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ABSTRACT 
A	practical	approach	to	feature	 location	using	agile	unit	 tests	
is	 presented.	 	 The	 approach	 employs	 a	 modified	 software	
reconnaissance	method	for	feature	location,	but	in	the	context	
of	 an	 agile	 development	 methodology.	 	 Whereas	 a	 major	
drawback	 to	 software	 reconnaissance	 is	 the	 identification	or	
development	 of	 invoking	 and	 excluding	 tests,	 the	 approach	
allows	 for	 the	 automatic	 identification	 of	 invoking	 and	
excluding	 tests	 by	 partially	 ordering	existing	 agile	 unit	 tests	
via	iteration	information	from	the	agile	development	process.		
The	approach	is	validated	in	a	comparison	study	with	industry	
professionals,	 where	 the	 approach	 is	 shown	 to	 improve	
feature	 location	 speed,	 accuracy,	 and	 developer	 confidence	
over	purely	manual	feature	location.	

CCS CONCEPTS 
•	Software	and	its	engineering	➝	Software	creation	and	
management	

KEYWORDS 
Software	reconnaissance,	invoking	tests,	excluding	tests,	
feature	location	

1 INTRODUCTION 
In	software	development,	it	is	frequently	necessary	to	work	

on	 sections	 of	 a	 program	 that	 implement	 a	 specific	 feature,	
perhaps	 to	 repair	 an	 implementation	 defect,	 enhance	
functionality,	 or	 add	 new	 capabilities.	 	 Locating	 this	 code	 is	
often	difficult	and	error	prone	as	the	software	grows	older	and	
more	 complex	 [1].	 Transfer	 of	 experienced	 developers	 and	
architects	 means	 retained	 program	 knowledge	 is	 lost	 [2].		
Typical	manual	methods	of	feature	 location	become	unwieldy	
and	impractical	as	program	size	grows	[2].	

Perfection	 in	 feature	 location	 is	 not	 always	 necessary.	
When	developers	attempt	to	locate	a	feature	in	code,	they	often	
search	for	an	initial	starting	point	where	part	of	the	feature	is	
implemented,	 and	 then	 follow	 code	 from	 that	 point	 [3].	
Further,	 developers	 tend	not	 to	 use	 tools	 for	 this	 activity	 [4]	

Location	of	that	initial	point	has	been	found	to	consume	about	
half	 of	 the	 time	of	 the	 feature	 location	activity	 [3].	A	method	
that	could	find	this	initial	approximate	location	would	be	very	
helpful.			

One	of	the	first	approaches	proposed	for	feature	location	is	
called	 software	 reconnaissance	 [5].	 	 In	 software	
reconnaissance	a	programmer	provides	feature-invoking	tests	
that	 exercises	 the	 feature,	 and	 similar	 feature-excluding	 tests	
that	 avoids	 invoking	 the	 feature.	 	 Execution	 traces	 for	 these	
tests	are	collected.		Code	executed	by	the	invoking	tests	but	not	
by	the	excluding	tests	implements	the	feature.	This	provides	a	
precise	 location,	 if	 tests	 are	 chosen	 carefully.	 However,	 the	
construction	of	invoking	and	excluding	tests	is	non-trivial	and	
the	quality	of	the	results	are	heavily	dependent	on	proper	test	
selection	 [6].	 Several	 techniques	 exist	 to	 attempt	 to	mitigate	
the	 test	 selection	 problem	 [6][7][8],	 however	 no	 automated	
method	 exists	 to	 select	 feature-excluding	 tests	 that	 are	
comprehensive	enough	to	mask	non-feature	code	and	still	not	
invoke	the	feature.	

In	 current	 agile	 methods	 (i.e.,	 test	 driven	 development	
(TDD)	 approaches)	 software	 is	 developed	 in	 increments	
consisting	 of	 small	 numbers	 of	 features	 and	 tests	 that	 both	
define	and	verify	those	features.	These	methods	have	become	
very	 common	 in	modern	 development	efforts,	 and	 provide	 a	
consistent	 software	 development	model	 [7,	 8].	 	 Efforts	 have	
been	made	 to	mine	 these	 agile	 artifacts	 for	 feature	 location.		
For	instance,	the	textual	labels	of	changesets	have	been	found	
to	 correspond	 with	 features	 [9]	 and	 blending	 the	 labels	 of	
these	artifacts	with	source	code	enhances	feature	location	[10].	
We	can	use	the	artifact	labels	similarly	to	location	the	times	of	
feature	implementations	in	the	software	history	timeline,	and	
to	 locate	 tests	 that	 correspond	 to	 specific	 feature	
implementations.		

Once	 we	 have	 identified	 feature	 development	 time,	 we	
found	that	useful	test	selection	methods	can	be	constructed	for	
agile	 software	 development	 projects	 by	 using	 these	 artifacts.	
By	 identifying	a	time	prior	to	 feature	implementation,	we	can	
(in	theory)	identify	a	body	of	tests	excluding	the	feature.		At	the	
point	just	after	implementation,	we	can	identify	a	minimal	set	
of	 invoking	 tests.	 Using	 these	 as	 test	 selection	 criteria,	 the	
method	 produces	 accurate	 results	 without	 requiring	manual	
test	selection.		

Several	different	agile	processes	for	software	development	
are	 in	 widespread	 use;	 each	 emphasizes	 different	 aspects	 of	
agile	methods.		Here,	we	explicitly	define	a	methodology	to	be	
agile	if	it	follows	three	basic	principles:	
1) Development	 based	 on	 addition	 of	 small,	 well	 defined	

features	 with	 defined	 periods	 of	 time	 for	 implementing	
these	features	(i.e.,	iterations	or	sprints).	
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2) Each	feature	 is	defined	and	verified	by	a	collection	of	one	
or	more	tests,	which	fail	before	the	feature	exists	and	pass	
after	the	feature	is	completed,	and	cover	(i.e.,	invoke)	all	of	
the	 code	 that	 implements	 the	 feature.	 These	 tests	 are	
often	written	 before	writing	 the	 implementing	 code,	but	
here	it	is	only	required	that	the	tests	exist	and	pass	before	
the	 feature	 is	 considered	 complete,	 by	 completely	
exercising	the	feature.		

3) Continuous	 integration	 of	 code	 is	 performed	 as	 it	 is	
checked	 into	 a	 repository.	 This	 includes	 performing	 all	
tests	that	have	been	defined	to	date,	requiring	all	tests	to	
pass.		
This	 is	 a	 fairly	 well	 accepted	 definition	 within	 industry	

practice.		One	of	the	authors	works	at	a	large	company	where	
agile	 processes	 (as	 defined	 above)	 have	 been	 used	 for	more	
than	10	years	and	applied	to	its	entire	code	base	(>100	MLOC).		
Since	the	basic	agile	methodology	is	a	process	executed	under	
varying	conditions,	a	feature	location	method	requiring	perfect	
execution	 of	 the	 process	 is	 of	 limited	 use.	 	We	 evaluate	 the	
approach	 on	 a	 software	 system	 developed	 under	 agile	
conditions	 and	 find	 that,	 when	 compared	 to	 purely	 manual	
feature	 location,	our	method	is	 sufficiently	 robust,	and	that	 it	
produces	 improvements	 in	 the	 quality	 and	 speed	 of	 feature	
location	 tasks	 even	 if	 the	 agile	 processes	 are	 followed	
incompletely	or	inaccurately	to	a	degree.	

The	contributions	of	this	paper	are	as	follows:	1)	Creation	
of	 a	model	 of	 agile	methodology	 and	 a	method	 for	 selecting	
necessary	 tests	 for	 feature	 location	 via	 software	
reconnaissance.	 2)	 Verification	 of	 the	 model,	 amethod	 for	
extracting	 feature	 locations	 from	 source	 code,	 and	 a	method	
for	 extracting	 tests	 in	 agile	 projects..	 3)	 Verification	 that	 the	
method	is	sufficiently	robust	to	be	effective	in	enabling	the	task	
of	locating	features	in	real-world	development	efforts.	

The	 rest	 of	 the	 paper	 is	 laid	 out	 as	 follows.	 	 Section	 2	
explains	 our	 model	 for	 extracting	 agile	 features.	 	 Section	 3	
presents	 the	 evaluation,	 and	 Section	 4	 Presents	 the	 results.		
Finally,	threats	to	validity,	related	work,	and	conclusion/future	
work	are	in	Section	5,	6,	and	7	respectively.	

2 EXTRACTING AGILE FEATURES 
In	 this	 section,	 we	 discuss	 a	 model	 for	 extracting	 agile	

features.	 	This	model	 is	then	used	to	present	the	approach	to	
feature	location.	
2.1	 Definitions	
Let	 a	 software	 program	P	 progress	 through	 intermediate	

programs	P0,	P1…Pn	as	it	is	modified	over	time	from	an	empty	
program	to	the	current	program.		Let	C	represent	the	series	of	
changes	 C1…Cn	 where	 change	 Ci	 is	 the	 change	 that	 changed	
program	 Pi-1	 into	 program	 Pi.	 	 Let	 F	 represent	 the	 series	 of	
features	or	desired	behaviors	F1…Fn,	 initially	 implemented	by	
these	changes,	where	Fi	is	the	feature	implemented	by	Ci.			Let	
T	represent	the	series	of	 test	suites	T1...Tn	that	test	(i.e.	verify	
the	correctness	and	presence	of)	the	features	F1...Fn.		A	change	
set	 Si	 =	 [Ci,	 Fi,	Ti]	 consists	 of	 the	 change	 Ci,	 the	 implemented	
feature	 Fi,	 and	 the	 verifying	 test	 suite	 Ti.	 	 	 	 Finally,	 let	 D	
represent	 the	 series	 of	 dates	 D0...Dm,	 starting	 and	 ending	 the	
time	periods	(i.e.	 iterations	or	 sprints)	during	which	changes	
are	made	to	add	and	test	features	in	the	program.	
2.2	 Modeling	Agile	Practices	
As	 discussed	 in	 the	 introduction,	 we	 consider	 a	 process	

agile	 if	 it	 incorporates	 three	 basic	 practices	 for	 enabling	

software	development	 in	an	environment	of	change.	Here	we	
look	 at	 the	 relevant	 practice	 rules	 of	 agile	 processes	 and	
restate	them	in	terms	of	the	model.	

Rule	 1.	 Development	 is	 based	 on	 addition	 of	 small,	 well	
defined	 features	 with	 defined	 periods	 of	 time	 (iterations	 or	
sprints)	for	implementing	these	features.	These	periods	of	time	
may	contain	one	or	many	commits	to	the	code	repository,	but	
they	must	 definitely	 end	with	 a	known	 commit	 event,	 and	 it	
must	 be	 possible	 to	 identify	 the	 set	 of	 commits	 performed	
during	that	period.		

For	 some	 time	 period	 ending	 at	 Dk,	 let	 the	 changes,	
features,	and	change	sets	completed	during	this	time	be	called	
Sp...Sr.	For	all	q	in	p...r,	the	following	holds:	1)	On	date	Dk-1,	no	
evidence	of	 change	 set	 Sq	 is	 in	 the	 repository.	2)	On	date	Dk,	
change	set	Sq	is	completed,	tested	and	in	the	repository.		

Rule	 2.	 Agile	 processes	 use	 completely	 verifying	 tests,	
where	 tests	 are	 written	 to	 specify	 and	 completely	 test	 each	
feature.		

For	 some	 time	 period	 ending	 at	 Dk,	 let	 the	 changes,	
features,	 and	 change	 sets	 completed	 (and	 committed)	 during	
this	time	be	called	Sp...Sr.	For	all	q	in	p...r,	the	following	holds	at	
time	Dk:	1)	for	change	set	Sq	=	[Cq,	Tq,	Fq],	2)	test	Tq	completely	
exercises	feature	Fq.	

Note	 that	while	 the	 initial	change	Cq	 that	 implemented	Fq	
may	not	remain	as	the	implementation	code	for	that	feature,	Tq	
will	continue	to	completely	exercise	that	feature	regardless	of	
implementation	 location.	 In	other	words,	after	refactoring,	Tq	
will	 continue	 to	exercise	 Fq,	 but	may	 or	may	 not	 continue	 to	
execute	the	code	changed	by	Cq.	

Rule	3.	Continuous	integration	of	code	as	it	is	checked	into	
a	code	repository,	including	running	all	past	tests.		

When	 change	 Cp	 is	 introduced,	 resulting	 in	 Pp,	 then	 Tp	
exercises	 Fp.	 The	 continuous	 build	 rule	 means	 that	 the	
following	holds	at	this	time:	For	all	q	in	1…p-1,	Tq	exercises	Fq	
for	all	Px	,	x	in	(q..p).		In	essence,	all	previous	tests	continue	to	
test	 the	 feature	 it	 was	 written	 to	 test,	 in	 all	 subsequent	
versions	of	the	program.	

Note	also	that	a	forward	mapping	must	exist	from	Tq	to	Fq	
so	 that	 a	 test	 failure	 in	 continuous	 build	 can	 identify	 which	
feature	 is	 broken,	 and	 that	 we	 assume	 that	 a	 search	 of	 this	
forward	mapping	can	create	a	mapping	from	Fq	to	Tq	.	This	 is	
discussed	in	more	detail	in	Section	2.3.		
2.3	 Mapping	Tests	to	Features	
In	 an	 agile	 build	 process,	 all	 previous	 feature	 tests	 are	

executed	and	must	pass	before	a	build	is	accepted	as	complete.	
If	a	test	fails,	that	feature	is	broken	and	must	be	repaired.	To	do	
this	 effectively,	 each	 test	must	have	 some	 label,	 tag,	 or	 other	
property	 indicating	 which	 feature	 has	 just	 failed	 to	 execute	
properly.		This	set	of	properties	can	be	used	to	map	tests	onto	
features.	

In	 practice,	 a	method	 for	 naming	 tests	 is	 frequently	used	
where	 test	 suites	 name	 the	 unit	 being	 tested,	 and	 individual	
tests	are	each	named	after	a	feature	or	aspect	of	a	feature	being	
tested	 [11].	 	 	 For	 instance,	 a	 test	 suite	 might	 be	 named	
SalesTaxManagerTest,	 while	 a	 test	 in	 that	 unit	 might	 be	
testSalesTaxExemptionForFood.	 Simply	 concatenating	 suite	
name	and	test	name	gives	a	good	identity	label	for	relating	the	
test	to	the	feature.			

It	 is	 also	 possible	 to	 map	 tests	 to	 features	 based	 on	
embedded	 documentation	 in	 the	 code	 (such	 as	 Python	
docstrings)	 or	 on	 repository	 commit	 messages,	 or	 based	 on	
being	committed	to	the	repository	in	the	same	commit	action	
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as	a	documented	feature.	Any	method	of	mapping	is	suitable	as	
long	 as	 it	 is	 consistent	 and	 predictable.	 If	 such	 a	 mapping	
method	 does	 not	 exist,	 the	 tests	 are	 of	 limited	 value	 to	
developers	 since	a	 test	 failure	during	 integration	must	reveal	
what	 feature	 is	 failing.	As	 long	 as	 that	mapping	 is	 reversible	
(mapping	from	test	to	 feature	 implies	that	one	can	map	from	
feature	to	one	or	more	tests)	then	the	mapping	can	be	used	for	
the	method	we	are	developing.		
2.4	 Invoking	Tests	
Rule	 1	 states	 that	 at	 any	 Dk,	 all	 existing	 features	 are	

complete.		
Rule	2	states	that	Tq	exercises	Fq	completely.		
Rule	3	states	that	this	is	true	for	all	Px,	x>q.		
By	definition,	an	invoking	test,	Tq,	is	a	test	that	completely	

exercises	 feature	 Fq	 and	 continues	 to	 completely	 exercise	
features	 Fq	 for	 all	 Px	 x>=q.	 Therefore,	 Tq	 can	 serve	 as	 an	
invoking	test.	

If	 the	 program	has	been	 refactored	
(i.e.,	reorganized	so	as	to	execute	some	
features	 in	 different	 locations),	 Tq	 will	
still	 execute	 Fq	 as	 long	 as	 Tq	 is	 the	
operational	 definition	 of	 the	 feature.	 If	
there	 are	 new	 features	 added	 that	
replace	 or	 augment	 Fq,	 then	 obviously	
Tq	will	not	cover	these	new	features,	but	
there	 will	 be	 other	 tests	 that	 will.	 	 Tq	
will	continue	to	test	Fq	to	the	extent	that	
it	 exists	 in	 the	 code.	 	 If	 Fq	 no	 longer	
exists,	 then	 Tq	 will	 not	 pass	 and	 is	
retired	 from	 the	 list	 of	 active	 tests,	
since,	 by	 Rule	 3,	 all	 active	 tests	 must	
pass	in	a	build.		

If	 Fq	 is	modified	 in	 such	a	way	 that	
the	feature	is	to	be	delivered	differently,	
then	by	Rule	2,	test	Tq	will	be	modified	
accordingly	 to	 create	 the	 current	
definition	of	the	feature.			

Identifying	 the	 invoking	 test	 (or	
tests)	 is	 therefore	 a	 matter	 of	 scanning	 the	 feature	 list	 and	
using	 whatever	 test	 property	mapping	
exists	to	locate	the	tests	for	that	feature.		
As	 a	 practical	 matter,	 software	
developed	 for	 this	 purpose	 abstracts	
transactions	so	that	the	details	of	these	
lists	 and	 mappings	 for	 a	 particular	
software	 system	are	 isolated	from	the	 logic	of	 identifying	the	
tests.		

It	is	important	to	note	that	the	invoking	test	is	always	the	
latest	version	(from	a	version-control	point	of	view)	of	the	test	
Tq,	if	P	as	tested	is	the	latest	version,	or	else	the	version	of	Tq	is	
contemporaneous	 with	 the	 time	 of	 the	 version	 of	 P	 being	
tested.		

After	 identifying	 the	 invoking	 test,	 the	 test	 is	 executed	
within	 the	 software	 system	 and	 the	 code	 coverage	 set	
collected.	 	A	 software	abstraction	easily	allows	 the	 storage	of	
coverage	sets	by	feature.	Rapid	storage	and	retrieval	of	 these	
sets	is	essential	to	effective	use	of	this	method.		As	a	practical	
matter,	it	is	not	expected	that	these	coverage	sets	are	created	
on	demand,	but	rather	created	during	a	conventional	build	and	
test	event,	where	all	tests	are	run	(as	is	the	normal	case	in	agile	
builds)	 and	 coverage	 sets	 are	 retained	 keyed	 to	 the	 features	
they	test	(e.g.,	daily	build).	
2.5	 Excluding	Tests	

The	purpose	of	the	excluding	test	is	to	create	a	coverage	set	
which,	 when	 subtracted	 from	 the	 invoking	 test	 coverage,	
leaves	 the	 coverage	 related	 to	 the	 feature	 of	 interest.	 	 It	 is	
important	 to	 note	 that,	 to	 accomplish	 this,	we	do	not	 need	a	
single	 explicit	 test,	 but	 rather	 a	 method	 to	 produce	 the	
excluding	coverage	set.		

Let	V	be	a	coverage	 set	 consisting	of	 all	 the	 lines	of	code	
from	 P	 that	 are	 executed	 in	 a	 particular	 scenario	 or	 test.	
Specifically,	 Vq	 is	 the	 set	 of	 lines	 of	 code,	 the	 coverage	 set,	
generated	from	running	test	Tq	exercising	feature	Fq.		Note	that	
coverage	sets	can	be	combined,	where	Vi…j	consists	of	the	union	
of	 sets	Vi…Vj.	 	 In	 other	words,	 any	 line	executed	 by	any	 test	
Ti...Tj	is	included	in	Vi...j.		

Recall,	from	Rule	1,	that	at	date	Dk-1,	change	sets	Sp…Sr	do	
not	yet	exist.		Let	Pp-1	represent	the	program	state	at	date	Dk-1	
and	let	Sq	be	a	change	set	in	Sp…Sr.	Since,	by	Rule	1,	all	features	
in	Pp-1	are	complete,	no	test	T0...Tp-1	can	require	or	invoke	any	

feature	in	Fq	in	Sq.	
The	 program	 Pp-1	 consists	 of	 P0	 after	 the	 application	 of	

change	 sets	 S0...Sp-1.	 	 Each	 of	 these	 change	 sets	 implements	a	
feature	F	and	a	test	T,	where	by	Rule	2,	each	T	completely	tests	
F.	The	tests	T0...Tp-1	completely	test	all	features	F0...Fp-1	in	Pp-1.		
The	 coverage	 set	 V0...p-1	 (as	 the	 union	 of	 V0	 ...Vp-1)	 covers	 all	
features	F0...Fp-1.		

Since	the	coverage	set	V0...p-1	completely	covers	all	features	
preceding	 Sq	 (and	 Fq),	 it	 serves	 as	 a	 reasonable	 choice	 for	 a	
masking	set	for	excluding	features	in	Fq.		

Another	 way	 to	 look	 at	 this	 is	 to	 consider	 Vp	 as	 a	 test	
executing	 many	 features	 including	 the	 feature	 of	 interest.	
Ideally,	the	execution	of	any	feature	defined	prior	to	the	feature	
of	 interest	 (e.g.,	 Fp-1)	 will	 execute	 code	 already	 tested	 by	 a	
previous	 feature	 test.	 Hence	 the	 union	 of	 all	 previous	 tests	
serves	as	a	mask	for	the	feature	of	interest.		

One	weakness	in	this	argument	is	that	V0	...Vp-1	do	not	serve	
to	mask	features	created	in	the	same	iteration,	i.e.,	it	does	not	
mask	any	Fq	in	Fp...Fr.	Formally,	if	the	feature	Fq	uses	Fq’	(q’	in	
p..r,	q’	≠	q)	then	V0...p-1	will	not	serve	to	exclude	Fq’	from	the	test	

Figure	1:	Illustration	of	the	feature	location	process.		Coverage	information	is	
gathered	for	the	invoking	test(s)	and	excluding	tests	(unit	tests	for	previous	
iteration	features).		The	union	of	the	excluding	tests	coverages	are	subtracted	
from	the	invoking	test,	resulting	in	the	lines	of	code	associated	with	the	feature.	
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for	Fq.		It	is	possible	that	features	within	an	iteration	(i.e.	in	the	
set	Fp...Fr)	are	 sometimes	 interrelated	and	 thus	not	 separable	
by	this	method.		It	is	not	clear	if	this	is	a	common	occurrence,	
or	if	this	issue	is	significant	in	the	practical	application	of	this	
method.	It	is	possible	that	in	a	feature	location	task,	narrowing	
to	one	or	two	features	out	of	a	large	body	of	code	is	still	helpful.		
We	investigated	this	further	in	the	evaluation.		

It	 is	 also	 possible	 that	 previous	 feature	 tests	 do	 not	
completely	exercise	the	feature	as	they	are	 intended	to	do,	so	
that	current	use	of	an	old	feature	exercises	code	not	masked	by	
previous	 tests.	 Again,	 this	 is	 a	 subject	 of	 the	 evaluation;	 to	
determine	 if	 such	 coverage	 gaps	 are	 widespread	 and	 if	 they	
significantly	 detract	 from	 the	 usefulness	 of	 the	 approach.		
Figure	1	illustrates	this	process.		
2.6	 Creation	of	Excluding	Coverage	Sets	
Since	 the	 running	 of	 tests	 is	 time	 consuming,	 it	 is	 much	

more	effective	to	compute	excluding	coverage	sets	in	advance	
for	each	feature.	 	This	involves	creating	a	partial	ordering	for	
the	 tests,	 so	 that	 all	 of	 the	 tests	 created	 in	 each	 particular	
iteration	are	known.	 As	we	execute	 the	 tests,	we	 accumulate	
the	 union	 of	 the	 resulting	 coverage	 sets	 in	 a	 code	 coverage	
“accumulator”	set.	The	process	is	outlined	in	Figure	2.	

This	process	is	executed	in	advance.	Unlike	the	continuous	
build	 requirement	 of	 simply	 executing	 all	 tests,	 here	 we	 are	
imposing	the	partial	ordering	of	executing	tests	in	the	order	of	
their	iterations.		At	the	end	of	this	process,	we	have	exclusion	
coverage	sets	(i.e.	the	substitutes	for	the	excluding	tests)	for	all	
features.		

3 EVALUATION 
The	goal	of	this	evaluation	is	to	assess	the	effectiveness	of	

the	proposed	approach	 for	 developers	working	 in	 real-world	
agile	environments	and	projects.		Formally,	we	seek	to	answer	
the	following	research	question:	

Does	 the	 proposed	 approach	 of	 using	 iteration	 history	 to	
form	 invoking	 and	 excluding	 tests	 be	 used	 effectively	 by	
developers	 for	 feature	 location	 tasks	 in	 real-world	 agile	
environments	and	projects?	

To	 answer	 the	 research	 question,	 a	 controlled,	 within-
participant	 experiment	 was	 designed	 to	 compare	 the	
effectiveness	 of	 developers	 in	 feature	 location	 tasks	 when	
using:	1)	a	feature	viewer	implementing	the	proposed	method	
2)	 manually	 with	 only	 text	 search.	 In	 the	 design	 of	 the	
controlled	 experiment	 and	 feature	 viewer,	 pilot	 and	 focus	
group	 studies	 were	 conducted	 to	 improve	 study	 design,	
remove	 deficiencies	 in	 the	 feature	 viewer,	 and	 remove	 other	
confounding	 variables.	We	 break	 down	 the	 general	 research	
question	 into	 the	 the	 following	 research	 sub-questions	
answered	by	the	controlled	experiment:	
• RQ1:	 Do	 software	 developers	 using	 the	 tool	 find	 features	

faster	than	developers	not	using	the	tool?		
• RQ2:	Do	software	developers	using	the	tool	more	accurately	

identify	 feature	 locations	 compared	 to	 programmers	 not	
using	the	tool?	

• RQ3:	Are	software	developers	using	the	tool	more	confident	
that	 they	 answered	 correctly,	 as	 compared	 to	 developers	
not	using	the	tool?	

• 	RQ4:	 Do	 developers	 feel	 that	 the	 feature	 viewing	 tool	 is	
useful?	

• RQ5:	Would	developers	use	the	tool	in	real-world	situations?	
	

Initialize a code coverage set (the accumulator) to 
empty  
For each iteration 
    For all feature tests completed in this iteration 
      Run feature tests to create inclusion set 
      Copy accumulator to serve as exclusion set 
      Mask the inclusion set with the exclusion set  
      Save with test id to create feature location set 
    For all tests completed in this iteration 
      Execute the test 
      Collect the coverage set for the test 
      Append test coverage set to accumulator  

Figure	2:	Algorithm	for	producing	code	coverage	for	
iterations.	

3.1	 Data	Preparation	
In	 order	 to	 have	 a	 realistic	 experiment	 and	 adequately	

answer	 the	 research	questions,	 it	was	determined	 that	open-
source	 software	 exhibiting	 characteristics	 of	 a	 commercial	
application	 software	 be	 selected.	 	 In	 particular,	 the	 following	
criteria	were	used:	
• Currently	used	in	commercial	and	industrial	situations	
• Developed	 by	 a	 group	 of	 people	 under	 real-world	

conditions	
• Developed	using	an	agile,	test	driven	process	
• Developed	 with	 artifacts	 typical	 of	 a	 commercial	 agile	

activity,	 including	a	 complete	 record	of	 commits	 of	both	
application	and	test	code.		
	
After	 investigating	 several	 projects,	 the	 web	 server	

bottle.py	was	 selected	(http://bottlepy.org).	This	 system	is	 in	
use	 as	 the	 basis	 of	 many	 commercial	 web	 sites.	 It	 has	 been	
developed	 under	 agile,	 test	 driven	 practices	with	a	 complete	
set	 of	 commit	 records,	 which	 are	 readily	 available	 at	
https://github.com/defnull/bottle.	

The	 bottle.py	 system	 application	 source	 is	 over	 three	
thousand	 lines	 of	 Python	 code	 (a	 manageable	 amount	 for	 a	
human	 experiment)	 presented	 in	 one	 large	 file	 for	 ease	 of	
deployment.	 	 The	 system	 also	 includes	 several	 hundred	 unit	
tests,	 which	 are	 suitable	 for	 the	 feature	 location	 method	
described	in	a	later	section.	

After	 cloning	 the	 repository,	 the	 commit	 history	 (1328	
revisions)	was	analyzed	to	assign	each	unit	test	to	an	iteration.		
Since	bottle	 lacks	formal	 iterations,	each	commit	is	 treated	as	
an	 agile	 iteration.	 	 Then,	 the	 unit	 tests	 were	 run	 using	
unittest.py	(modified	to	collect	coverage	information),	and	the	
coverage	 information	 for	 each	 test	 was	 saved	 to	 a	 data	 file.		
Next,	 the	 coverage	data	 and	 test	 iteration	 data	were	 used	 to	
calculate	the	masked	 test	 coverage	 for	 each	test	according	to	
the	approach	described	previously.		The	masked	coverage	(i.e.,	
the	feature	location	for	that	test’s	feature)	for	each	test	is	saved	
in	a	data	file,	indexed	by	the	fully	qualified	test	name.	

In	 total	 there	are	 304	 tests	 (ran	 in	 38	 seconds)	and	 294	
created	 code	 coverage	 events.	 	 280	 of	 these	 tests	 created	
covered	 lines	 in	bottle.py.	(The	non-coverage-generating	tests	
are	skipped	due	to	unavailable	plug-in	options	to	bottle.)	Table	
1	shows	the	descriptive	statistics	about	the	test	coverage.	

Most	tests	produced	coverage	traces	in	the	bottle.py	source,	
when	 those	 coverage	 traces	 are	 masked	 by	 the	 feature	
extraction	 method,	 many	 tests	 are	 entirely	 masked.	 The	
majority	of	the	tests,	however,	retained	some	coverage,	and	the	
area	 covered	is	much	 smaller.	Two	of	 the	 tests	are	discarded	
after	 masking	 due	 to	 coverage	 errors,	 and	 tests	 with	 zero	
coverage	are	discarded.		
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We	 are	 also	 interested	 in	 what	 proportion	 of	 the	 entire	
program	was	covered	by	the	resulting	coverage	sets	(see	Table	
2).	 	 Two	 things	 are	 of	 interest.	 First,	 the	 coverage	 seems	
insufficient,	but	when	examining	the	code,	it	is	found	that	many	
of	 the	 uncovered	 lines	 are	 multi-line	 quotes	 treated	 as	
document	 comments,	metadata	 declarations,	 decorators,	 and	
other	non-active	code.		

When	 reading	 the	 listing	 of	 non-covered	 lines,	 very	 little	
active	code	is	encountered	except	for	optional	plug-in	code	that	
is	not	tested	(since	we	aren’t	using	those	plug-ins).	Second,	the	
coverage	number	 is	 the	 same	 for	 the	 initial	unittest	 coverage	
and	for	the	masked	coverage,	even	though	the	total	size	of	the	
masked	 coverage	 sets	 is	 much	 smaller.	 While	 this	 is	 not	
intuitive,	it	is	clearly	expected,	because	the	only	reason	a	 line	
would	 be	 removed	 from	 a	 coverage	 set	 is	 that	 it	 is	 covered	
earlier	by	a	previous	test.	So,	the	masked	coverage	is	as	broad,	
but	 much	 thinner.	 The	 depth,	 the	 count	 of	 how	 many	 tests	
covered	 any	 given	 line,	 is	 clearly	 different	 before	 and	 after	
masking.	

To	 investigate	 coverage	 depth,	 we	 looked	 at	 the	 two	
coverage	sets,	and	computed	for	each	coverage	set	the	average	
and	maximum	depth	of	coverage	(see	Table	3).		

This	means	 that	 before	masking,	 the	 average	 line	 that	 is	
covered	is	invoked	by	an	average	of	29	tests.	Assuming	that	the	
tests	 did	 not	 all	 test	 for	 the	 same	 feature,	 this	 means	 that	
directly	 corresponding	 unmasked	 unit	 tests	 by	 coverage	 to	
source	 code	 is	 a	 very	ambiguous	proposition.	 	 In	 fact,	 before	
masking,	there	is	at	 least	one	covered	 line	invoked	by	50%	of	
all	 coverage-generating	 unit	 tests.	 On	 the	 other	 hand,	 after	
masking,	line	correspondence	to	specific	tests	is	very	high.		
3.2	 Feature	Identification	Tasks	
The	feature	 location	tasks	for	the	experiment	are	selected	

based	 on	 the	 results	 of	 focus	 groups	 to	 identify	 the	 major	
features	 of	 web	 servers	 and	 then	 creating	 a	 question	 about	
each	 of	 seven	 identified	major	 features.	 The	 feature	 location	
tasks	are	listed	in	Table	4.		

	
3.3	 Participants	
Sixteen	 participants,	 from	 Progressive	 Corporation,	 were	

drawn	 from	 adult	 volunteers	 with	 at	 least	 two	 years	 of	
professional	programming	experience	in	an	agile	environment.		
Progressive	 uses	 an	 agile	 process	 enterprise	 wide.	 	 All	
participants	 are	 familiar	 with	 the	 purpose	 of	 bottle.	 	 The	
majority	 are	 programmers	 at	 a	 large	 commercial	 IT	
organization,	two	worked	for	software	vendors	and	three	were	
involved	in	scientific	programming	endeavors	elsewhere.		
3.4	 Experimental	Setup	
To	conduct	the	experiment,	the	feature	viewing	software	is	

presented	on	a	MacBook	Pro	laptop	computer	running	the	OSX	
Mavericks	 operating	 system.	 The	 data	 file	 containing	 the	
extracted	feature	location	described	above	and	the	source	code	
of	 the	 bottle.py	 application	 are	 both	 loaded	 into	 the	 feature	
viewing	program.		

The	 computer	 was	 connected	 to	 a	 secondary	 monitor	
mirrored	 to	 the	main	 display,	 and	an	auxiliary	keyboard	 and	
mouse.	This	allowed	a	participant	to	sit	 in	 front	of	a	monitor,	
keyboard,	 and	mouse,	 and	 allowed	 the	 observer	 to	 monitor	
activities	 on	 the	 laptop	 screen.	 The	 observer	 sat	 across	 the	
table,	 several	 feet	 from	 the	 participant,	 and	 observed	 the	
session	 on	 the	mirrored	 laptop	 screen.	 The	mirrored	 screen	
was	also	used	to	demonstrate	the	use	of	the	feature	viewer	tool	
before	the	experiment.	

Table	1:	Descriptive	statistics	for	test	coverage	set	sizes.	
	 Initial	 Masked	

Total	number	of	tests	 294	 294	
Tests	with	coverage	 280	 159	
Average	of	coverage	set	size	 141	 10	
Std	dev	of	coverage	set	size	 135	 12	

	
Table	2:	Lines	of	code,	non-comment	code,	and	covered	

code.	
	 Initial	 Masked	

Lines	of	code	 3562	 3562	
Lines	of	non-comment	code	 3049	 3049	
Lines	of	covered	code	 1333	 1333	
Total	 size	 of	 all	 coverage	
sets	 39360	 2108	

	
Table	3:	Depth	of	coverage	–	count	of	tests	invoking	

covered	lines.	
	 Initial	 Masked	

Total	number	of	tests	 294	 294	
Tests	 returning	 coverage	
sets	 280	 159	

Average	 number	 of	 tests	
invoking	a	covered	line	 29	 1	

Maximum	number	of	tests	
invoking	a	covered	line	 142	 6	

	
Table	4:	Tasks	done	by	participants	during	the	

experiment	
Code	 Task	
A	 Locate	the	code	that	parses	a	date	
B	 Locate	the	code	that	saves	an	uploaded	file	
C	 Locate	the	code	that	prevents	sending	an	invalid	file	
D	 Locate	the	code	that	encodes	a	cookie	
E	 Locate	the	code	that	authenticates	a	request	
F	 Locate	the	code	that	deletes	a	cookie	
G	 Locate	the	code	that	handles	header	expiration	
In	order	to	create	a	paired-samples	experiment	and	reduce	

the	 effect	 of	 other	 variables,	 such	 as	 experience	 or	 task	
selection,	we	asked	each	participant	to	perform	each	task	twice	
(once	using	the	feature	viewing	tool	and	once	manually	using	
only	text	search).	We	wanted	the	two	instances	of	each	task	to	
be	as	 far	apart	as	possible	within	 the	 session.	To	do	 this,	we	
created	a	method	of	preparing	a	randomized	worksheet	that	is	
different	 for	each	participant.	The	worksheet	 is	created	using	
the	following	method:		

• Create	a	random	order	for	the	7	tasks	
• Assign	 first	 task	 to	 group:	 50%	 experiment/50%	

control	
• Assign	 each	 remaining	 task	 to	 group	 based	 on	 last	

task:	90%	opposite	group	/	10%	same	group	
The	90%/10%	method	prevented	a	strict	A/B	alternation,	

by	 allowing	 two	 successive	 tasks	 in	 the	 same	 group	 to	
occasionally	occur.		

After	the	first	seven	tasks	are	listed,	the	second	half	of	the	
list	is	created	by	copying	the	first	seven	tasks	and	selecting	the	
opposite	group	(experimental	or	control)	for	each	one	of	them,	
but	preserving	the	order	of	the	tasks.		

In	 this	way,	each	participant	 session	had	a	 list	 containing	
14	tasks,	 creating	7	experimental/control	pairs.	 	 In	the	 space	
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between	 any	 two	 instances	 of	 the	 same	 task	 there	 were	 six	
other	 tasks	 to	 complete,	 effectively	 erasing	 the	 short-term	
memory	of	the	first	task	in	the	pair.		In	fact,	this	worked	well;	in	
over	 100	 pairs	 we	 saw	 only	 a	 single	 case	 of	 a	 participant	
remembering	information	from	the	first	occurrence	of	a	task.	

For	the	experiment,	we	considered	the	control	group	to	be	
the	 collection	 of	 answers	 collected	without	 using	 the	 feature	
viewing	tool,	and	the	experimental	group	to	be	the	collection	of	
answers	answered	with	the	use	of	the	tool.		
3.5	 Experimental	Protocol	
The	 following	 describes	 the	 procedure	 followed	 for	 each	

participant.	 	First,	 the	participant	 is	instructed	on	how	to	use	
the	 feature	 viewing	 tool	 and	 given	 time	 to	 familiarize	
themselves.	For	feature	location	tasks,	the	participant	is	given	
as	 much	 time	 as	 needed	 (~1	 hour	 on	 average).	 	 During	 the	
experiment,	 the	participant	 is	permitted	to	ask	any	questions	
they	deemed	appropriate.			

The	 participant	 is	 then	 presented	 with	 each	 task	 by	 the	
investigator	based	 on	 the	 randomized	worksheet	 (subsection	
0).	 	 For	each	of	 the	fourteen	tasks,	 the	 investigator	reads	the	
task	description,	accompanied	by	instructions	to	either	use	or	
not	 use	 the	 test-based	 feature	 location	 tool	 as	 appropriate.	
When	the	feature	location	tool	is	not	used,	the	window	for	the	
tool	 is	 hidden	 before	 the	 task	 commenced.	 For	 each	 of	 the	
fourteen	tasks,	the	investigator	records	on	the	worksheet:	
• Time	to	complete,	to	the	nearest	second.	
• Participant	 confidence	 in	 the	 lines	 identified	 as	 the	

location,	on	a	scale	of	0	to	10.	
• The	 lines	 identified	 by	 the	 participant	 for	 that	 feature,	

saved	in	a	 location	data	 file	coded	 to	 the	participant	 and	
task	ID.	
A	post-experiment	questionnaire	was	asked	at	 the	end	of	

each	session.		The	questionnaire	consisted	of	the	questions:	
• “How	many	years	of	professional	development	experience	do	

you	have?”	
• “How	realistic	was	this	experience	and	these	tasks,	on	a	scale	

of	0-10?”	
• “How	 useful	was	 the	 test-based	 feature	 location	 tool,	 on	 a	

scale	of	0-10?”		
3.6	 Measurements	
A	 simple	 metric	 is	 used	 to	 assess	 the	 quality	 of	 the	

identified	locations	for	each	task.		The	metric,	Location	Quality	
Score	(LQS),	is	based	off	the	distribution	of	the	results.	For	each	
feature,	a	 line	number	histogram	is	created,	 showing	all	 lines	
identified	for	that	feature,	by	 line.	For	 instance,	 if	a	particular	
line	 is	 associated	 with	 feature	 A	 for	 every	 task,	 with	 16	
participants	 x	2	groups,	 it	 has	a	 line	 count	of	32.	 	 If	 a	 line	 is	
never	associated	with	a	feature,	a	line	count	of	zero.		If	a	line	is	
identified	half	the	time,	it	has	a	line	count	of	16.	

An	 example	 of	 this	 process	 is	 shown	 in	 Figure	 4	 which	
illustrates	 the	 lines	 of	 code	 selected	 by	 participants	 for	 a	
specific	 feature.	 	 The	 example	 is	 for	 the	 feature	 “prevent	
sending	an	 invalid	 file”.	 	 The	 letters	 on	 the	 left	 indicate	each	
time	a	participant	selected	that	line	as	implementing	feature	C.	
Upper	 case	 ‘C’	 indicates	 a	 selection	 in	 a	 task	 in	 the	
experimental	group,	and	lower	case	“c”	indicates	a	selection	in	
a	control	group	task.	

	

	
Figure	4:	Line	selection	occurrences	for	feature		

“prevent	sending	an	invalid	file”.	
	
def location_quality_score(location,accepted): 
    #find percentage of lines in accepted 
    #that are in the identified location 
    k = 0.0 
    for item in location: 
        if item in accepted: 
            k = k + 1.0 
    coverage_of_accepted = k/len(accepted) * 100 
    #subtract two points for extra lines  
    #not in the accepted location lines 
    extra_line_deduct =  
            (len(location) - len(accepted)) * 2 
    score=coverage_of_accepted-extra_line_deduct 
    #can not get less than zero 
    return max(score,0) 

Figure	5:	Method	for	computing	location	quality	score.	
	
For	each	feature,	we	treat	any	line	that	is	selected	in	more	

than	½	of	the	feature	location	tasks	for	a	feature	as	an	accepted	
line	 for	 that	 feature.	 	 These	 lines	 are	 indicated	 visually	 in	
Figure	 4	 by	 a	 vertical	marker	 indicating	 lines	 selected	more	
than	16	(of	32	possible)	times.	There	are	six	such	lines.		

The	 computed	 accepted	 reference	 locations	 for	 each	
feature	 were	 reviewed	 by	 expert	 Python	 programmers	 and	
deemed	 to	 be	 reasonable	 locations	 for	 those	 features.	 In	 a	
second	pass,	for	each	feature	location	task,	the	identified	lines	
in	that	task	are	compared	with	the	accepted	reference	lines	for	
that	feature.	The	initial	location	quality	score	given	to	the	task	
is	 the	 percentage	 of	 accepted	 lines	 included	 in	 the	 identified	
location	set.	

The	location	quality	score	is	reduced	by	2	points	for	every	
included	line	that	is	not	in	the	accepted	set.	 	Our	reasoning	is	
that	 inclusion	of	 extraneous	 lines	 is	not	 ideal,	 so	 it	 should	be	
penalized.		However,	the	primary	mission	is	to	find	the	location	
of	 the	 feature,	 so	 inclusion	 of	 the	 accepted	 reference	 line	 is	
much	 more	 important	 and	 more	 heavily	 weighted,	 and	
extraneous	 lines	only	carried	a	small	penalty.	 	 	Figure	5	gives	
the	 method	 for	 calculating	 the	 location	 quality	 score.	 	 This	
method	yielded	a	location	quality	score	for	each	task	between	
0-100,	where	100	is	an	ideal	result.		It	is	understood	that	this	is	
not	an	ideal	measure	for	quality,	but	the	goal	is	 to	generate	a	
metric	that	could	compare	the	quality	of	two	location	sets,	and	
this	method	was	satisfactory	for	that	task.		

4 RESULTS 
Null	hypothesis	testing	is	done	by	comparing	experimental	

and	 control	 groups	 for	 time,	 confidence,	 and	 location	 quality	
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score.	 	 The	 Python	 stats	 library	 is	 used	 for	 analyzing	 the	
results.		
4.1	 Post-questionnaire	Results	
The	descriptive	statistics	for	the	post-questionnaire	are	are	

shown	in	Table	5.		Participants	had	a	wide	range	of	experience.	
Participants	 generally	 felt	 the	 test	 was	 realistic	 (positive	
support	 for	RQ5),	 and	 rated	 the	 feature	 search	 capability	 as	
very	useful	(positive	support	for	RQ4).		
4.2	 Experiment	Results	
Initial	 descriptive	 statistics	 are	 computed	 for	 the	

experimental	and	 control	 groups.	These	 results	are	 shown	in	
Table	 6.	 	 In	 summary	and	 on	average,	 the	experiment	 group	
completed	 feature	 locations	 tasks	 quicker,	 more	 confidently	
and	 more	 accurately	 than	 the	 control	 group.	 	 Furthermore,	
there	 is	 less	 variation	 between	 members	 of	 the	 experiment	
group	 than	 in	 the	 control	 group	 (as	 seen	 by	 the	 smaller	
standard	deviation).	

Histograms	 for	 the	 experimental	 variable	 are	 given	 in	
Figure	 6	 thru	 Figure	 8.	 	 In	 all	 figures,	 blue	 represents	 the	
control	group,	and	green	represents	the	experimental	group.	In	
Figure	6	the	mean	time	to	completion	 is	clearly	 lower	for	the	
experimental	 group.	 Participants	 were	 asked	 to	 rank	 their	
confidence	in	their	identification	of	the	 location	of	 the	feature	
from	0-10.	In	Figure	7	the	confidence	in	location	can	be	seen	to	
be	higher	 in	the	experimental	group,	with	more	experimental	
tasks	completed	with	scores	of	8,	9	or	10.	

In	Figure	8	higher	 location	quality	scores	(as	described	in	
section	3.5)	can	be	seen	for	the	experimental	group,	with	the	
control	 group	 having	 completed	 a	 higher	 number	 of	 low-
scoring	(i.e.	less	acceptable)	feature	location	tasks.	

A	paired-samples	 t-test	 is	used	to	 compare	time-to-locate	
and	confidence-in-location	in	text-search	(control)	and	feature-
search	(experimental)	conditions.		The	t-test	is	selected	as	the	
sample	 size	 is	 sufficiently	 large	 to	 apply	 the	 Central	 Limit	
Theorem.		Additionally,	the	t-test	is	sufficiently	robust	even	in	
cases	of	non-normal	and/or	ordinal	data	[12].		In	addition,	we	
also	ran	Wilcoxon	 signed-rank	test.	 	We	also	found	 statistical	
significance	in	all	measures.		In	each	case,	the	null	hypothesis	is	
that	 there	 is	 no	 significant	 difference	 in	 the	 control	 and	
experimental	groups.		Results	of	this	test	are	shown	in	Table	7	
and	Table	8.	

Table	5:	Participant	question	results	
Measure	 Min	 Max	 Mean	 SD	

Experience	(years)	 1.0	 35.0	 18.1	 10.2	

Was	it	realistic?	(0-10)	 7.0	 10.0	 8.4	 1.0	

Was	it	useful?	(0-10)	 8.0	 10.0	 9.4	 0.7	
In	 all	 cases,	 we	 are	 able	 to	 reject	 the	 null-hypothesis	 in	

favor	 of	 the	 approach.	 	 Furthermore,	 the	 experimental	
conditions	 had	 a	 very	 large	 effect	 on	 time	 to	 complete,	 and	
medium	effect	on	confidence	in	location,	and	a	small	effect	on	
location	quality	score.	 	These	results	allow	us	to	answer	RQ1,	
RQ2,	and	RQ3.	 	That	 is,	developers	using	the	feature	 location	
are	 able	 to	 complete	 the	 feature	 location	 tasks	 faster	 (RQ1),	
more	accurately	(RQ2),	and	with	more	confidence	(RQ3).	

	
Table	6:	Statistics	for	control	and	experiment	groups.	

Measure	 Group	 Min	 Max	 Mean	 SD	

Time	to	complete	
(seconds)	

Control	 18.0	 390.0	 88.6	 64.0	
Experiment	 8.0	 118.0	 28.4	 19.8	

Confidence	in	
location?	(0-10)	

Control	 1.0	 10.0	 7.4	 2.4	
Experiment	 3.0	 10.0	 8.5	 1.5	

Location	quality	
score?	(0-100)	

Control	 0.0	 100.0	 76.4	 39.2	
Experiment	 0.0	 100.0	 88.4	 24.6	

		
Figure	3:	Time-to-locate	result	histogram.	

 

	
Figure	4:	Confidence-in-location	result	histogram.	

 

	
Figure	5:	Location	quality	score	result	histogram.	

 
 
Table	7:	Experimental	hypothesis	testing	with	paired	t-

test	
Measure	 T-Test	 P-Value	 Cohen’s	d	
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(paired)	

Time	to	complete	 10.1	
Reject	
(<	

0.00001)	

Very	
Large	
(-1.27)	

Confidence	in	
location	 -5.5	

Reject	
(<	

0.00001)	
Medium	
(0.54)	

Location	quality	
score	 -3.6	 Reject	

(0.0005)	
Small	
(0.37)	

	
Table	8:	Experimental	hypothesis	testing	with	Wilcoxon	

signed-rank	test.	

Measure	 Wilcoxon	
	 P-Value	

Time	to	complete	 163.0	 Reject	
(<	0.00001)	

Confidence	in	location	 471.5	 Reject	
(<	0.00001)	

Location	quality	score	 379.5	 Reject	
(0.00781)	

	
Table	9:	List	of	threats	are	identified	in	the	left	column.		
How	each	threat	is	mitigated	is	presented	in	the	right	

column.	
Threat	/	Risk	 Mitigation	

Software	evaluated	
is	not	realistic	

Use	software	in	commercial	
production	use,	developed	under	
test-driven-development	practices.	

Experimental	
software	is	not	
realistic	

Design	software	after	real-world	
interfaces,	use	common	GUI	
affordances;	verify	realism	with	
participants.	

Feature	location	
method	is	not	
useful	in	real	word	

Simulate	a	real	world	experience;	
evaluate	usefulness	with	controlled	
experiment.	

Participant	pool	is	
not	realistic	for	real	
world	

Draw	participants	solely	from	
professional	software	developers,	
currently	being	paid	to	write	
software.	

Skill	factors	–	
experience,	
training,	familiarity	
with	subject	

Collect	experimental	and	control	
sample	tasks	in	pairs	from	every	
participant;	normalize	by	participant	
if	required.		

Features	differ	in	
difficulty	of	
location		

Collect	experimental	and	control	
sample	tasks	in	pairs	from	every	
feature	

Time	of	
day,participant	
fatigue,	etc.	

Collect	experimental	and	control	
sample	tasks	in	pairs	at	nearly	the	
same	time	in	the	same	session.	

With	positive	answers	to	the	sub-research	questions	RQ1-
RQ5,	we	can	answer	the	main	research	question.	 	That	is,	the	
proposed	approach	of	using	iteration	history	to	form	invoking	
and	excluding	tests	 can	be	used	effectively	by	developers	 for	
feature	 location	 tasks	 in	 real-world	 agile	 environments	 and	
projects.	

5 LIMITATIONS AND THREATS  

There	are	 several	 concerns	about	 the	applicability	 of	 this	
method	that	might	reduce	its	effectiveness.		The	purpose	of	the	
study	 is	 to	 evaluate	 the	applicability	 of	 the	approach	despite	
these	 limitations.	 	Table	9	contains	a	 list	of	threats	to	validity	
and	the	measures	taken	to	mitigate	the	threats.	

Intra-iteration	blur	–	If	two	features	interact	and	are	both	
developed	 in	 the	 same	 iteration,	 mutual	 dependencies	 may	
make	 it	 difficult	 to	 claim	 that	 tests	 from	before	 the	 iteration	
will	 adequately	 mask	 the	 feature.	 	 In	 the	 worst	 case	 this	
approach	will	 identify	the	code	associated	with	both	features.		
While	not	ideal,	this	will	still	significantly	narrow	down	code.		

Feature-selection	 boundary	 code	 –	 It	 is	 possible	 that	
code	exists	 to	 select	a	branching	path	depending	on	whether	
the	 feature	 is	 in	 use	 or	 not,	 or	 to	 decide	how	many	 times	 to	
execute	a	 feature.	Since	 this	code	 is	always	executed,	 it	won’t	
be	detected	as	part	of	the	feature	by	a	masking	approach.	It	is	
not	 known	 if	 this	 is	 a	 common	 problem,	 but	 it	 has	 been	
observed.	

Confusion	 –	 It	 is	not	known	if	 the	additional	 information	
provided	by	feature	extraction	will	be	clear	enough	to	the	user	
to	be	of	practical	use	in	feature	extraction.	Part	of	this	concerns	
the	design	of	the	tool,	but	part	of	it	is	due	to	the	nature	of	the	
information	 being	 presented	 and	 the	 ability	 to	 communicate	
that	information	in	a	clear	and	reliable	model	to	the	user	of	the	
tool.		

Refactoring	–	Agile	software	is	continuously	refactored,	so	
that	the	location	of	feature	code	changes	from	time	to	time.	If	a	
feature	is	refactored	in	such	a	way	as	to	be	re-implemented	via	
re-use	of	a	 later	base	feature,	masking	 code	from	before	 that	
iteration	will	not	mask	the	later	base	feature,	so	that	code	will	
show	up	as	part	of	the	selected	feature.	

6 RELATED WORK 
The	 task	 of	 feature	 location	 has	 long	 been	 studied	 via	 a	

variety	 of	 methods	 and	 techniques	 [13].	 	 The	 most	 closely	
related	work	to	what	is	presented	here	are	approaches	that	use	
invoking	 and	 excluding	 tests.	 	 This	 paper	 presents	 the	 first	
advancement	to	such	techniques	in	a	number	of	years.	

Wilde	 initially	 proposed	 software	 reconnaissance	 as	 a	
method	 to	 locate	 features	 in	 instrumented	 code	 [5].	 In	 this	
method,	 two	 code	 execution	 traces	 are	 compared	 (one	
containing	an	 invocation	of	a	 feature	of	 interest,	and	one	that	
omits	 that	 feature	 but	 is	 in	 other	 respects	 as	 similar	 as	
possible).	 By	 comparing	 these	 two	 traces	 (or	 code	 coverage	
results)	the	area	of	code	responsible	for	implementation	of	the	
feature	 can	 be	 determined.	 Wilde	 tested	 this	 method	 in	 a	
number	of	various	efforts	in	systems	up	to	about	15	KLOC	[14].		
Subsequent	work	include	White	extending	the	technique	from	
C/C++	 to	 locating	 features	 in	 Ada	 [15],	 a	 comparisons	 study	
[16],	 extending	 the	method	 to	 distributed	 systems	 [17],	 and	
testing	the	approach	in	a	commercial	environment	[6].		Of	note	
is	 Simmons	 remarks	 on	 the	 dependence	 of	 proper	 test	
selection	 [6].	Wong	 et	 al	 [7]	 discuss	 the	 problems	 with	 test	
selection.		

Eisenberg	 tried	 to	 reduce	 the	 sensitivity	 due	 to	 test	
selection	issues	by	introducing	dynamic	feature	traces;	using	a	
test	 to	 feature	 set	 mapping	 to	 create	 a	 dynamic	 graph	 of	
“ranks”	and	“calls”	[8].	Once	feature	set	mapping	to	tests	was	
complete,	the	trace	analysis	and	dynamic	feature	trace	creation	
is	 complete.	 This	 paper	 explicitly	 acknowledges	 TDD	 (test-
driven-development)	 testing,	 which	 is	 rare.	 In	 this	 case,	 the	
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developer	 creates	 an	 explicit	 mapping	 of	 tests	 executing	 a	
given	 feature.	 Then	 an	 implicit	 mapping	 is	 used	 to	
automatically	 compare	 exhibiting	 tests	 to	 all	 other	 tests	 to	
create	 an	 excluding	 (non-exhibiting)	 set.	 Then	 the	 system	
generated	calls	and	ranks	and	applied	heuristics	found	by	trial-
and-error.		

Excluding	tests	were	not	used	 subtractively,	but	 rather	to	
provide	 computational	 comparison	 to	 the	 invoking	 tests.	
Further,	the	evaluation	of	the	quality	of	the	results	is	basically	a	
self-assessment	 of	 “usefulness”.	 Finally,	 Eisenberg	 describes	
the	 unsuitability	 of	 TDD	 tests	 for	 use	 with	 software	
reconnaissance	 because	 developers	 in	 agile	 methods	 don’t	
generally	 write	 excluding	 tests.	 	 Eisenbarth	 uses	 concept	
analysis	to	 find	features	 in	 source	 code.	He	uses	 scenarios	 (a	
series	 of	 program	 use	 cases)	 to	 map	 features	 onto	
computational	units	of	various	granularities.	

Korel	and	Laski	proposed	the	concept	of	dynamic	slicing	to	
mark	 statements,	 array	 elements,	 and	 pointer	 variables	 that	
were	 used	 in	 the	execution	 of	 a	 feature	 [18].	 	 Note	 that	 this	
differs	from	code	coverage	in	its	inclusion	of	data	elements	in	
the	profiling	of	a	specific	execution	session.		

Korel	 and	 Rilling	 proposed	 using	 dynamic	 slices	 for	
program	 understanding,	 including	 feature	 location	 [19].	 	The	
difference	in	content	of	two	dynamic	traces	can	be	used	in	the	
same	way	as	a	comparison	of	execution	traces.	Hall	proposed	
algorithms	 that	 could	 generate	 simultaneous	 dynamic	 slices	
from	more	than	one	intersecting	test	collection	[20].	De	Lucia	
noted	 that	 these	 slices	 could	 be	 used	 much	 the	 same	 as	
execution	traces	in	Wilde’s	feature	location	methods	[21].	Sim,	
Clarke,	and	Holt	describe	the	widespread	use	of	common	tools	
like	grep	for	 searching	for	 feature	related	 code,	 searching	for	
identifiers,	and	source	code	comments	in	source	files	[37].	

Most	 recent	 work	 on	 feature	 location	 have	 utilized	 a	
variety	of	other	techniques	besides	invoking/excluding	tests	to	
solve	the	problem.	 	Marcus	and	Maletic	 introduced	the	use	of	
the	 Information	 Retrieval	 (IR)	 technique	 Latent	 Semantic	
Indexing	 (LSI)	 for	 the	 problem	 of	 concept	 location	 [22].	
Poshyvanyk	 combined	 LSI	 with	 dynamic	 execution	 trace	
methods	 [23].	 	 More	 recent	 work	 includes	 [9][24]	 [25][26]	
[27][28]	[29][30]	[31][32]	[33][34]	[35][36].	

7 CONCLUSION AND FUTURE WORK 
We	 presented	 a	 model	 for	 feature	 location	 in	 an	 agile	

development	 environment.	 	 The	 model	 solves	 a	 significant	
drawback	 associated	 with	 other	 software	 reconnaissance	
based	methods.	 	Briefly,	software	reconnaissance	uses	the	set	
difference	of	 lines	executed	between	invoking	tests,	 tests	that	
invoke	a	particular	 feature,	and	excluding	tests,	 tests	that	are	
as	similar	as	possible	to	the	 invoking	tests,	yet	do	not	 invoke	
the	 feature	 to	 perform	 feature	 location.	 	 The	 quality	 of	 the	
results	 returned	 by	 a	 software	 reconnaissance	 method	 is	
heavily	 dependent	 on	 the	 selection	 of	 quality	 invoking	 and	
excluding	 tests.	 	 However,	 no	 automated	 method	 exists	 to	
select	 feature-excluding	tests	 that	are	 comprehensive	enough	
to	 mask	 non-feature	 code	 and	 still	 not	 invoke	 the	 detected	
feature.	

By	 using	 inherent	 properties	 of	 agile	 development,	 the	
model	allows	 for	 the	automatic	 identification	of	 invoking	and	
excluding	tests.		As	features	are	implemented	in	iterations,	the	
tests	added	during	an	iteration	to	fully	test	a	feature	serve	as	
invoking	tests	 for	 the	feature(s)	developed.	 	Since,	 tests	must	
pass	at	the	end	of	an	iteration,	no	previous	iteration	will	have	

tests	that	trigger	the	current	iteration’s	features,	and	thus	the	
set	of	all	previous	tests	can	serve	as	excluding	tests.	

A	 tool	 was	 developed	 implementing	 the	 model	 and	 the	
approach	 is	 validated	 in	 a	 comparison	 study	 with	 manual	
feature	 location.	 	The	results	show,	with	significance,	 that	the	
model	allows	for	more	accurate	feature	location	identification	
in	 significantly	 less	 time	 and	 with	 greater	 developer	
confidence.	

As	there	are	a	few	limitations	to	the	approach,	we	plan	to	
investigate	 in	the	future	the	extent	to	which	these	 limitations	
occur,	 as	 well	 as,	 a	 means	 of	 improving	 the	 approach	 to	
affectively	 deal	 with	 the	 limitations.	 	 In	 addition,	 we	 plan	 to	
apply	 the	 approach	 in	 an	 empirical	 comparison	 study	 on	 a	
significantly	larger	code	base.	
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