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Abstract

This paper studies statistical relationships among components of high-dimensional
observations varying across non-random covariates. We propose to model the obser-
vation elements’ changing covariances as sparse multivariate stochastic processes.
In particular, our novel covariance modeling method reduces dimensionality by
relating the observation vectors to a lower dimensional subspace. To characterize
the changing correlations, we jointly model the latent factors and the factor loadings
as collections of basis functions that vary with the covariates as Gaussian processes.
Automatic relevance determination (ARD) encodes basis sparsity through their
coefficients to account for the inherent redundancy. Experiments conducted across
domains show superior performances to the state-of-the-art methods.

1 Introduction

In many applications, the complex relationships among components of high-dimensional observa-
tions change across non-random covariates (e.g., experimental conditions, times). For example, a
major challenge for computational gene regulatory network (GRN) inference is that the topological
structures of GRNs are context-dependent. Different interactions of gene activities will be active
in different experimental conditions (e.g., culture media, temperatures, pH), leading to a different
GRN structure [1, 2]. Another scenario is that crime occurrences exhibit correlations across spatially
disjoint regions, meanwhile, the spatial correlations evolve over time [3].

The modeling methods typically combine heterogeneous data from different experimental conditions
or times in a single data set by assuming homoscedastic models with independent and identically
distributed (i.i.d.) errors. For example, let y = (y1, . . . , yd)

T ∈ Rd denote a vector of d gene
expression levels measured under an experimental condition indexed by a non-random covariate
x ∈ X ⊂ R. These methods compute the conditional mean E(y|x) = µ(x) while assuming
the conditional covariance matrix cov(y|x) = Σ to be a constant. This leads to inappropriately
biased estimates, and obscures the distinguishing variations of GRN structures subject to specific
experimental conditions.

Instead, we propose a novel covariance modeling method that allows cov(y|x) = Σ(x) to change
flexibly with X. We make low-rank approximations to covariate-dependent covariance matrices with
latent factor models. In particular, we characterize the loadings as a sparse combination of unknown
basis functions. The basis functions vary over X with Gaussian processes as their convenient priors.
This leads to more flexible covariance matrices than modeling Σ(x) as a quadratic function of
x by assuming a linear mapping from covariates to observations. For the coefficient matrix, we
employ the automatic relevance determination (ARD) method to place a shrinkage prior on its size
with the loadings increasingly shrunk towards zero as their column index increases. The induced
covariance matrices are regularized quadratic functions of these basis elements. Our method allows
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covariate-specific correlations to share statistical strength while retaining their distinctive property.
Since commonly only a portion of observation components have latent statistical relationships, ARD
encodes sparsity to handle the inherent redundancy. The posterior computation is tractable with
conjugate posterior updates.

We evaluate our covariance modeling method across domains: for GRN inference, using bench-
mark gene expression microarray datasets for a eukaryotic model organism (S. cerevisiae), a human
pathogen (S. aureus), and a prokaryotic model organism (E. coli), we achieve robustly better per-
formances than the state-of-the-art competitor methods across the organisms; for crime occurrence
prediction, by capturing the spatial correlations of weekly crime rates among the 180 census tracts in
Washington D.C evolving over time between 2016-2018, we outperform two state-of-the-art methods.

2 Related works

GRN inference is a long-standing challenge, and a wide variety of computational approaches are pro-
posed [4]. These approaches generally make a homoscedastic assumption without considering GRN
structure variations. The regression-based methods with feature selection (e.g., L1-regularization)
identify a subset of transcription factors (TFs) that are the most informative to predict the expression
level of a target gene [5, 6]. The correlation-based approaches compute averaged variation in gene
expressions across different experimental conditions. The Pearson and Spearman correlations are the
common measures. Mutual information is introduced to capture nonlinear relationships between gene
expressions [7, 8] such as CLR and ARACNE. Tree-based ensemble methods and artificial neural
networks (ANNs) are also implemented to estimate TF-target gene relationships [9]. Probabilistic
graphical model approaches are applied to infer gene regulatory interactions via Bayesian network
and Markov random field [10, 2]. These approaches rely on a locally defined neighborhood structure
that does not directly capture potential long-range dependencies. For crime prediction, autoregressive
mixture models with Poisson processes are proposed [11]. The most recent extension (PoINAR)
incorporates a stochastic process prior to group spatial correlation modes across multiple time series,
and achieves the-state-of-the-art performance [3].

A common method for estimating cov(y|x) = Σ(x) applies regression models to the entries of the
log or Cholesky decomposition of Σ(x) or Σ(x)−1 [12]. The method is computational expensive
to high dimensional applications due to fitting d(d + 1)/2 separate regression models. Besides,
multivariate stochastic volatility models and Wishart processes are proposed to capture Σ(x) as it
evolve over time to form a multivariate time series [13, 14, 15]. Their Markov assumption causes
the failure to capture long-range dependencies. Scaling to high-dimensional data is still a problem.
An extension to estimate the covariance function cov(y|x) formulates the factor loading matrix as
a linear combination of the predictor variable x, which limits the model’s flexibility [16]. Another
relevant work used compactly supported covariance functions to model short-scale variability to
encode sparsity, and factorize the covariance functions for spatial and temporal domains to reduce the
complexity [17]. To exclude long-scale variability seems not sensible for experiment-dependent gene
network inference, and the complexity from GP prior part still depends on data dimension d.

3 Sparse covariance modeling

We develop a parsimonious likelihood to model correlations among components of covariate-
dependent high-dimensional observation vectors. The factor loading matrix is further factorized
into a collection of basis functions and their coefficient matrix. By relating the covariate-dependent
basis elements with a sparse Gaussian process prior, we are able to capture variations in observation
elements’ correlations across the covariates.

3.1 Multivariate covariance likelihood specification

We characterize observation vectors yc by formulating a multivariate Gaussian covariance model as

p(yc) = N(µy(xc),Σy(xc)), c = 1, . . . , n (1)

with X = {x1, . . . , xn} a set of covariates (e.g., indexes of experimental conditions), and yc, an
observation vector indexed by xc, the dimension of which is dim(y) = d.
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We explain the correlations in elements of yc by assuming some latent variables zc, and take the
above model to be induced through the latent factor model

p(yc|zc) = N(A(xc)zc,Σ0) p(zc) = N(µz(xc), Ik) (2)

where A(xc) is a d× k factor loading matrix specific to xc, zc = (zc1, . . . , zck)T are latent factors
associated with yc, and Ik denotes a k × k identity matrix. We let Σ0 = diag(σ2

1 , . . . , σ
2
d), the

diagonal elements of which are independently generated from inverse chi-square priors σ2
i ∼

invχ2(ν0, σ
2
0), where i = 1, . . . , d.

The latent factor model provides a lower dimensional description of the observation vectors. In
particular, the marginal distribution of yc is

p(yc) =

∫
p(yc|zc)p(zc)dzc = N(A(xc)µz(xc), A(xc)A

T (xc) + Σ0) (3)

zc represents a latent subspace indexed by xc that captures the observations’ statistical variability,
µz(xc) enables these latent factors to change over {xc}, and A(xc) is a low-rank description of the
observation element correlations subject to xc.

3.2 Combining Gaussian processes with a sparse prior

In order to characterize µz(x) and A(x) changing across {xc} and enable information sharing, we
use Gaussian process priors to generate the sets of basis functions for them, respectively.

For µz(X) = {µz1(X), . . . , µzk(X)}, we have

µzj (x) ∼ GP (0, κµ(x, x′)) (4)

with κµ(x, x′) a positive definite kernel function, which is defined as σ2
zv exp(− 1

2σ2
zh
||x−x′||22). The

hyper-parameters σ2
zv and σ2

zh are vertical and horizontal scales of the Gaussian process. k indicates
the latent factor dimension. For any finite set of xs, this process defines a joint Gaussian:

p(µzj |X) = N(0,Kµ) (5)

where K{µ}cc′ = κµ(xc, xc′).

The method of using Gaussian process priors for d× k elements of A(X) can be computationally
expensive given large d [17]. We instead factorize the factor loading matrix into a d× t coefficient
matrix B and a t× k matrix of basis function elements U(X),

A(X) = BU(X) (6)

where B ∈ Rd×t and U(X) = {ulj(X)}l=1,...,t;j=1,...,k. Thus, t specifies the size of the basis
functions given k. We then let k � d and t � d. Instead of directly defining a GP prior for each
element of the d× k matrix A(X), this factorization enables our method to scale to high dimensions
d. These basis functions are generated from independent Gaussian process priors,

ulj(x) ∼ GP (0, κu(x, x′)) (7)

where κu(x, x′) = σ2
uv exp(− 1

2σ2
uh
||x − x′||22) is the kernel function. Analogously to that of µzj ,

this process defines a joint Gaussian for any finite set of points:

p(ulj |X) = N(0,Ku) (8)

where K{u}cc′ = κu(xc, xc′).

To encode sparsity for the set of basis functions ulj(X) where t→∞ in theory, we employ ARD to
explore how the basis contribute to the factor loading. Without a shrinkage prior, it leads to full A(x)
matrices. This becomes problematic as the number of bases grows in the presence of limited data, and
we cannot identify irrelevant basis elements. ARD addresses these issues by encouraging the number
of the basis to zero, if their presence is not supported by the data. Specifically, we define independent,
zero-mean, spherically symmetric Gaussian priors on the columns of the coefficient matrix B:

p(B|θ) =

t∏
l=1

N(b·l;0, θ
−1
l Id) (9)

3



Each precision parameter θl is given a Γ(αθ, βθ) prior. ARD method penalizes non-zero columns of
the coefficient matrix by an amount determined by the precision parameters. Iterative estimation of
these hyperparameters θl and the coefficient matrix B leads to θl becoming large for columns whose
evidence in the data is insufficient for overcoming the penalty induced by the prior. Having θl →∞
drives b·l → 0, which implies that the corresponding basis in the lth row of U(x) does not contribute
to the factor loadings.

Theorem 1 Assume X is compact, the induced prior ΠU

⊗
ΠB on {Σ̃(x), x ∈ X}, where the priors

ΠU for U(X) and ΠB for B are specified in 8 and 9, can generate a covariance function Σ̃ : X→
M+ arbitrarily close to any continuous function Σ : X→M+, with M+ the space of n×n positive
semidefinite matrices. That is, for ∀ε > 0 and k̃ ≥ k, ΠΣ̃(supx∈X ||Σ̃(x)− Σ(x)||2 < ε) > 0.

k is the factor dimension of any continuous function mapping from compact domain to positive
semidefinite matrices, and k̃ is the factor dimension of the ones generated by our model. The theorem
indicates our covariance modeling method’s expressive capability of covering the ground-truth
matrices.

3.3 Inference via Gibbs sampling

We develop a Gibbs sampling solution to iteratively sample the marginalized basis functions of the
covariances and the mean functions given their priors and the observations, and then update the
hyper-parameters given the basis functions and the observations.

First, our model’s joint probability can be factorized as

p({yc}, {zc}, µz, B, U,Σ0, θ)

∝
n∏
c=1

[p(yc|zc, B, U,Σ0)

k∏
j=1

p(zcj |µzj )]

d∏
i=1

p(σ2
i )

k∏
j=1

[p(µzj )

t∏
l=1

p(ulj)]

t∏
l=1

[p(b·l|θl)p(θl)]
(10)

We then sample the latent variables from their respective posteriors.

To sample a mean function µzj for each latent factor, we readily marginalize over {zc} as in (3), and
let Ac = BU(xc) and a

(c)
·j denote the jth column of Ac. Thus, the likelihood of µz corresponding to

xc is

p(yc|µz(xc), B, U(xc),Σ0) = N(a
(c)
·j µzj (xc) + mj(xc), AcA

T
c + Σ0) (11)

where mj(xc) = (
∑
r 6=j a

(c)
1r µzr (xc), . . . ,

∑
r 6=j a

(c)
dr µzr (xc))

T .

Let Gj = diag(a
(1)
·j , . . . ,a

(n)
·j ) and Σc = AcA

T
c + Σ0, the posterior of µzj (X) by assuming the

Gaussian process prior as in (5) results in

p(µzj (X)|Y,B,U(xc),Σ0) = N(µµz|Y ,Σµz|Y )

Σ−1
µz|Y = K−1

µ +GTj diag(Σ−1
1 , . . . ,Σ−1

n )Gj

µµz|Y = Σµz|Y (GTj diag(Σ−1
1 , . . . ,Σ−1

n )Y −mj )

(12)

where Y −mj = (y1 −mj(x1), . . . ,yn −mj(xn))T .

To sample each basis function element ulj from its conditional posterior, its likelihood corresponding
to xc by combining (2) and (6) is

p(yc|zc, B, U(xc),Σ0) = N(zcjb·lulj(xc) + mlj(xc),Σ0) (13)

where mlj(xc) = (
∑

(o,p)6=(j,l) zcob1pupo(xc), . . . ,
∑

(o,p)6=(j,l) zcobdpupo(xc))
T .

Let Hlj = diag(z1jbl, . . . , znjbl), the following conditional posterior of the basis function ulj(x)
can be derived from its Gaussian process prior in (8) and the likelihood in (13)

p(ulj(X)|Y, {zcj}c, B, U−lj(X),Σ0) = N(µu|Y ,Σu|Y )

Σ−1
u|Y = K−1

u +HT
ljdiag(Σ−1

0 , . . . ,Σ−1
0 )Hlj

µu|Y = Σu|Y (HT
ljdiag(Σ−1

0 , . . . ,Σ−1
0 )Y −mlj )

(14)
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Figure 1: AUC scores change across experimental conditions, obtained by computing the experiment-
specific gene correlations from the posterior estimate of covariance matrices Σy(xc) using indepen-
dent samples from 5000 to 6000 iterations of the 3 Gibbs sampling chains. The blue crosses indicate
the sample means, and the error bars are the respective standard deviations. Each experiment-specific
correlation matrix is a classifier aggregating statistical strength from all experiments.

where Y −mlj = (y1 −mlj(x1), . . . ,yn −mlj(xn))T . As in 12 and 14, information from data
dominates the posteriors via the second terms. The role of the priors K−1

µ and K−1
u defined based on

the index xc are even weaker, since Gaussian process prior are symmetric and fully-connected.

Using conjugacy, we sample σ2
i from its conditional posterior

p(σ2
i |{yc}, {zc}, B, U(xc)) = invχ2(νσi|y, σ

2
σi|y)

νσi|y = ν0 + n σ2
σi|y =

1

νσ|y
(ν0σ

2
0 +

n∑
c=1

(yci − bi·U(xc)zc)
2)

(15)

Let vec(B) = (b·1, . . . ,b·t)
T denotes the vectorization of the coefficient matrixB, and the likelihood

in (13) can be re-written as

p(yc|zc, B, U(xc),Σ0) = N(mT
Bvec(B),Σ0) (16)

where mB = (
∑k
j=1 zcju1j(xc), . . . ,

∑k
j=1 zcjutj(xc))

T .

More generally, our ARD prior on B in (9) is equivalent to a N(0,ΣB) prior on vec(B), where

ΣB = diag(θ1Id, . . . , θtId)
−1 (17)

The posterior distribution of B is

p(vec(B)|yc, zc, U(xc),Σ0) = N(µB|Y ,ΣB|y)

Σ−1
B|Y = Σ−1

B +MT
BΣ−1

0 MB µB|Y = Σ−1
B|Y (MT

BΣ−1
0 yc)

(18)

and MB = (
∑k
j=1 zcju1j(xc)Id, . . . ,

∑k
j=1 zcjutj(xc)Id).

Finally, given B and recalling that each precision parameter θ is gamma distributed, the posterior of
θl is given by

p(θl|B) = Γ(αθ +
|Sl|
2
, βθ +

∑
i,l∈Sl

b2il
2

) (19)

The set Sl contains the indices for which bil has prior precision θl.

Our proposed factorization reduces the computation of estimating d(d+1)/2 parameters to estimating
d × t coefficients and t × k basis elements plus d variances. As long as k � d and t � d, it is a
substantial computation reduction. Since the ARD prior regularizes the dimension of the basis by
shrinking the columns of B towards zero, the effective dimensions are small.

4 Experiments

We test our method across two domains. For GRN inference, we leverage variations in gene regulatory
interactions across experimental conditions. For crime occurrence prediction, temporal variations in
crime rate correlations among regions provide key information.
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Figure 2: Performance evaluation for the three organisms. The ROC curves are in the top row. The
PR curves are in the bottom. The ROC and PR curves of our method (red) are computed from
the average experiment-specific correlations 1

n

∑n
c=1 rc(I). We highlight the best performers of

DREAM5 methods (black). Boxplots of the AUROC and AUPR scores of the experiment-specific
correlations inferred by our method (blue) and the DREAM5 methods (black) are on the right.

4.1 Gene expression data description

The datasets for gene expression compendia in S. cerevisiae, S. aureus, and E. coli are from the
DREAM5 network inference challenge solicited predictions of genome-scale transcriptional regula-
tory networks [9]. Each compendium is represented as an expression matrix of d genes by n chip
measurements. Organism-specific gold standards contain the known TF to target gene interactions
which are true positives. All TF-target gene pairs that are not part of the gold standards are negatives.
The challenge provides a total of 5,667 genes over 536 microarrays of S. cerevisiae, 4,297 genes over
805 microarrays of E. coli, and 2,677 genes over 160 microarrays of S. aureus. The microarray data
sets are collected from a wide variety of experimental conditions with time series or gene deletion
experiments, different perturbations, and various stress conditions [9]. Thus, yc is a vector of the
gene expression levels under experimental condition xc.

4.2 MCMC settings

For each of the three organisms’ gene expression datasets, we simulate 3 chains of 6000 Gibbs
iterations, and discard the first 3000 as burn-in phase. Each sampling chain is initialized with
parameters sampled from their priors. We set Γ(αθ, βθ) prior on the ARD precisions as αθ = |Sl|
and βθ = αθ/1000, where Sl is defined in (19). This prior specification is equally informative for
various choices of effective coefficient number |Sl| by fixing the prior mean of the prior distribution.
We place a invχ2(1, 10) prior on the precision parameter σ2

i , and set the vertical and horizontal scale
hyper-parameters σ2

·v = 0.01 and σ2
·h = 10 in the Gaussian processes to account for the change rate

of gene expression covariances across experiments. Since the ARD prior gives rise to a much smaller
number of effective dimensions of the basis by shrinking the columns of B towards zero, we choose
a finite k for computation efficiency. We find k = 20 and t = 15 to be sufficiently large as the last
few columns of the posterior samples of B are consistently shrunk close to 0 for the three data sets.

We analytically marginalize the latent GP random functions to consider the poste-
rior of the hyperparameters. The marginal likelihood is (yT1 , · · · , yTn )T |σ2

h, B, z,Σ0 ∼
Norm(0,

∑
l,j(diag(z·j)

⊗
b·,l)K(diag(z·j)

⊗
b·,l)

T + In
⊗

Σ0) where K denotes the GP co-
variance matrix based on the hyperparameters. As proposed in [18], we then place grid points at
the mode, and at a distance ±1sd from the mode along each dimension to explore hyper-parameter
sensitivity for the three data sets. we find that the results are the same with the length-scale and
vertical scale hyper-parameters ranging up to σ2

·v = 100 and σ2
·h = 0.005 for less correlation across
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Figure 3: GRN topological structures from our method (left) and the DREAM5 methods with highest
AUROC scores (right) for the three organisms. The threshold is the median of the ranking scores of
the regulatory interactions. For our model, the ranking scores are the estimated gene correlations.
The black-colored nodes denote genes. The edges denote regulatory interactions. We highlight the
true positive, false negative, and false positive connection predictions, and the top 4 hub genes.

experimental conditions with large values of k = t = 50. This suggests the robustness of our model
to the choice of the hyper-parameters. We perform the Gelman-Rubin diagnostic [19] to assess
convergence by calculating the within-chain and between-chain variances on the Gibbs samples of
the posterior.

4.3 GRN inference

We evaluate network predictions as a binary classification task in terms of edges (regulatory interac-
tions) predicted to be present or absent, and use standard performance metrics, receiver operating
characteristic (ROC) curves and precision-recall (PR) curves.

We first evaluate predictions across experimental conditions via area under the ROC curve (AUROC)
scores summarizing the performance of each experiment-specific correlation matrix. In Figure 1
(a)-(c), we plot the AUROC scores vary across experimental conditions for the three organisms. The
scores are computed by comparing the ranked lists of gene correlations from the experiment-specific
covariance matrices Σy(xc)s against the binary gold standards. The results indicate that the predictive
performances of the gene expression correlations are experiment-dependent.

To integrate the predictions of the experiment-specific correlation matrices inferred by our method,
we compute an average rank assigned to a possible gene regulatory interaction I as 1

n

∑n
c=1 rc(I),

where rc(I) is the correlation of I from experiment xc, as in Figure 2 (a)-(c) and (e)-(g). In particular,
we compare our method with 35 individual methods for GRN inference 1. The methods are classified
into six categories (method details are in [9]): regression, mutual information (MI), correlation,
Bayesian networks, meta (methods that combine different approaches) and other (methods that do
not belong to any of the previous categories, e.g., random forest, ANOVA, and ANNs). In Figure 2,
the ROC curves and the PR curves show that our method outperform the best DREAM5 methods
for the three organisms. The DREAM5 method with the highest AUROC score for S. cerevisiae is
Meta 1 which is re-sampling from z-scores for target genes in TF knockouts, time-lagged CLR, and
linear ordinary differential equations. For S. aureus, the best DREAM5 method is the Regression
1(TIGRESS) [6] combining sparse linear regression with data re-sampling. The best DREAM5
method for E. coli is Meta 5. This method combines Pearson’s correlation, differential expression,
time-series analysis, and naive Bayes. None of these methods model GRN’s experiment-dependent
variations or share the statistical strength among different conditions with a stochastic process.

Figure 2 (d) and (h) shows the boxplots of the AUROC and the AUPR scores of our method’s
experiment-specific correlation matrices and the 35 DREAM5 methods across the three organisms.
Our method performs robustly better with less variations. The AUPR scores of our method are
significantly better than the DREAM5 methods. In Figure 3, we plot the GRN topological structures
inferred by our method and the best DREAM5 performers, and highlight the correctly identified
hub genes with the highest connection degrees. As shown in Figure 3 (b), our method has less false
positives (green dashed connections) than Regression 1, and achieves significantly higher AUPR

1The DREAM5 methods’ predictions are on https://www.synapse.org/#!Synapse:syn2787209/
wiki/70351.
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Figure 4: (a) Posterior means of the mean function µy(X) for each of the 180 census tracts in
Washington, D.C. The thick red line indicates the mean of the crime rates across the tracts. (b)
Comparison between the posterior mean function µy(X) and the posterior variance Σy(X) (red) and
the data mean and variance (blue) over the weeks. (c) Census tract 2502, which has highest average
correlations with the other tracts, is highlighted in the map of the 180 census tracts in Washington
D.C. (d) For census tract 2502, the 25th, 50th, and 75th quantiles of correlation with the 179 other
tracts based on the posterior variance Σy(X). The black line below is weekly averaged crime counts.

scores. This is consistent with the results in Figure 2 (f) and (h). The AUPRs are more informative
than the AUROCs, since in high-throughput analysis methods with high precision are preferable.

4.4 Crime event prediction

We apply our covariance modeling method to capture spatio-temporal dependence of crime rates in
the 180 census tracts in Washington, D.C. between 2016-2018 for crime occurrence prediction2. We
analyze the crime rates on a weekly basis, with totally 105 weeks. For our modeling, the observation
yc denotes a vector of crime rates in the tracts in week xc ∈ X with X as a set of discrete time
indexing the weeks. So we have dim(yc) = 180 and n = 105, respectively.

We follow the model setting strategy as in Section 4.2. In particular, we simulate 3 chains each for
6, 000 MCMC iterations, and discard the first 3, 000 for burn-in. The latent factor dimension k = 15
and t = 10 with the Gaussian process hyperparameters σ2

·h = 100 are sufficiently large to account
for the crime rates’ temporal variations. For the qualitative analysis, Figure 4 (a) shows the trends of
the posterior mean of the 180 components of µy(x) follows the mean of the observed crime rates
over time. The results in Figure 4 (b) indicate that we are able to capture both the mean and the
variance of the crime rates in the tracts across the weeks X via the posterior mean estimate µy(X)
and the posterior covariance estimate Σy(X). It demonstrates the flexibility of joint mean-covariance
estimation by our method. In Figure 4 (d), for census tract 2502 highlighted in Figure 4 (c), we notice
that its correlations with the 179 other tracts vary across the weeks. The shaded gray region indicate
the time period of its smallest correlation, and it corresponds to a lowest crime count on average.

We predict the one-week-ahead crime rates in each tract for the first 16 weeks in 2018 based on
the estimated weekly covariance matrices in 2016-2017. To estimate the posterior predictive of the
weekly crime rate y∗ in 2018, we compute the basis function elements {ulj(x∗)} conditioned on
{ulj(xc)}, where {xc} indexing the weeks in 2016-2017, with the coefficient matrix B estimated
from 2016-2017 by averaging over the Gibbs samples. Table 1 shows the monthly-averaged prediction
RMSE, conditioned on the data in 2016-2017. For PoINAR, we use the same setting as in [3]. For
Gaussian process regression (GPR), since we model the tracts independently over time, it cannot
capture the spatial correlations. Hoff et.al. [16] method overly simplifies the time-varying covariances
by making linear assumptions on xc. The results indicate that our method produces lower RMSE. In
Figure 5 (a)-(d), we compare the crime rate maps predicted by our method and the ground truth.

5 Conclusion

We propose a novel sparse covariance modeling method leveraging Gaussian processes to share infor-
mation among covariate-dependent covariance matrices, and utilizing ARD priors on the coefficients
to encode sparsity. We validate our model across domains and demonstrate its superior performance
over the state-of-the-art methods. Our method scales well to high-dimensional observations. The in-

2The crime data are available on http://crimemap.dc.gov/CrimeMapSearch.aspx
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Table 1: Monthly average RMSE of one-week-ahead predictions of the crime rates in 2018.

RMSE ± error Jan. 2018 Feb. 2018 Mar. 2018 April 2018
Our method 0.652± 0.018 0.726± 0.021 0.863± 0.028 0.807± 0.035
PoINAR [3] 0.899± 0.017 0.851± 0.014 0.912± 0.086 1.165± 0.006

GPR 1.582± 0.088 1.826± 0.157 1.649± 0.175 2.499± 0.204
Hoff et.al. [16] 1.751± 0.191 1.413± 0.168 2.198± 0.234 1.906± 0.209

(a) Jan. 2018 (b) Feb. 2018 (c) Mar. 2018 (d) April 2018

Figure 5: Monthly averaged crime rates maps of the ground truth (left) and the corresponding maps
of predictive posterior mean rates µy(X) using the samples from 5000 to 6000 iterations of the 3
Gibbs sampling chains (right) in 2018. The color scale is on the right.

ference algorithm involves sampling bases from an n-dimensional multivariate Gaussian distribution.
For very large n (e.g., number of experiments), the computations are still O(n3) in general. One of
our future work is to develop standard tools for scaling up this Gaussian process computation.
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