defined by γ ×
D1:|Y |(x̂

(K)) + (1− γ)×D1:|Y |(x). Results in Table 6 show
that weight average (γ = 0) achieves the worst performance
compared with other fusion schemes because it does only
focuses on the given observation x, and does not use the
information transferred from full observations in the gen-
erated observations x̂(K). As the action information in the
given observation x is not complete, the prediction perfor-
mance is the worst in this comparison experiment. Using
a combination of both given observation x and generated
observation x̂(K) generally achieves high performance in
this comparison. The best result is achieved at γ = 0.2 and
similar performance is also achieved if γ = 0.5 (Average).
The scheme γ = 1 only uses the information provided by
the generated observation x̂. Even though the generated ob-
servation x̂ capture the information in its corresponding full
observation, it may gain irrelevant noise information in the
full observation, and thus slightly decrease the performance.

TABLE 6
Accuracy (%) of our method using various fusion strategies for

integrating the prediction scores of generated features x̂(K) and given
features x in test.

#Method avg. 0.1 0.3 0.5 0.7 1.0

Max 83.21 57.20 83.51 83.27 84.69 89.32
Average 84.93 59.68 86.62 86.94 88.18 91.99

Weighted (γ = 0) 79.50 54.42 81.26 81.47 82.90 86.65
Weighted (γ = 1) 84.62 59.47 86.31 86.62 87.95 91.75

Weighted (γ = 0.2) 84.97 59.79 86.68 87.02 88.29 92.07

5.9 Performance on Action Recognition
Our method is also compared with state-of-the-art action
recognition methods including [23], [36], [43], [44], [45],
[46], [47]. Results in 7 show that our method outperforms
[23], [36], [45], [46] and achieves slightly lower performance
compared to [43], [44], [47]. Note that our goal is different
from these comparison methods. Our method is optimized
for classifying incomplete actions in partial videos, while
these methods were developed for recognizing complete
actions, assuming the action in each testing video has been
fully executed. This makes them unsuitable for predicting
action labels in partial videos. Even though the networks

in [48], [49] achieve even higher performance, they require
pre-training on external datasets such as Kinetics [50].

TABLE 7
Comparison results with action recognition methods.

Method Accuracy
Two stream [45] 88.0%

C3D [36] 85.2%
Two steam+LSTM [46] 88.6%

TDD+FV [23] 90.3%
KVMF [47] 93.1%

ST-ResNet [44] 94.2%
TVNet [43] 94.5%

Ours 92.0%

6 CONCLUSION

This work addresses the problem of predicting the action la-
bel of a video before the action execution ends. We have pro-
posed an efficient and powerful approach for recognizing
unfinished human actions from videos. Our approach learns
extra information from fully observed actions to improve
the discriminative power of the features from temporally
partial observations. We further improve the representation
and discrimination power of the features by using an adver-
sarial loss and a classification loss. Our method is evaluated
on UCF101, Sports-1M, and BIT-Interaction datasets, and
shows significant improvements with considerable speedup
over state-of-the-art methods. An interesting finding shows
that actions differ in their predicability. This inspires us to
further explore the temporal structures of actions for prompt
and accurate prediction in future work.

ACKNOWLEDGMENTS

This research is supported in part by the NSF IIS Award
1651902 and U.S. Army Research Office Award W911NF-17-
1-0367.

REFERENCES

[1] Y. Kong, Z. Tao, and Y. Fu, “Deep sequential context networks for
action prediction,” in CVPR, 2017.

[2] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
in ICLR, 2014.

[3] A. Makhzani, J. Shlens, N. Jaitly, and I. Goofellow, “Adversarial
autoencoders,” in ICLR Workshop, 2016.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in NIPS, 2014, pp. 2672–2680.

[5] K. Li and Y. Fu, “Prediction of human activity by discovering
temporal sequence patterns,” TPAMI, vol. 36, no. 8, pp. 1644 –
1657, 2014.

[6] Y. Cao, D. Barrett, A. Barbu, S. Narayanaswamy, H. Yu,
A. Michaux, Y. Lin, S. Dickinson, J. Siskind, and S. Wang, “Recog-
nizing human activities from partially observed videos,” in CVPR,
2013.

[7] Y. Zhou and T. L. Berg, “Temporal perception and prediction in
ego-centric video,” in ICCV, 2015.

[8] M. Pei, Y. Jia, and S.-C. Zhu, “Parsing video events with goal
inference and intent prediction,” in ICCV, 2011.

[9] T. Lan, T.-C. Chen, and S. Savarese, “A hierarchical representation
for future action prediction,” in ECCV, 2014.

[10] M. Hoai and F. D. la Torre, “Max-margin early event detectors,” in
CVPR, 2012.

[11] S. Ma, L. Sigal, and S. Sclaroff, “Learning activity progression in
lstms for activity detection and early detection,” in CVPR, 2016.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, FEBRUARY 2018 14

[12] I. Laptev, “On space-time interest points,” IJCV, vol. 64, no. 2, pp.
107–123, 2005.

[13] B. Wu, C. Yuan, and W. Hu, “Human action recognition based on
context-dependent graph kernels,” in CVPR, 2014.

[14] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition
by dense trajectories,” in CVPR, 2011, pp. 3169–3176.

[15] M. Raptis and L. Sigal, “Poselet key-framing: A model for human
activity recognition,” in CVPR, 2013.

[16] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories
and motion boundary descriptors for action recognition,” IJCV,
vol. 103, no. 1, pp. 60–79, 2013.

[17] B. Ni, P. Moulin, X. Yang, and S. Yan, “Motion part regularization:
Improving action recognition via trajectory selection,” in CVPR,
June 2015.

[18] Y. Kong, Y. Jia, and Y. Fu, “Interactive phrases: Semantic descrip-
tions for human interaction recognition,” in TPAMI, vol. 36, no. 9,
2014, pp. 1775–1788.

[19] Y. Tian, R. Sukthankar, and M. Shah, “Spatiotemporal deformable
part models for action detection,” in CVPR, 2013.

[20] Y. Yang and M. Shah, “Complex events detection using data-
driven concepts,” in ECCV, 2012.

[21] Y. Zhou, B. Ni, R. Hong, M. Wang, and Q. Tian, “Interaction part
mining: A mid-level approach for fine-grained action recognition,”
in CVPR, June 2015.

[22] S. Ma, L. Sigal, and S. Sclaroff, “Space-time tree ensemble for
action recognition,” in CVPR, June 2015.

[23] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in CVPR, 2015, pp. 4305–
4314.

[24] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural
network for skeleton based action recognition,” in CVPR, June
2015.

[25] K. Schindler and L. V. Gool, “Action snippets: How many frames
does human action recognition require?” in CVPR, 2008.

[26] D.-A. Huang, V. Ramanathan, D. Mahajan, L. Torresani, M. Paluri,
L. Fei-Fei, and J. C. Niebles, “What makes a video a video:
Analyzing temporal information in video understanding models
and datasets,” in CVPR, 2018.

[27] M. S. Ryoo, “Human activity prediction: Early recognition of
ongoing activities from streaming videos,” in ICCV, 2011.

[28] Y. Kong, D. Kit, and Y. Fu, “A discriminative model with multiple
temporal scales for action prediction,” in ECCV, 2014.

[29] B. Letham, C. Rudin, and D. Madigan, “Sequential event predic-
tion,” Machine Learning, vol. 93, pp. 357–380, 2013.

[30] C. Rudin, B. Letham, A. Salleb-Aouissi, E. Kogan, and D. Madigan,
“Sequential event prediction with association rules,” in COLT,
2011, pp. 615–634.

[31] C. Vondrick, H. Pirsiavash, and A. Torralba, “Anticipating visual
representations from unlabeled video,” in CVPR, 2016.

[32] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
forecasting,” in ECCV, 2012.

[33] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in CVPR, 2016.

[34] M. Chen, Z. E. Xu, K. Q. Weinberger, and F. Sha, “Marginalized
denoising autoencoders for domain adaptation,” in ICML, 2012.

[35] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion,” JMLR, vol. 11,
pp. 3371–3408, 2010.

[36] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learn-
ing spatiotemporal features with 3d convolutional networks,” in
ICCV, 2015.

[37] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie, “Behavior recog-
nition via sparse spatio-temporal features,” in VS-PETS, 2005.

[38] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of 101
Human Action Classes From Videos in The Wild,” CRCV-TR-12-
01, Tech. Rep., 2012.

[39] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional
neural networks,” in CVPR, 2014.

[40] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V.
Gool, “Temporal segment networks: Towards good practices for
deep action recognition,” in ECCV, 2016.

[41] G. Singh, S. Saha, M. Sapienza, P. Torr, and F. Cuzzolin, “Online
real-time multiple spatiotemporal action localisation and predic-
tion,” in ICCV, 2017.

[42] Y. Kong and Y. Fu, “Max-margin action prediction machine,”
TPAMI, vol. 38, no. 9, pp. 1844 – 1858, 2016.

[43] L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, and J. Huang, “End-
to-end learning of motion representation for video understand-
ing,” in CVPR, 2018.

[44] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Spatiotemporal mul-
tiplier networks for video action recognition,” in CVPR, 2017, pp.
7445–7454.

[45] K. Simonyan and A. Zisserman, “Two-stream convolutional net-
works for action recognition in videos,” in NIPS, 2014.

[46] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep net-
works for video classification,” in CVPR, 2015.

[47] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao, “A key volume mining
deep framework for action recognition,” in CVPR, 2016.

[48] Y. Zhao, Y. Xiong, and D. Lin, “Recognize actions by disentangling
components of dynamics,” in CVPR, 2018.

[49] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,”
in CVPR, 2018.

[50] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a
new model and kinetics dataset,” in CVPR, 2017.

Yu Kong (M’15) received B.Eng. degree in au-
tomation from Anhui University in 2006, and
PhD degree in computer science from Beijing
Institute of Technology, China, in 2012. He is
now a tenure-track Assistant Professor in the
B. Thomas Golisano College of Computing and
Information Sciences at Rochester Institute of
Technology, Rochester, NY, USA. Prior to that,
he visited the National Laboratory of Pattern
Recognition (NLPR), Chinese Academy of Sci-
ence, and the Department of Computer Science

and Engineering, University at Buffalo, SUNY. He was a postdoc in
the Department of ECE, Northeastern University. Dr. Kong’s research
interests include computer vision, social media analytics, and machine
learning. He is a member of the IEEE and ACM.

Zhiqiang Tao received the B.E. degree in soft-
ware engineering from the School of Computer
Software, and the M.S. degree in computer sci-
ence from the School of Computer Science and
Technology, Tianjin University, Tianjin, China, in
2012 and 2015, respectively. He is currently pur-
suing the Ph.D. degree in Northeastern Univer-
sity, Boston. His research interests include sub-
space learning, ensemble clustering and repre-
sentation learning.

Yun Fu (S’07-M’08-SM’11) received the B.Eng.
degree in information engineering and the
M.Eng. degree in pattern recognition and in-
telligence systems from Xi?an Jiaotong Univer-
sity, China, respectively, and the M.S. degree
in statistics and the Ph.D. degree in electrical
and computer engineering from the University of
Illinois at Urbana-Champaign, respectively. He
is an interdisciplinary faculty member affiliated
with College of Engineering and the College of
Computer and Information Science at Northeast-

ern University since 2012. His research interests are Machine Learn-
ing, Computational Intelligence, Big Data Mining, Computer Vision,
Pattern Recognition, and Cyber-Physical Systems. He has extensive
publications in leading journals, books/book chapters and international
conferences/workshops. He serves as associate editor, chairs, PC
member and reviewer of many top journals and international confer-
ences/workshops. He received seven Prestigious Young Investigator
Awards from NAE, ONR, ARO, IEEE, INNS, UIUC, Grainger Foundation;
nine Best Paper Awards from IEEE, IAPR, SPIE, SIAM; many major
Industrial Research Awards from Google, Samsung, and Adobe, etc.
He is currently an Associate Editor of the IEEE Transactions on Neural
Networks and Leaning Systems (TNNLS). He is fellow of IAPR, OSA
and SPIE, a Lifetime Senior Member of ACM, Lifetime Member of AAAI
and Institute of Mathematical Statistics, member of ACM Future of Com-
puting Academy, Global Young Academy, AAAS, INNS and Beckman
Graduate Fellow during 2007-2008.

