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Abstract: We propose a single phase-only optical element that transforms different orbital
angular momentum (OAM) modes into localized spots at separated angular positions on a
transverse plane. We refer to this element as an angular lens since it separates out OAM modes
in a manner analogous to how a converging lens separates out transverse wave-vector modes
at the focal plane. We also simulate the proposed angular lens using a spatial light modulator
and experimentally demonstrate its working. Our work can have important implications for
OAM-based classical and quantum communication applications.
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1. Introduction

It is known that the transverse position and the transverse wave-vector bases form a two-
dimensional Fourier transform pair and that a converging lens is a phase-only optical element
that performs this Fourier transformation [1, 2]. Owing to this transformation property of a lens,
optical modes characterized by different transverse wave-vectors get mapped onto separated
localized spots on a transverse plane after passing through a lens. When the aperture-size of the
lens is infinite, the localized spots take the form of two-dimensional Dirac-delta functions and
the wave-vector separation is said to be perfect. However, with a finite aperture-size lens, this
separation is imperfect and its degree characterizes the resolving power of the lens.
It is now also known that optical modes having an e−i`φ phase profile can carry `~ orbital

angular momentum (OAM) per photon [3]. Here φ is the angular position and ` is referred to
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as the aziumthal mode index or the OAM mode index. This feature of OAM modes has made
them extremely important for communication and computation protocols, in terms of system
capacity [4–6], security [7–9], transmission bandwidth [10,11], gate implementations [12, 13],
supersensitive measurements [14] and fundamental tests of quantummechanics [15–18]. However,
onemajor challenge in implementingOAM-based protocols is the efficient separation and detection
of OAM-modes. The earliest efforts at separating OAM modes were based on using a phase-only
hologram, either thin [19,20] or thick [21]. But these methods turned out to be quite inefficient and
are not suitable at single photon levels. Later, techniques based on concatenated Mach-Zehnder
interferometers [22, 23] and rotational Doppler shift were proposed [24, 25]. Although these
techniques are in principle 100% efficient even at the single-photon level, it is extremely difficult
to implement them for more than a few modes. More recently, there have been efforts [26–28]
based on log-polar mapping [29,30] that can work with more modes and also at the single-photon
level. However, these recent methods involve several elements and are quite cumbersome for
optical fields containing several OAM modes. Therefore, the existing methods for separating
out OAM modes are either inefficient or unsuitable at single-photon levels, or involve multiple
elements for their implementation.

In this article, we propose and demonstrate a single phase-only optical element that separates
out OAM modes into localized spots in much the same way as a converging lens separates out
transverse wave-vector modes. We refer to this element as an “angular lens” and show that it
provides a natural way of separating out OAM modes and can not only work with a large number
of incoming modes but also at the single-photon level.

2. Angular lens: the phase transformation function and its action on OAM
modes

Figure 1(a) illustrates how a converging lens separates out different transverse wave-vector
modes. The phase transformation function T(x, y) of a thin converging lens within the paraxial
approximation is given by (see Section 5.2 of Ref. [1]): T(x, y) = exp[− ik

2 f (x2 + y2)], where f
is the focal length of the lens and where k = 2π/λ with λ being the wavelength of light. The
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Fig. 1. (a) The schematic illustration of the working of a converging lens. The transverse
wave-vector modes q1 and q2 with phase profiles eiq1 ·ρ and eiq2 ·ρ get localized at separate
spatial locations. (b) The schematic illustration of the working of our proposed angular lens.
The OAM modes `1 and `2 with phase profiles e−i`1φ and e−i`2φ get localized at separate
angular positions.
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Fig. 2. (a) The thickness function of the proposed angular lens. (b) The experimental Setup.
SLM is spatial light modulator, L stands for a converging lens, and M stands for a mirror.

lens transforms the transverse wave-vector modes q1 and q2 with phase profiles eiq1 ·ρ and eiq2 ·ρ ,
where |q1 |, |q2 | � k, into localized spots on a transverse plane kept at z = f . Figure 1(b) is the
schematic illustration of the expected working of an angular lens. We now want to find out the
phase transformation function of a lens that performs as depicted in Fig. 1(b).

We begin by noting that the angular-position and the orbital angular momentum (OAM) bases
form a Fourier transform pair in much the same way as the transverse position and transverse
wave-vector bases do [31–33]. Therefore, it is natural to expect the transformation function of
an angular lens to have a quadratic dependence on φ just as the transformation function of a
converging lens has quadratic dependences on x and y. However, unlike the transverse position
coordinates (x, y) the cylindrical coordinates (ρ, φ) do not form a two-dimensional Fourier
pair. Therefore, it is not straightforward to arrive at an analogous functional dependence on ρ.
Nevertheless, we take a hint from Ref. [34], in which it was shown that an axicon, which has a
transformation function given by eiβρ with β being a constant, transforms a Laguerre-Gaussian
mode into an ultranarrow annulus. With this hint, we take the following as the transformation
function Tang(ρ, φ) of our proposed angular lens:

Tang(ρ, φ) = exp
[
−i(αφ2 − βρ)

]
. (1)

Here α, β are two constants and φ ∈ [−π, π] and ρ ∈ [0,∞]. The thickness function corresponding
to the phase transformation function has been plotted in Fig. 2(a).
We now illustrate the workings of our proposed angular lens using the experimental setup

shown in Fig. 2(b). An angular lens with the transformation function Tang(ρ, φ) given by Eq. (1)
is placed at z = 0 and an input field with amplitude Ez=0(ρ′, φ′) at z = 0 is incident on it. The
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field amplitude Ez=z(ρ, φ) at z is given by the Fresnel diffraction integral [1]:

Ez=z(ρ, φ) =
eikz

iλz
ei

k
2z ρ

2
∫ ∞

0

∫ 2π

0
Ez=0(ρ′, φ′)

× Tang(ρ, φ)ei
k
2z ρ

′2
e−i

kρρ′

z cos(φ−φ′)
ρ′dρ′dφ′. (2)

First of all we investigate the transformation properties of our angular lens for input field modes
given by Ez=0(ρ′, φ′) = e−i`φ

′ . Such modes have constant transverse intensity at z = 0. In our
experiment, we generate these modes one by one in a sequential manner, and for each generated
mode with a given OAM mode index, we measure the diffracted intensity pattern at z. The
modes are generated by first expanding our continuous-wave He-Ne laser beam to be 1-cm wide.
We then diffract this laser beam from the spatial light modulator (SLM) kept at z = 0 after
putting an appropriate phase pattern on it [19]. We also put a circular aperture of diameter D = 2
mm onto the SLM so that only a small circular portion of the incoming laser beam undergoes
diffraction and thus, to a good approximation, the intensity in the circular portion can be taken as
constant. The transformation function corresponding to the angular lens at z = 0 is also simulated
using the same SLM. With an SLM, the diffraction pattern corresponding to the transmission
function simulated on it is observed at the first diffraction order; the zeroth diffraction order of
an SLM contains mostly the reflected portion of the incoming field and does not contain much
information about the transmission function simulated on the SLM [19,35]. Therefore, we record
the transverse intensity at the first SLM diffraction order using a CCD camera placed at z. The
parameters α and β are electronically changed in order to simulate different lenses. By changing
` in a sequential manner, we generate a range of OAM modes and for each of these modes we
measure the diffracted intensity pattern at z. After collecting the intensity patterns for various
different values of `, we plot the combined intensity patterns.
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Fig. 3. Transformation of constant-intensity OAM modes by the angular lens. (a), (b), and
(c) are the combined intensity patterns for various ` observed at z = 65 cm. (d)-(f) are the
theoretical diffraction patterns as obtained by numerically evaluating the integral in Eq. (2)
for the same set of parameters. The screen size in all the above plots is 6.27 mm × 6.27 mm.
A constant background of 250 counts has been subtracted from the each CCD camera pixel.
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Figure 3 shows the combined intensity patterns observed by the CCD camera kept at z = 65
cm for a range of OAM modes with various ` and with separation ∆`. Figures 3(a)–3(c) show
the combined intensity patterns corresponding to α equal to 3, 8, and 16, respectively. In order
to consider the two modes as separated we adapt the following resolution criterion: if in the
combined two-dimensional intensity plot at z, the ratio of the intensity at the minimum located
in between the two maxima and that at the maxima is less than about 0.3 then the two modes
are resolved. This criterion is much stringent than that of Rayleigh, which allows for ratios
up to 0.811. The value of β was obtained by optimizing it for a given value of α and z such
that we obtain a localized diffraction pattern and the resolution criterion is satisfied. For the
three α values, the optimized values of β were found to be 17.7 mm−1, 29.9 mm−1, and 49.2
mm−1, respectively. We find that different OAM modes get transformed into diffraction patterns
localized at separate angular positions and that as α increases the mode separation ∆` that could
be resolved increases as well. For the three α values, we find that modes with separation ∆` equal
to 3, 4, and 6 could be resolved. Further, we find that as α increases, the range of modes that can
be transformed into localized functions also increases. Figures 3(d)-3(f) show the corresponding
theoretical diffraction patterns as obtained by numerically evaluating the integral in Eq. (2) for
the same set of parameters. We find an excellent agreement between the theory and experiments.
We note that for the aperture size of D = 2 mm, ∆` = 3 is the lowest value. For α = 3 and

D = 2 mm, β cannot be optimized to satisfy the resolution criterion with ∆` = 2 or ∆` = 1. This,
in fact, is a generic feature of optical elements having finite sizes. For example, a converging lens
achieves perfect resolution only when the aperture size is infinite. With finite aperture-sizes, the
resolving power of a lens remains limited [1]. Similar limitation on resolution is also observed in
the log-polar mapping based method for sorting OAM modes [29,30]. We also note in Fig. 3 that
there exists a limit on the maximum value of ` up to which the angular lens produces localized
patterns. Beyond this maximum value the transformation function no longer produces localized
patterns. In the figure, we have plotted the results only up to this maximum ` value. The maximum
value of ` seems to scale as α in the sense that as α increases the maximum value of ` also
increases in a linear manner.
In a converging lens the resolving power is decided by the size of the lens. In our proposed

angular lens, the parameter α is playing an analogous role. Both the range of the mode and the
minimum separation ∆` that could be resolved depends on the parameter α. As α increases, the
range of modes that can be resolved increases but the resolution decreases. The parameter β is
obtained by optimizing it for a given value of α and z such that we obtain a localized diffraction
pattern and the resolution criterion is satisfied. The parameter β plays a somewhat analogous role
as the focal length of a converging lens.
In order to illustrate this analogous property of the β parameter, we first recall how the focal

length of a converging lens transforms a given input field. We know that for a given input field the
focal intensity patterns due to lenses with different focal lengths remain the same except for an
overall scaling of the pattern. In the proposed angular lens, the β parameter shows an analogous
scaling property for fixed α values. In order to show this scaling, let us consider two angular
lenses with the same α but with β parameters being equal to β1 and β2 and the aperture size
D being equal to D1 and D2, respectively. Let us assume that with β1 and D1 the angular lens
produces the optimized diffraction pattern at z = z1. The field amplitude E (1)z=z1 (ρ, φ) in this case
can be written using Eq. (2) as

E (1)z=z1 (ρ, φ) =
eikz1

iλz1
e
ikρ2

2z1

∫ D1/2

0

∫ 2π

0
Ez=0(φ′)

× Tang(ρ, φ)e
i
k

2z1
ρ′2 e−i

kρρ′

z1
cos(φ−φ′)

ρ′dρ′dφ′. (3)

We at once see that since the input field amplitude depends only on φ′ the functional form of the
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Fig. 4. Scaling of diffraction patterns with z. (a), (b), and (c) are the combined intensity
patterns observed at three z values. (d)-(f) are the theoretical diffraction patterns as obtained
by numerically evaluating the integral in Eq. (2) for the same set of parameters. The screen
size in all the above plots is 6.27 mm × 6.27 mm. A constant background of 250 counts has
been subtracted from the each CCD camera pixel.

intensity due to the first angular lens at z1 is equal to that due to the second lens at z2, that is,

|E (2)z=z2 (ρ, φ)|
2 = |E (1)z=z1 (ρ/a, φ)|

2, if z2 = a2z1, β2 =
β1
a

and D2 =
D1
a
, (4)

for a given constant value of a. We thus find that if both β and D are decreased by a factor of a,
one obtains a radially scaled up version of the same diffraction pattern at a propagation distance
z that is a2 times larger. Figure 4 shows the experimental and theoretical results illustrating this
analogous focusing property of the angular lens. The diffraction pattern in Fig. 4(a) is for a lens
with α = 8 and D = 2 mm, and the β parameter was obtained by optimizing it such that we
obtain a localized diffraction pattern and the resolution criterion is satisfied. For the results in
Figs. 4(b) and 4(c), we chose z to be 100 cm and 140 cm respectively and the corresponding β
and the size of the lens were chosen simply using the scaling in Eq. (4), without any optimization.
Figures 4(d)-4(f) are the theoretical diffraction patterns as obtained by numerically evaluating
the integral in Eq. (2) for the same set of parameters.
Our results so far have illustrated how our proposed angular lens transforms different OAM

modes into localized spots at separated angular positions on a transverse plane. We have shown
that our angular lens separates out OAM modes in a manner analogous to how a converging lens
separates out transverse wave-vector modes at the focal plane. We next quantify the resolving
power of our angular lens in terms of its use as an OAM sorter. For this purpose, we adopt the
overall procedure of Refs. [5, 36,37] and calculate the cross-talk for the set of lens parameters
reported in Figs. 3(b) and 3(c). First, we divide the detection area on the CCD into 19 non-
overlapping spatial bins so as to define a detection bin for each OAM mode with index ranging
from ` = −36 to ` = 36 with separation ∆` = 4. In order to define these bins, we have used the
diffracted intensity expression of Eq. (2) for the given set of lens parameters and labeled a given
set of pixels as one bin if the set of pixels have at least 25% of the intensity of the most-intense
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Fig. 5. Cross-talk analysis. (a) The theoretically defined bins for different OAM modes. (b)
Experimental detection probability of the 19 input OAMmodes. (c) The theoretical detection
probability of the 19 input OAM modes.

pixel. The pixels having less than 25% intensity do not define any bin. The spatial bins defined
this way have been plotted in Fig. 5(a). We then send a known OAM mode through our system
and record the intensity in each of the 19 spatial bins. We repeat this for all the 19 input OAM
modes and plot the detection probability for each spatial bin in Fig. 5(b). Figure 5(c) shows the
theoretical detection probability for each spatial bins. The cross-talk for a given mode has been
defined as the fraction of the input intensity collected in spatial bins other than the one meant for
the given mode. The experimental cross-talk averaged over all the 19 modes turns out to be 16.5%.
The theoretically calculated average cross-talk come out to be 12.5%. We note that, in the context
of log-polar mapping based method [26,27,36,38], when the method is used in combination with
the idea of beam copying [39] modes with ∆` = 1 [36,38] can be separated with less than 10%
cross-talk. We believe that similar beam-copying techniques can also be employed to enhance the
resolving power of our angular lens. Moreover, as opposed to the log-polar based methods, which
require several elements for its implementation and are thus limited by the severe transmission
loss [36] in the system, our angular lens is a single phase-only element and so when realized
using a single glass element, instead on of an SLM, the transmission loss can be made negligibly
small.

3. Action of the angular lens on LG modes

Next, we study the action of our angular lens on the Laguerre-Gaussian (LG) modes, which
are the exact propagating solutions of the paraxial Helmholtz equation and are denoted by two
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Fig. 6. Transformation of LG modes by the proposed angular lens. (a), (b), and (c) are the
combined intensity patterns for various ` with p = 0 observed at z = 100 cm. (d)-(f) are the
theoretical diffraction patterns as obtained by numerically evaluating the integral in Eq. (2)
for the same set of parameters. The screen size in all the above plots is 5.63 mm × 5.63 mm.
A constant background of 170 counts has been subtracted from the each CCD camera pixel.

indices, ` and p. The index ` decides the OAM content and the index p decides the radial intensity
distribution. We produce LG modes using the method by Arrizón et al. [35]. Figure 6 shows
the combined intensity patterns observed by the CCD camera kept at z = 100 cm when a range
of LG modes with p = 0 and with separation ∆` were sequentially incident on angular lenses
having various sets of values for α and β. Figures 6(a)–6(c) show the combined intensity patterns
corresponding to α being equal to 7, 16, and 30, respectively. As before, for a given value of α,
the value of β was obtained by optimizing it such that we obtain a localized diffraction pattern
and the resolution criterion is satisfied. The values of β for the three α values were found to
be 27.0 mm−1, 36.5 mm−1, and 51.0 mm−1, respectively. The mode separation ∆` that could
be resolved for the three α values, were 4, 5, and 6, respectively. Figures 6(d)-6(f) show the
theoretical diffraction patterns as obtained by numerically evaluating the integral in Eq. (2) for
the same set of parameters. Although the proposed angular lens is able to separate out the LG
modes, it does not have all the analogous feature as in the case of flat-intensity OAM modes.
More specifically, we do not see the same scaling as is seen in the case of constant-intensity
OAM modes through Eq. (3) and Eq. (4). This is because in this case the input field amplitude
depends on both ρ′ and φ′ and therefore Eq. (3) does not show the same scaling.

4. Summary

In conclusion, we have proposed a single phase-only optical element that can transform different
OAM modes into localized patterns at separated angular positions on a transverse plane. Using
an SLM, we have experimentally demonstrated the working of our proposed angular lens for two
different types of OAM modes. For constant-intensity OAM modes, our angular lens works in a
manner analogous to how a converging lens works for transverse wave-vector modes. Even for
the LG modes, our proposed angular lens is able to separate out the modes based on their OAM
mode index. In several situations there are techniques that are employed to increase the resolving
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power of an optical element beyond its usual diffraction limit. For example, in the context of
log-polar mapping based method [26, 27, 36, 38], it was shown that when the method is used in
combination with the idea of beam copying [39] it can separate out modes with ∆` = 1 [36, 38].
We believe that similar techniques can also be employed to enhance the resolving power of
our angular lens. Since the proposed angular lens is purely a phase-only element and works
at any light level, we expect our work to have several important implications for OAM-based
communication protocols in both classical [4–6] and quantum domains [7–18].
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