

Where Should We Look?

An Empirical Study on the Locations of

Abbreviation Expansions in Source Code

Abstract—Due to the prevalence of abbreviations in source

code, the inclusion of accurate abbreviation expansions can

increase the quality of software engineering tools that rely on

natural language. Unfortunately, state-of-the-art expansion

techniques struggle to reach an average expansion accuracy of 59-

62%. To help address this problem, we manually collected more

than 900 abbreviations and their expansions. We then empirically

studied 5 open source software systems by automatically analyzing

the source code source code (e.g., identifiers, comments), system

documentation, language documentation, a computer science

dictionary, and an English dictionary; looking for where these

manually-obtained abbreviations and expansions tended to occur

most frequently. This paper has two main contributions: 1) It is

the first paper to present an empirical analysis of where

abbreviations and expansions occur in source code and natural

language software artifacts. 2) The results of this work can be used

to specialize information retrieval or matching algorithms used in

abbreviation expansion tools to prioritize different software

artifacts when searching for candidate expansions.

Keywords— Program Comprehension, abbreviation expansion,

software maintenance, software evolution

I. INTRODUCTION

Researchers frequently use natural language processing
techniques to analyze source code for numerous activities
including bug detection [1], mining and analyzing software
repositories [2], automated documentation [3], topic modeling
[4], feature location [5] and more. Because so many techniques
rely on the quality of natural language processing tools, it is
important that they perform well even in the face of the often
imperfect and incomplete language used in source code [6].
However, tools for Natural Language Processing (NLP) of
source code are still inaccurate [6]–[10]. These inaccuracies
have consequences [11] and can have downstream impacts in
further natural language analyses like sentiment [11], part of
speech tagging [6], [12]–[20], source code summarization [3],
[21]–[23], and identifier splitting [5], [24], [25].

One way to increase the accuracy of natural language
analyses and improve the comprehensibility of source code is by
expanding abbreviations [26]–[28]. For example, the
abbreviation ‘cfg’ can have multiple possible expansions in
source code, such as configure, configuration, control flow
graph, or context free grammar. Understanding an
abbreviation’s expansion can affect the accuracy of subsequent
natural language analyses like part of speech tagging or

sentiment analysis, as well as help developers better understand
the meaning of source code identifiers.

Existing techniques that search for abbreviation expansions
average 59-62% accuracy [7], [29], [30] . A critical step in
improving the accuracy of abbreviation expansion techniques is
in understanding where different types of abbreviations and their
expansions occur, both in terms of the type of software artifact
(e.g., system documentation) and the type of location in source
code (e.g., type names, function names). Studying these
locations and the types of abbreviations they contain will help
guide future techniques by 1) revealing the most lucrative
locations for expansions, 2) identifying what kind of
abbreviations/expansions likely to occur in different artifacts,
and 3) providing some clue of how difficult it will be to
find/match these expansions.

In this paper, we empirically analyze the frequency at which
abbreviation expansions appear in varying types of software
artifacts (e.g., source code, documentation, etc.) by examining
where abbreviations and their expansions occur in 5 open source
software systems. Additionally, to obtain the abbreviations and
expansions we use in our study, we collected over 900
abbreviation-expansion pairs across all 5 systems. We address
the following research questions:
RQ1: Across all artifacts, where do abbreviation expansions
most frequently occur in general? We will use this question to
understand what our data says about the location of expansions.
Our goal will be to understand where most expansions are
located, if any of the locations we study have unique expansions;
expansions that are not found in any other location, and
whether/how often expansions occur near to their abbreviation.
The answer to this question will help future expansion
techniques by revealing the most lucrative locations for
expansions.

RQ2: Do words that make up abbreviation expansions

typically occur adjacent to one another? After looking at the

distribution of abbreviations and expansions across multiple

software artifacts, we want to get a better understanding of how

difficult it would be to find these expansions. Multi-word

abbreviation expansions (i.e., expansions that contain two or

more words) whose constituent terms frequently appear next to

one another (i.e., they are adjacent) are easier to find. We want

to know if there is a pattern to where non-adjacent expansions

tend to occur; these locations will need more rigorous

approaches to determine if an abbreviation represents a multi-

word expansion and then determine what that expansion is.

RQ3: Do expansions for abbreviations of varying type occur
in some artifacts more often than others? This question will
look specifically at different types of abbreviations. This
contrasts with RQ1, which looks at expansions exclusively.
There are different types of abbreviations; taxonomies have
been published in previous work [29], which we will discuss.
Some types of abbreviations are harder to detect/expand than
others. This question will help us understand where different
types of abbreviations are more likely to occur and will help
future expansions techniques by informing them of what types
of abbreviations are more frequent and should be prioritized in
different locations.
RQ4: How can an approach to expanding abbreviations use
what we have learned? The last question ties everything from
the previous three RQs together. The goal of this question is to
put the insights from previous questions together such that we
will have a big-picture view of how all of the data in this paper
can be synergized to improve future abbreviation expansion
techniques.

The results of these research questions can directly impact
abbreviation expansion techniques by providing am empirical,
data-driven, answer to what tools can expect when trying to find
expansions for abbreviations in different locations whether these
locations be software artifacts or the source code itself. The rest
of the paper is organized as follows: Section II discusses non-
dictionary words, Section III discusses our research
methodology, Section IV presents the data from our empirical
study and answers our research questions, Section V contains
related work and Section VI concludes.

Table I. Intent-based Non-Dictionary Categorizations

II. NON-DICTIONARY WORDS IN SOFTWARE

Abbreviations form a subset of non-dictionary words in
source code and software artifacts. A non-dictionary word is a
word that has no dictionary definition; they are typically
shortened versions of dictionary words (i.e., abbrev is a non-
dictionary word that is short for abbreviation, which is a
dictionary word). A taxonomy of non-dictionary words has been
published previous [29], and the accuracy of current approaches
to expanding abbreviations vary depending on the category of
the abbreviations they are expanding [7][29]. In this section, we
explain this previous taxonomy along with two complementary

categories we empirically derived. We also discuss previously-
published approaches to abbreviation expansion, to help the
reader understand state-of-the-art techniques.

A. Categorizations of non-dictionary words

Programming languages use natural language to convey
meaning to humans. As a professional developer writes code,
they ultimately construct identifiers, comments, and
documentation out of words that indicate the role or behavior of
a part of the software they are constructing. As the creation of
documentation and identifier names is a partially subjective
activity, developers are free to choose what words to use. Some
of the words developers choose to use are non-dictionary words.

While collecting data for our study, we noticed recurring
patterns in the way developers use non-dictionary words. We
show a set of categories that summarize these patterns in Table
I. There are three categories: Abbreviation, Alias, and
Distinguisher. These categories capture the relationship between
the syntax (i.e., the form) of the abbreviation and its intent (i.e.,
what it represents):

• An abbreviation is a shortened version of a word or phrase.
Abbreviations generally begin with the same letter as the
word or phrase it was shortened from. For example, ‘AES’
is an abbreviation of Advanced Encryption Standard.

• An alias represents a concept but is not a shortened version
of any dictionary word related to that concept. Aliases are
syntactically less strict than abbreviations. For example, the
mathematical variable ‘K’ is often used in the Singular
Value Decomposition (SVD) technique to refer to the
dimensionality of the resulting matrix. In this case, K is an
alias because it is not a shortening of any word or phrase
that describes the function of K in the context of SVD.
Another example comes from the Digital Signature
Algorithm (DSA), which uses variables such as R and S to
represent components of the encrypted signature. These
variables are not shortenings of some larger word, but they
represent a clear concept in the context of the DSA.

• A distinguisher is a word that is attached to an
identifier to keep the compiler from registering a name
collision, which is when two names in the same scope are
syntactically equivalent. A distinguisher is not a syntactic
shortening of any word and does not represent a concept in
any form. Its only purpose is to avoid a name collision. An
example would be if we have two variables named integer1
and integer2. The numbers provide no additional
information about what the variables are doing and are not
shortenings of any word. Adding them as a suffix simply
allows the program to compile and distinguish the variables
from one another.

This is not the first work to categorize abbreviations.
Previous work by Hill, et al. [29] categorizes abbreviations
based solely on an abbreviation’s syntax. They broadly
categorize abbreviations as Single Word and Multi Word
abbreviations. Each of these breaks into two sub-categories. For
single word, these are prefix and dropped letter. For multi word,
these are acronym and combination multi word. For clarity, we
show Hill’s abbreviation categories in Table II. The
categorizations presented in Table I are complementary to these,
as Hill, et al.’s categorizations are a more fine-grained subset of
the abbreviation category.

Category Definition Example

Abbreviation Word that is the
shortened form of a
larger word or phrase.

See Table II

Alias Word that represents a
concept but is not a
single or multi word
abbreviation of that
concept.

H - Cofactor
Q – Prime
X – Independent Variable

These letters are not
shortened versions of the
concepts they represent.

Distinguisher Word which does not
represent a concept. Its
only purpose is to
avoid name-collision
at compile-time.

int x, x1, x2;

The numbers 1 and 2 are
used as distinguishers.

Table II. Syntax-Based Non-Dictionary Word Categorizations

B. Expanding non-dictionary words

Expanding non-dictionary words and, in particular,
expanding abbreviations, has been the topic of numerous
research papers [7], [8], [29]–[31]. Expanding abbreviations is
typically done as a part of word preprocessing alongside other
steps such as splitting, stemming, tokenization, etc. For
activities that involve information retrieval or natural language
text analysis, abbreviation expansion adds more information to
the corpus; giving these techniques more data to work with. The
most recent techniques for abbreviation expansion take
advantage of several information sources to try and detect
correct expansions.

That is, they use multiple levels of software artifacts. For
example, LINSEN [7] uses the following sources to find
expansions: 1) Terms extracted from comments of the source
file containing the current identifier, 2) terms extracted from
comments of all source files in the software system, 3)
dictionary of computer science programming terms, 4) an
English dictionary. AMAP [29] worked in a very similar way by
gradually expanding the search scope from very close to the
abbreviation to less contextualized sources such as relative
frequency of terms across a large set of open source systems.
This approach works very well since some terms are not likely
to show up in a comment within the code but are extremely
likely to be in a computer science dictionary. Or vice versa; a
system-specific abbreviation will more likely show up in a
comment than in a computer science dictionary.

We note that the work presented here does not represent an
independent expansion technique similar to those discussed
above. Instead, results of the empirical analyses presented in this
paper can be used to improve existing techniques such as
LINSEN and AMAP. To the authors’ knowledge, no other work
presents an empirical analysis of abbreviations expansions.

III. RESEARCH METHDOLOGY

What sources of information are most effective for finding
abbreviation expansions? Are there sources we should be
focusing on more than others? For example, perhaps expansions
for acronyms are (e.g., JSON) are more likely to show up in
documentation for the system or programming language
documentation (e.g., javadocs). In this case, approaches should
search these locations for potential expansions first or prioritize

attempting to expand an abbreviation as an acronym when
searching programming language documentation. As another
example, perhaps expansions found in source code require a
more specialized searching mechanism that abbreviations in
language documentation. If we are going to improve the
accuracy of expansion techniques, then it is important to
understand what sources of information are best to use and how
we should obtain data from those sources to fit our needs.

We begin to answer these questions in this paper by studying
the forms and locations of abbreviations and their expansions.
Our goal is to record patterns of where expansions and different
types of abbreviations occur. These patterns can then be used to
improve the way existing techniques search for expansions in
natural language and source code text.

Our research approach is separated in to 4 stages. We briefly
list these stages and then expand upon them in the following
sections. The steps are as follows:
1. Collect appropriate systems
2. Manual splitting of identifiers, manual expansion of the

abbreviations they contain, and verification of the split and
expansion(s).

3. Partially automated collection of system/language
documentation

4. Automatically search all forms of documentation and source
code for expansions manually collected and verified by
authors.
We rely on srcML [32] for all automated collection,

grouping, and preprocessing of identifiers and comments.
srcML is a markup language that blends AST information into
source code. Thus, it allows us to find identifiers and statically
compute where these identifiers occur (e.g., in a class, function).

Table III. System Statistics

System Name Size (KLOC) Primary
Language(s)

Wycheproof 9 Java

Telegram 781 Java, C

OpenOffice 4462 C++, Java

Enscript 59 C

KDevelop 259 C++

Category Abbreviation
Type

Definition Example

Single
Word

Prefix Abbreviation of a single word that is strictly a prefix of
the full word; formed by dropping letters from the end
of the full word

Pub → Public
Attr → Attribute
Abbrev → Abbreviation

Dropped
Letter

Abbreviation of a single word that is formed by
dropping letters from anywhere within the full word
except the first letter

Cfg →Configure
Ln → Line
Tty → Teletype

Multi
Word

Acronym Abbreviation made from the first letters of multiple
words.

Kv → Key value
Ip → Internet protocol
Vr → Virtual reality

Combination
Multi-word

Abbreviation made by dropping letters from multiple
words

Oid → Object Identifier
StdDev→Standard Deviation
Arg → access rights

Table IV. Example of Abbreviation Data Set

Table V. Sources of abbreviation expansions in study

A. Collecting Systems and Abbreviated Identifiers

In the first step we pick a set of 5 systems on the following
three criteria: 1) written in C++, Java, C#, or C due to our
reliance on srcML. 2) They must contain abbreviations. Our
goal was to collect at least 100 unique abbreviations per system,
so at least 100 needed to be present. 3) We wanted small,
medium and large systems (in terms of KLOC) to see how the
size/maturity of a system affects the location of its expansions.
The size of the systems we selected are in Table III.

After selecting the systems, three of the authors separately
scanned the source code manually and collected information on
identifiers that contain abbreviations. Whenever an identifier
was collected, it was manually split and abbreviations within the
identifier were expanded by hand. Each annotator reviewed the
expansions of the other two authors. Abbreviations with
disagreement over a split or expansion were discussed between
the authors. If consensus could not be reached, the abbreviation
was removed from the study.

To select abbreviations to include in the study, the
annotators chose a file from the system at random and then went
from the top of the file to the bottom, collecting all abbreviations
they could find before reaching the end of the file. At times, the
randomly selected file was exceptionally large. To mitigate the
threat of collecting too many abbreviations from a single file,
the annotators limited the number of unique abbreviations from
any one file to 25. In one case, Wycheproof, the system was
small enough that we collected most, if not all abbreviations. An
example of the manually derived data set is provided in Table
IV. Notice that the data set tells us how to properly split each
identifier and the expansions for any abbreviations it contains.

B. Sources of possible expansions

Table V lists the sources of abbreviation expansions
considered in this study. We consider words in the source code,
comments, system documentation, as well as language
dictionaries. The computer science and English dictionaries are
the same as used in previous literature [7], [29].

For system level documentation, we used any
documentation included as part of the system’s main source
code repository and any of the online documentation hosted by
the system’s governing body. For example, Telegram’s
documentation is a set of API docs available through the
webpage, since there were no documents hosted in their
repository. In the case where we needed documentation from an
online source, we used the unix command wget to crawl the
webpage for documentation. All documentation available on the
page was collected, however, there is a chance that, if some
documentation was hosted on a different domain, it was missed.

C. Preprocessing software artifacts and Finding Expansions

Every artifact except the computer science and English
dictionaries require varying amounts of preprocessing so they
can be used for analysis. The first preprocessing step is to apply
standard text normalization techniques: 1) remove all
punctuation and special characters, 2) conservatively split on
camelCase, under_scores, and numbers, and 3) convert all
characters to lower case. As discussed earlier, we use srcML and
a specialized (for srcML) version of libxml2’s SAX parser to
collect all required information about identifiers, comments,
functions and classes.

Identifier Abbrev:expansion Proper Split

mdat (m:media-dat:data) (m) (dat)

mAddAnimations (m:member)
(m) add
animations

getCurveSpecRef
(Spec:specification
-Ref:reference)

get Curve (Spec)
(Ref)

wm
(wm:windows
manager) (wm)

quickAckBlock (ack:acknowledge) quick (Ack) Block

msTime (ms:milliseconds) (ms) time

args (args:arguments) (args)

dinf
(d:data-
inf:information) (d) (inf)

updateMinMax
(min:minimum-
max:maximum)

update (min)
(max)

ic_ab_back
(ic:icon-ab:action
bar) (ic) (ab) back

id (id:identifier) (id)

Artifact Description

Statement Expansions that are found within statements
(i.e., declaration statements, expression
statements, parameter declarations)
appearing 1) in a function, 2) in a class, or 3)
in global scope.

Functions Expansions that are fully matched within the
scope of a single function

Classes Expansions that are fully matched within the
scope of a single class but were not matched
within any of the class’ methods (matches
made in method are counted in the function
category)

Comments Expansions that are fully matched within the
text of a single comment

System
Documentation
(non- adjacent)

Expansions that are fully matched within the
system documentation. When matching, the
words do not have to be adjacent (i.e.,
directly next) to one another.

System
Documentation
(adjacent)

Expansions that are fully matched within the
system documentation. When matching, the
words must be adjacent (i.e., directly next)
to one another

Language
Documentation
(non-adjacent)

Expansions that are fully matched within the
language documentation. When matching,
the words do not have to be adjacent (i.e.,
directly next) to one another.

Language
Documentation
(adjacent)

Expansions that are fully matched within the
system documentation. When matching, the
words must be adjacent (i.e., directly next)
to one another

Computer
Science
Dictionary

A dictionary of words commonly used in
computer science literature, obtained from
previous literature [7], [29]

English
Dictionary

A dictionary of English words obtained from
previous literature [7], [29].

One problem with identifiers/comments in the source code,
and words in system/language documents is that words in a
multi-word expansion do not necessarily appear consecutively
adjacent to one another. Take the following example. Let us say
we have an abbreviation named ‘SpecRef’, which expands to
Specification Reference. If we want to find the expansion, we
must find the word Specification and the word Reference.
Naively, we could search for the string “Specification
Reference”, but there is no reason to assume that they occur right
next to one another. They could appear several words apart
within a document. For example, “This reference variable
handles all access to the specification data”.

This problem is accentuated in system/language
documentation because these texts can be thousands of pages in
length. If one part of an expansion occurs at the beginning of a
long collection of text and the second part at the end, it is not
likely they are related. For this reason, we keep track of the
position of each word inside of system and language documents.
As an example, take the following sentence: “Record the
position from left to right right to left from position the record”.
We would take this sentence and generate the following python-
like dictionary and lists, where each key’s value is the positions
it occurred in within the sentence.

{Record:[1, 14], the:[2,13], position:[3,12], from:[4,11],

left:[5,10], to:[6, 9], right:[7,8]}

This sentence has 14 words, record is used in the 1st and 14th

positions; position in the 3rd and 12th; from in the 4th and 11th,
etc. This allows us to search for words based on the distance
between the positions they appeared in. All words in system and
language documents are assigned a position list. The computer
science and the English dictionaries do not suffer from this
problem, as each individual entry in these dictionaries is
unrelated to the next or previous entry except for the dictionary
ordering. That is, it makes little sense to count positions.
Additionally, this problem can appear in comments and source
code, though it is less of a threat; a single comment or function
is not typically the same length as a body of system/language
documentation. Even so, we use the position list technique for
comments, but take a different approach for source code, which
we discuss in Section IV.

The final step is to take the expansions and abbreviations that
were manually collected and match them in one or more of our
eight artifacts. To do this, we use the following workflow:
1. Take an abbreviation and its expansion(s).
2. Scan the entire body of code for the system that corresponds

with the current abbreviation/expansion(s) and record
where we match the expansion and where we see the
abbreviation (e.g., in a method, as part of a type name, etc).

3. Check the system and language documentation position lists
and record whether we match the expansion.

4. Check the computer science and English dictionaries and
record whether we match the expansion.

To perform the matching, we used prefix trees, which allow
us to find words with dissimilar stems (e.g., significant vs.
significantly) and Levenstein edit distance [33], which allows us
to constrain how far two words can be from one another in terms
of edit distance before we consider them not a match. We use

Figure 1. Example prefix tree and edit distance
this to avoid the situation where two words have similar
prefixes, but their stems make them different words.

For example, if we decide to limit matches to an edit distance
of three, then expand and expanding will be considered matches,
but expand and expansion will not. We give an example of
prefix trees and edit distance in Figure 1. In this figure, date,
data, and debt are contained in a prefix tree. They all share the
same first letter, so the tree is rooted at D. The Levenstein edit
distance is the number of edit operations it takes to turn one word
into the other. To turn date into data, replace the e with an a;
one operation. Date and debt require three operations. For this
paper, we used an edit distance limit equal to 30% of the size of
the expansion we are trying to match. For example, expanding
is a 9-letter word; 30% of 9 is 3 (rounded up).
Therefore, if we are looking for a match to expand and we find
expanding, we consider it a match because it is within 30% (3
letters) of expanding. We chose 30% because it empirically gave
us a good tradeoff between positive and negative matches.

Table VI. Number of Abbreviations and Expansions per
System

IV. EXPERIMENTAL STUDY

Using the methodology described in the last section, we
answer our research questions by examining five systems and
reporting on where abbreviation expansions occur most
frequently. First, we provide some statistics on the data we
collected for each system. As discussed above, we manually
collected abbreviations for the five systems analyzed in our
study. Table VI shows each system, the number of unique
abbreviations and the number of unique expansions.

Because each system may have different amounts of
documentation and identifiers to search for abbreviation
expansions, we are careful in drawing conclusions from raw
numbers of expansions found in each location. For example, if
we find very few expansions in comments, we might

System # Unique
Abbreviations

Unique
Expansions

Telegram 178 260

Wycheproof 160 133

Enscript 169 161

OpenOffice 149 307

KDevelop 231 327

Total 887 1188

Table VII. Total Number of Expansions Found Per System in Source Code Identifiers.

Type

(declarations)

Type

(params)

Name

(declarations)

Name

(params)

Name

(expr) Function Class

Global

Enscript 55 (34%) 21 (13%) 81 (51%) 25 (16%) 84 (53%) 96 (61%) 56 (35%) 84 (53%)

KDevelop 148 (45%) 124 (38%) 252 (77%) 167 (51%) 213 (65%) 253 (77%) 168 (51%) 237 (72%)

Open Office 172 (56%) 147 (48%) 229 (75%) 167 (55%) 221 (72%) 245 (80%) 217 (71%) 199 (65%)

Telegram 83 (37%) 64 (29%) 139 (62%) 113 (50%) 133 (59%) 168 (75%) 143 (64%) 124 (55%)

Wycheproof 27 (20%) 12 (9%) 28 (21%) 7 (5%) 15 (11%) 53 (40%) 23 (17%) 0

Mean 97.00 73.60 145.80 95.80 133.20 163.00 121.40 129.40

Median 83.00 64.00 139.00 113.00 133.00 168.00 143.00 124.00

StdDev 61.41 60.38 95.29 76.38 87.28 88.65 80.21 92.86

Coefficient of

Variation 0.63 0.82 0.65 0.80 0.66 0.54 0.66 0.72

Table VIII. Total Number of Expansions Found Per System in Comments, system, language, CS, and English corpora

 Comments

System

(non-adjacent)

System

(adjacent)

Language

(non-adjacent)

Language

(adjacent) CS Dict English

Enscript 41 (26%) 68 (43%) 62 (39%) 123 (77%) 114 (71%) 52 (33%) 96 (60%)

KDevelop 148 (45%) 210 (64%) 201 (61%) 207 (63%) 186 (57%) 90 (27%) 164 (50%)

Open Office 207 (68%) 117 (38%) 116 (38%) 111 (36%) 103 (34%) 52 (17%) 92 (30%)

Telegram 107 (48%) 122 (54%) 104 (46%) 145 (65%) 123 (55%) 56 (25%) 105 (47%)

Wycheproof 71 (54%) 48 (36%) 41 (31%) 95 (72%) 73 (55%) 31 (23%) 48 (36%)

Mean 114.80 113.00 104.80 136.20 119.80 56.20 101.00

Median 107 117 104 123 114 52 96

StdDev 65.25 62.76 61.81 43.58 41.53 21.29 41.53

Coefficient of Variation 0.57 0.56 0.59 0.32 0.35 0.38 0.41

think that comments for some system are a bad source of
expansions. However, we must consider the situation where the
system has no comments; this would obviously cause the
number of comment-born expansions to be low. This situation
only applies to artifacts that vary in size between systems. For
this reason, we calculated comment and system doc density per

1 KLOC, presented in Table IX. We will refer to this table when
such context is required to understand the results.

A. Across all artifacts, where do abbreviation expansions

most frequently occur in general?

To answer this question, we look at frequency counts for the
number of abbreviations found within each artifact. This data is
broken down per system in Table VII and Table VIII.

Figure 2. Where Do Abbreviation Expansions Occur?

(Total of 3487)
Figure 3 Where Do Abbreviation Expansions Uniquely

Occur? (Total of 327)

Table IX. Comment, System, Language document density
per 1 KLOC for each system

These values were obtained by recording every location
where we found the full expansion. For example, if the acronym
kv expands to key value, we needed to match both the words key
and value in the same place (e.g., type declaration) for it to
count. The percentage in parenthesis next to each value is
obtained by dividing the given value by the number of unique
expansions (Table VI) for the corresponding system. For
example, the 45% for Open Office comments is obtained by
evaluating 148/307. Additionally, we provide the mean, median,
standard deviation (StdDev), and coefficient of variation (CV).

To begin, we will look at Figure 2 and Figure 3 to get a high-
level view of the data. Figure 2 shows the distribution of where
expansions were found in the source code. All in all, 3860 non-
unique expansions (i.e., one expansion can occur in multiple
places) are in this set. Figure 3 shows the distribution of unique
expansions (i.e., expansions that were found in only one artifact)
of which there were 294. Figure 2 shows that the language
corpus had the highest number of expansions followed by
comments, system documentation, and source code statements.
If we compare this to Figure 3, we see something interesting:
Statements contained the most unique expansions by a large
margin. That is, it contained the most expansions that did not
appear anywhere else. The next three best sources were
comments, functions (i.e., identifiers that were not in statements
are included here), and language documentation.

The tables give a finer-grain view of the data in the figures;
we will analyze these now. We start with Table VII, which
contains counts for the number of expansions found in different
parts of the source code. The first five categories present
expansions found in the type/name of declarations (e.g., int x;
where int is the type and x is the name), function parameter
type/names, and expressions such as x = x+y or functionCall(x,
y).

Table X Number of Adjacent Multi-Word Expansions

These categories are strict in that the full expansion needed to be
found in the corresponding location (i.e., fully within the type,
fully within a declaration name). In some cases, different parts
of an expansion appeared in different locations (e.g., one part in
a type and one part in a name); these are recorded in the last three
categories: function, class, and global, since even if one part of
an expansion is in a type, and one part is in a name, the full
expansion still occurred within 1) the body of a function, 2) the
body of a class or 3) in global scope. Note that if an expansion
is found in a method (i.e., a function in a class), it is not recorded
as being in a class; the function, class, and global categories are
mutually exclusive.

 The results in Table VII show the function category
performed best in terms of CV (0.54), with declaration types
second (0.63), and declaration names third (0.65).This result is
not surprising; functions are where most identifiers are found so
it is natural that they have a high number of expansions
compared to finer levels of granularity (i.e., the first five
categories) and even classes/globals.

However, it is worth noting that upwards of 30% of all
expansions consistently found in declaration types and
declaration names in 4 out of the 5 systems studied. This number
increases to >50% of all expansions in 4 out of 5 systems for
expression names and globals. The data implies that, when
examining just source code, larger systems’ (i.e., KDevelop,
Open Office, and Telegram) expansions occur throughout the
code frequently; upwards of 30% in all but one case (Telegram
type params). It is harder to draw conclusions for smaller
systems. The one trend that seems to appear is that smaller
systems’ expansions are more focused around specific locations
in the source code. In particular, they were found in functions
rather than classes or globals (note that Wycheproof is written
in Java; there are no globals).

We now look at non-source-code artifacts. These are in
Table VIII. The data shows that the language corpus performs
best in terms of its coefficient of variation in either adjacent or
non-adjacent (0.32 and 0.35 resp.) relative to other artifacts in
this table. This indicates that the language corpus tended to
perform well in all systems big or small and we postulate that
this is because language documentation in C, C++, Java and
likely other population languages have had a long period of time
to mature and so their documentation is of high quality.

Arguably, the next closest runners-up are the CS and English
dictionaries with a CV of 0.38 and 0.41 respectively. While
many expansions are available in these dictionaries, they suffer
one major drawback: They contain no domain/system
information, which is important for expansion [31]. These
dictionaries are necessarily system and domain agnostic
(perhaps less-so for the CS dictionary), meaning that a tool that
wants to find expansions in these dictionaries may have a harder
time choosing between multiple, equally likely expansion

candidates. That is, the
information surrounding
potential expansion
candidates can help a tool in
choosing which expansion
is appropriate and these
dictionaries may lack some
of that information.

Comment Density

(in #comments

per 1 KLOC)

System Document

Density (in #words

per 1 KLOC)

Telegram 14 4201

Wycheproof 134 439

Enscript 77 245

OpenOffice 161 1410

KDevelop 88 7428

 Type

(parameters)

Type

(declarations)

Name

(declarations)

Name

(expressions)

Name

(parameters)

Total

Enscript 1 3 3 3 0 10

KDevelop 3 6 8 3 2 22

Open Office 1 5 4 6 3 19

Telegram 6 9 14 15 12 56

Wycheproof 2 8 3 2 0 15

The system and comment categories are the weakest in Table
VIII. However, there is one important note to make. In both
tables, when there are outliers, Enscript and Wycheproof tend to
be those outliers and are a significant drag on the CV for both
comments and system data. They are also the two smallest
systems we studied, with Wycheproof at 9 KLOC and Enscript
at 59 KLOC. If we remove these systems from consideration,
the StdDev for the system (non-adjacent) and comment corpora
become: 52.31 and 50.27 respectively. Additionally, their CV
become: .35 and .33 respectively. This indicates that these can
be high-quality sources for expansions, but they are highly
dependent on the quality of documentation and comments
within the systems themselves.

Interestingly, there does not seem to be any clear correlation
between comment/system density (Table IX) and the number of
expansions found in comments or system documents. For
example, Telegram has low comment density but more
percentage-wise comment expansions than Enscript and
KDevelop (Table VIII), both of which had higher comment
density. This implies that increased comment or system
document density does not mean more expansions are matched;
the number of expansions found may have more to do with
specific documentation and commenting practices; what these
practices are requires further research.

The answer to RQ1 is that the quality of artifacts such as
comments and system documentation will determine how much
mileage an expansion technique gets out of these sources of
information. However, there are a few sources that are
consistently high-quality: the source code itself and language
documentation. Not only that, but it is the source code and
language documentation that contain the most unique
abbreviation expansions. These are where approaches should
focus when trying to find and filter appropriate expansions.

B. RQ2: Do words that make up abbreviation expansions

typically occur adjacent to one another?

One important aspect of finding abbreviation expansions is
the fact that words in an expansion do not always sit adjacent to
one another. For example, the identifier ptHex in wycheproof
expands to plaintext hexadecimal. However, the words
‘plaintext’ and ‘hexadecimal’ do not occur next to one another
in their expanded forms. The question is whether this happens
frequently or not. If it is frequent, then approaches that
automatically expand identifiers will need to consider this when
trying to find appropriate expansion candidates.

To answer this research question, we will turn our attention
to Table VIII and Table X. The only source code artifacts where
adjacency is an issue are the language documentation, system
documentation, comments, and source code (e.g., part of an
expansion found in type and part found in name). Table VIII has
data about adjacent and non-adjacent words in the system and
language dictionaries. We do not report comments as adjacent
and non-adjacent since the numbers were the same for both (i.e.,
if we found a multi-word expansion in a comment, every word
was adjacent). Looking at language and system documentations,
most multi-word expansions were adjacent to one another
overall. The largest difference was found in telegram and

wycheproof, where the non-adjacent column matched 22 (10%)
more expansions than the adjacent in telegram and 22 (17%)
more in wycheproof.

While assuming adjacency will still allow an approach to
find most expansions, it is clear that there are some expansions
that may only be reachable by considering non-adjacent words
for expansions. There is one difficult issue with considering
non-adjacent words, however, and that is: How can we tell if two
words are related to one another if they are not adjacent? This is
a question that will need to be addressed with non-adjacent
expansions. Next, we look at Table X, which contains data about
multi-word expansions that were adjacent to one another in
source code. This is similar to the data in Table VII but only
counts multi-word expansions, where Table VII records single-
word expansions as well as multi-word. There was a total of 257
expansions that were made up of multiple words. We define
adjacency in source code slightly differently than in free text.
We consider words in an expansion adjacent in code if they
occurred in the same location (i.e., in the type, in the name).

Looking at the table, the results show that a fair number of
multi-word expansions found in source code occur adjacent to
one another, but that the majority are non-adjacent. This means
that approaches to expanding these will need to pay attention to
surrounding statements and expressions in the source code.

The answer to RQ2 is that words in documentation-type
sources are more likely to occur adjacent to one another, while
words in source code are more likely to be non-adjacent. This
difference in the way expansions are found will need to be
incorporated into searching strategies; prioritizing non-
adjacent matches in source code while doing the opposite in
documentation.

C. RQ3: Do expansions for abbreviations of varying type

occur in some artifacts more often than others?

Different types of abbreviations require different techniques
for performing the expansion. Prefix abbreviations are the
simplest to expand whereas combination multi-word is the
hardest [2]. We created a small program to automatically
categorize abbreviations as one of the four categories first
introduced in Table II. It simply looks at the form of the
abbreviation versus its expansion (i.e., the expansions we
empirically obtained) to perform the categorization. We
manually checked the results of the categorization to make sure
the algorithm worked properly. We present the total number of
abbreviations in each category in Table XIII. The results of the
categorization are broken down in Table XI, which contains the
results for expansions found in the source code, and Table XII,
which presents the results for expansions found in
documentation.

Starting with Table XI, prefix abbreviations are the most
common everywhere within the source code. Dropped-letter
abbreviations are second, acronyms are third, and there were 0
combination multi-words and it is worth noting that we collected
extremely few of these; only 11 in total across all systems. The
only other thing worth noting in this table is that there is a
noticeable spike in the number of acronyms in the function
category. Because these numbers are low in the statement-level

Table XI. Frequency at which Different Types of Abbreviations Occur in Different Source Code Locations

Table XII. Frequency at which Different Types of Abbreviations Occur in Different Software Artifacts

Table XIII Total Number of Abbreviations in Each

Category

Combination
Multi-Word

Dropped
letter

Prefix Acronym

11 266 701 170

categories before function, this implies that elements such as
function names and return types are more likely to contain
acronyms.

The more interesting patterns are found in Table XII, where
we are looking at documentation. Prefix abbreviations are the
most popular, but by a slimmer margin. There are many more
acronyms, with the most appearing in the language document
corpus. Additionally, we find our multi-combination words in
this table; with the most showing up in the system and language
corpora. In fact, between the system and language corpora, there
is almost an even distribution of each type of abbreviation
(though, of course, we found very few multi-combination
abbreviations).

There are a few takeaways we can glean from this data. The
first is that documentation will require more varied methods of
matching and filtering candidate abbreviation expansions;
especially language and system documents. The second is that
the majority of expansions found in source code are single-word,
since prefix and dropped-letter abbreviations (which are the
single-word categories). This means that when these approaches
are using information found in the source code, they might first
assume that abbreviations that could go either way (i.e., could
be single word or multi-word) are single-word and, if that
assumption fails, then investigate multi-word options.

The answer to RQ3 is that, yes, different types of
abbreviations are more likely to appear in source code versus
documentation. This characteristic means that tools may be able
to prioritize expansions for types of abbreviations that are more
likely to appear given the artifact being searched, which could
both simplify the searching method and increase accuracy.

D. RQ4: How can an approach to expanding abbreviations

use what we have learned?

In RQ1, we learned that language documentation and
functions are the most consistently high-quality places to find
abbreviation expansions. Language documentation tends to be
high quality because the languages used by the systems in our
study are popular, mature, and well-documented. This means
that it is always a good source regardless of the quality of the
system itself. Functions outperformed other source code
locations and artifacts. Despite this being by a slim margin, we
also learned that source code statements have the highest
number of unique abbreviation expansions; expansions that are
found in no other place. This tips the scale in the favor of
functions, though it does not mean that comments or system
documentation should not be included. The problem with
comments and system documentation is that they are more
dependent on the maturity of the system and on developer
practices. This is true for code, to some extent—however,
generally speaking, source code is updated more frequently than
documentation. This indicates that language documentation and
functions are the most reliable sources.

Using RQ2, we were able to determine that multi-word
expansions in source code are less likely to occur adjacent (i.e.,
in the same source code element) as one another compared to
documentation, where they were highly likely to be adjacent.
Further, using RQ3, we know that these multi-word expansions
are less likely to happen in code than in documentation. We can
theorize that, when trying to find expansions in source code, it
is better to assume that abbreviations are single-word
abbreviations (i.e., dropped or prefix). However, if that fails,
then when we try to find a multi-word expansion for the
abbreviation, we should keep in mind that the expansion words
are more likely to sit non-adjacent to one another. On the other
hand, RQ2 and RQ3 indicate that expansions in documentation
are more likely to be adjacent to one another and that there is a
more even distribution between types of abbreviations.

The answer to RQ4 is that techniques that expand
abbreviations can take advantage of the differing characteristics

Type

(declarations)

Type

(params)

Name

(declarations)

Name

(params)

Name

(expr) Function Class

Global

Prefix 347 (50%) 275 (39%) 540 (77%) 354 (50%) 493 (70%) 562 (80%) 440 (63%) 472 (67%)

Dropped 109 (41%) 84 (32%) 160 (60%) 111 (42%) 150 (56%) 181 (68%) 131 (49%) 140 (53%)

Acronym 27 (16%) 8 (5%) 25 (15%) 12 (7%) 19 (11%) 72 (42%) 36 (21%) 35 (21%)

Combo Multi-word 0 0 0 0 0 0 0 0

 Comments

System

(non-adjacent)

Language

(non-adjacent) CS Dict English

Prefix 406 (58%) 339 (48%) 395 (56%) 187 (27%) 391 (56%)

Dropped 134 (50%) 124 (47%) 149 (56%) 63 (24%) 113 (42%)

Acronym 33 (19%) 94 (55%) 130 (76%) 30 (18%) 0

Combo Multi-word 1 (9%) 8 (73%) 7 (64%) 1 (9%) 0

of source code and documentation to help find expansions that
are more likely to be correct and filter out less likely candidates.

E. Threats to Validity

The primary threats to our experimental setup are in the way
we collected data. We selected files to collect abbreviations from
at random and went from top to bottom, collecting every
abbreviation we saw, while occasionally skipping those we had
seen before. It is possible that there were abbreviations we
missed due to not recognizing them or simply not seeing them.
Another threat is in the form of the systems we selected. We
tried to select systems that were not all in the same domain,
varied in size, and were written in differing languages. However,
all languages we used were still imperative and most support
some form of object-oriented programming. For this reason, our
results may not extend to systems written in, for example,
functional languages. Our sample size is 5 systems. While these
systems vary in size, domain, and language, the sample may not
generalize. However, we think the number of systems is justified
due to the manual component of the study; collecting a set of
abbreviations is very time consuming.

V. RELATED WORK

The goal of this paper is an empirical analysis on the nature
of abbreviation expansion for the improvement of existing
expansion techniques. To the authors’ knowledge, no other
existing literature has performed a similar analysis. As such, we
report here on related work on program comprehension and
abbreviation expansion techniques.

Normalizing words in identifiers is a major interest in
literature. Previous work shows how normalizing words
positively impacts program comprehension [26]–[28]. Yang and
Tan [34] have used a technique for finding general semantically
related word pairs (rPairs), including abbreviations, from a
software context analysis view. They leverage the context of
software comprising words in comments and identifiers to get
more precise insights about those artifacts.

Guerrouj et al. [25] proposed an approach named TIDIER
(Term IDentifier RecognIzER) for recognizing words
composing source code identifiers. Part of this tool is used for
splitting/expanding identifiers, which TIDIER successfully
accomplishes in about 48% of cases studied. The same authors
also investigated the effect of contextual information on
identifier expansion, in terms of mapping soft words to their
corresponding domain concepts. Their results show that
contextual information significantly impacts identifier
expansion [31]. Lawrie et al. [30] propose an algorithm for
normalizing source code vocabulary. It uses a splitter, called
GenTest, and is tested on a corpus of 8000 words. They
additionally perform expansion using wildcard string matching
and phrase finder.

Lawrie et al. [9] also proposed an expansion algorithm that
uses four lists of potential expansions: a list of natural-language
words extracted from the code, a list of phrases extracted from
the code, a list of programming language specific words referred
to as a stoplist, and a natural-language dictionary. The quality of
the expansion algorithm is evaluated through comparing the tool
generated expansion of 64 identifiers with ‘by-hand’ expansion
of the same identifiers. Results shows the importance of context

in the expansion process, and co-occurrence models plays a role
in choosing the correct expansions.

Hill et al. [29] propose AMAP, a tool for expanding
abbreviations. They categorize types of abbreviations found in
software and describe the challenges in automatically expanding
them. Their approach used the idea of most frequent expansion
along with levels of software dictionaries to identify expansions.
They evaluated their approach on 250 abbreviations, and the
results showed an improvement of 57% in accuracy compared
to an approach by Lawrie [9].

Fry [8] developed an algorithm for choosing an abbreviation
expansion if more than one expansion possibility is identified.
This work is a refinement of work presented in [29]. The results
show that they improved expansion accuracy by 23.4% over the
state-of-the-art at the time.

Corazza et al. [7] proposed an approach called LINSEN
(Linear IdeNtifier Splitting and Expansion) that is used for
identifier expansion and splitting. They evaluate their expansion
approach against AMAP [29] on 250 randomly selected
abbreviations. Results shows that their approach performs better
than AMAP on some types of abbreviations, with a reported
improvement of about 5% in terms of terms of accuracy.

Lawrie and Binkley [10] extend work in [30] by improving
the abbreviation expansion. Here, they use a strategy that
determines the most likely expansion by considering word co-
occurrence. They report an accuracy of up to 66%

Guerrouj et al. [35] propose TRIS, a Tree-based
representation approach which pre-compiles a set of dictionary
words into a tree representation and associates a cost to each
transformation. It treats the splitting/expansion problem as an
optimization problem; optimizing splitting/expansion by
treating it as a shortest path problem. Results show that TRIS is
more accurate compared to other approaches [10] while
remaining efficient in terms of computation time.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we presented an empirical study of
abbreviations in source code. We manually collected and
expanded 887 unique abbreviations from five different open
source systems. We then used these manually expanded
abbreviations to empirically characterize the distribution
different types of abbreviations and their expansions in source
code and software artifacts. The goal of this study is to highlight
these characteristics such that future approaches to expanding
abbreviations can use them to become more accurate.

In the future, we plan to use this data to improve on the state
of the art for abbreviation expansion. Our goal is to use what we
have learned to focus in on collecting expansions from
complementary sources of information, with appropriate
techniques for the types of abbreviations we expect to find. We
will also continue our investigation by analyzing other types of
non-dictionary words, such as aliases and distinguishers. While
we did not explore these thoroughly in this paper, it is our
opinion that identification and, when appropriate, expansion of
aliases and distinguishers is of high importance. While this
empirical study is not necessarily exhaustive, it highlights clear
are trends that the authors believe are worth studying further
through application.

REFERENCES

[1] L. Tan, Y. Zhou, and Y. Padioleau, “aComment: mining annotations

from comments and code to detect interrupt related concurrency bugs,”

in Software Engineering (ICSE), 2011 33rd International Conference
on, 2011, pp. 11–20.

[2] G. Bavota, “Mining Unstructured Data in Software Repositories:

Current and Future Trends,” in Software Analysis, Evolution, and
Reengineering (SANER), 2016 IEEE 23rd International Conference on,

2016, vol. 5, pp. 1–12.

[3] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java

methods,” in Proceedings of the IEEE/ACM international conference

on Automated software engineering, 2010, pp. 43–52.
[4] R. Rehurek and P. Sojka, “Software framework for topic modelling

with large corpora,” in In Proceedings of the LREC 2010 Workshop on

New Challenges for NLP Frameworks, 2010.
[5] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can better

identifier splitting techniques help feature location?,” in Program

Comprehension (ICPC), 2011 IEEE 19th International Conference on,

2011, pp. 11–20.

[6] W. Olney, E. Hill, C. Thurber, and B. Lemma, “Part of speech tagging

Java method names,” in Software Maintenance and Evolution
(ICSME), 2016 IEEE International Conference on, 2016, pp. 483–487.

[7] A. Corazza, S. Di Martino, and V. Maggio, “LINSEN: An efficient

approach to split identifiers and expand abbreviations,” in Software
Maintenance (ICSM), 2012 28th IEEE International Conference on,

2012, pp. 233–242.

[8] Z. Fry, “Improving Automatic Abbreviation Expansion within Source
Code to Aid Program Search Tools,” University of Delaware, 2008.

[9] D. Lawrie, H. Feild, and D. Binkley, “Extracting meaning from

abbreviated identifiers,” in Source Code Analysis and Manipulation,
2007. SCAM 2007. Seventh IEEE International Working Conference

on, 2007, pp. 213–222.

[10] D. Lawrie and D. Binkley, “Expanding identifiers to normalize source
code vocabulary,” in Software Maintenance (ICSM), 2011 27th IEEE

International Conference on, 2011, pp. 113–122.

[11] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative
results when using sentiment analysis tools for software engineering

research,” Empir. Softw. Eng., vol. 22, no. 5, pp. 2543–2584, 2017.

[12] C. D. Newman, R. S. AlSuhaibani, M. L. Collard, and J. I. Maletic,
“Lexical categories for source code identifiers,” in Software Analysis,

Evolution and Reengineering (SANER), 2017 IEEE 24th International

Conference on, 2017, pp. 228–239.
[13] R. S. AlSuhaibani, C. D. Newman, M. L. Collard, and J. I. Maletic,

“Heuristic-based part-of-speech tagging of source code identifiers and

comments,” in Mining Unstructured Data (MUD), 2015 IEEE 5th
Workshop on, 2015, pp. 1–6.

[14] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier

informativeness using part of speech information,” in Proceedings of
the 8th Working Conference on Mining Software Repositories, 2011,

pp. 203–206.
[15] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, “Part-of-speech

tagging of program identifiers for improved text-based software

engineering tools,” in Program Comprehension (ICPC), 2013 IEEE
21st International Conference on, 2013, pp. 3–12.

[16] E. Brill, “A simple rule-based part of speech tagger,” in Proceedings of

the third conference on Applied natural language processing, 1992, pp.
152–155.

[17] T. Brants, “TnT: a statistical part-of-speech tagger,” in Proceedings of

the sixth conference on Applied natural language processing, 2000, pp.
224–231.

[18] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich

part-of-speech tagging with a cyclic dependency network,” in
Proceedings of the 2003 Conference of the North American Chapter of

the Association for Computational Linguistics on Human Language

Technology-Volume 1, 2003, pp. 173–180.
[19] A. Ratnaparkhi, “A maximum entropy model for part-of-speech

tagging,” in Conference on Empirical Methods in Natural Language

Processing, 1996.
[20] J. Giménez and L. Marquez, “Fast and accurate part-of-speech tagging:

The SVM approach revisited,” Recent Adv. Nat. Lang. Process. III, pp.

153–162, 2004.
[21] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program

comprehension with source code summarization,” in Proceedings of

the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2, 2010, pp. 223–226.

[22] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of

automated text summarization techniques for summarizing source
code,” in Reverse Engineering (WCRE), 2010 17th Working

Conference on, 2010, pp. 35–44.

[23] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically
detecting and describing high level actions within methods,” in

Proceedings of the 33rd International Conference on Software

Engineering, 2011, pp. 101–110.
[24] E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker, “An

empirical study of identifier splitting techniques,” Empir. Softw. Eng.,

vol. 19, no. 6, pp. 1754–1780, 2014.
[25] L. Guerrouj, M. Di Penta, G. Antoniol, and Y.-G. Guéhéneuc, “Tidier:

an identifier splitting approach using speech recognition techniques,” J.
Softw. Evol. Process, vol. 25, no. 6, pp. 575–599, 2013.

[26] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of

comments and identifier names on program comprehensibility: an
experimental investigation,” J Prog Lang, vol. 4, no. 3, pp. 143–167,

1996.

[27] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier
names for comprehension and memory,” Innov. Syst. Softw. Eng., vol.

3, no. 4, pp. 303–318, 2007.

[28] L. Guerrouj, “Normalizing source code vocabulary to support program
comprehension and software quality,” in Proceedings of the 2013

International Conference on Software Engineering, 2013, pp. 1385–

1388.

[29] E. Hill et al., “AMAP: automatically mining abbreviation expansions

in programs to enhance software maintenance tools,” in Proceedings of

the 2008 international working conference on Mining software
repositories, 2008, pp. 79–88.

[30] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code

vocabulary,” in Reverse Engineering (WCRE), 2010 17th Working
Conference on, 2010, pp. 3–12.

[31] L. Guerrouj, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An

experimental investigation on the effects of context on source code
identifiers splitting and expansion,” Empir. Softw. Eng., vol. 19, no. 6,

pp. 1706–1753, 2014.

[32] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcml: An infrastructure
for the exploration, analysis, and manipulation of source code: A tool

demonstration,” in Software Maintenance (ICSM), 2013 29th IEEE

International Conference on, 2013, pp. 516–519.
[33] V. I. Levenshtein, “Binary codes capable of correcting deletions,

insertions, and reversals,” in Soviet physics doklady, 1966, vol. 10, pp.

707–710.
[34] J. Yang and L. Tan, “Inferring semantically related words from

software context,” in Mining Software Repositories (MSR), 2012 9th

IEEE Working Conference on, 2012, pp. 161–170.
[35] L. Guerrouj, P. Galinier, Y.-G. Guéhéneuc, G. Antoniol, and M. Di

Penta, “Tris: A fast and accurate identifiers splitting and expansion

algorithm,” in Reverse Engineering (WCRE), 2012 19th Working
Conference on, 2012, pp. 103–112.

