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Abstract—Due to the prevalence of abbreviations in source 

code, the inclusion of accurate abbreviation expansions can 

increase the quality of software engineering tools that rely on 

natural language. Unfortunately, state-of-the-art expansion 

techniques struggle to reach an average expansion accuracy of 59-

62%. To help address this problem, we manually collected more 

than 900 abbreviations and their expansions. We then empirically 

studied 5 open source software systems by automatically analyzing 

the source code source code (e.g., identifiers, comments), system 

documentation, language documentation, a computer science 

dictionary, and an English dictionary; looking for where these 

manually-obtained abbreviations and expansions tended to occur 

most frequently. This paper has two main contributions: 1) It is 

the first paper to present an empirical analysis of where 

abbreviations and expansions occur in source code and natural 

language software artifacts. 2) The results of this work can be used 

to specialize information retrieval or matching algorithms used in 

abbreviation expansion tools to prioritize different software 

artifacts when searching for candidate expansions. 

Keywords— Program Comprehension, abbreviation expansion, 

software maintenance, software evolution 

I. INTRODUCTION 

Researchers frequently use natural language processing 
techniques to analyze source code for numerous activities 
including bug detection [1], mining and analyzing software 
repositories [2], automated documentation [3], topic modeling 
[4], feature location [5] and more. Because so many techniques 
rely on the quality of natural language processing tools, it is 
important that they perform well even in the face of the often 
imperfect and incomplete language used in source code [6]. 
However, tools for Natural Language Processing (NLP) of 
source code are still inaccurate [6]–[10]. These inaccuracies 
have consequences [11] and can have downstream impacts in 
further natural language analyses like sentiment [11], part of 
speech tagging [6], [12]–[20], source code summarization [3], 
[21]–[23], and identifier splitting [5], [24], [25]. 

One way to increase the accuracy of natural language  
analyses and improve the comprehensibility of source code is by 
expanding abbreviations [26]–[28]. For example, the 
abbreviation ‘cfg’ can have multiple possible expansions in 
source code, such as configure, configuration, control flow 
graph, or context free grammar. Understanding an 
abbreviation’s expansion can affect the accuracy of subsequent 
natural language analyses like part of speech tagging or 

sentiment analysis, as well as help developers better understand 
the meaning of source code identifiers. 

Existing techniques that search for abbreviation expansions 
average 59-62% accuracy [7], [29], [30] . A critical step in 
improving the accuracy of abbreviation expansion techniques is 
in understanding where different types of abbreviations and their 
expansions occur, both in terms of the type of software artifact 
(e.g., system documentation) and the type of location in source 
code (e.g., type names, function names). Studying these 
locations and the types of abbreviations they contain will help 
guide future techniques by 1) revealing the most lucrative 
locations for expansions, 2) identifying what kind of 
abbreviations/expansions likely to occur in different artifacts, 
and 3) providing some clue of how difficult it will be to 
find/match these expansions. 

In this paper, we empirically analyze the frequency at which 
abbreviation expansions appear in varying types of software 
artifacts (e.g., source code, documentation, etc.) by examining 
where abbreviations and their expansions occur in 5 open source 
software systems. Additionally, to obtain the abbreviations and 
expansions we use in our study, we collected over 900 
abbreviation-expansion pairs across all 5 systems. We address 
the following research questions: 
RQ1: Across all artifacts, where do abbreviation expansions 
most frequently occur in general? We will use this question to 
understand what our data says about the location of expansions. 
Our goal will be to understand where most expansions are 
located, if any of the locations we study have unique expansions; 
expansions that are not found in any other location, and 
whether/how often expansions occur near to their abbreviation. 
The answer to this question will help future expansion 
techniques by revealing the most lucrative locations for 
expansions. 

RQ2: Do words that make up abbreviation expansions 

typically occur adjacent to one another? After looking at the 

distribution of abbreviations and expansions across multiple 

software artifacts, we want to get a better understanding of how 

difficult it would be to find these expansions. Multi-word 

abbreviation expansions (i.e., expansions that contain two or 

more words) whose constituent terms frequently appear next to 

one another (i.e., they are adjacent) are easier to find. We want 

to know if there is a pattern to where non-adjacent expansions 

tend to occur; these locations will need more rigorous 

approaches to determine if an abbreviation represents a multi-

word expansion and then determine what that expansion is. 



RQ3: Do expansions for abbreviations of varying type occur 
in some artifacts more often than others? This question will 
look specifically at different types of abbreviations. This 
contrasts with RQ1, which looks at expansions exclusively. 
There are different types of abbreviations; taxonomies have 
been published in previous work [29], which we will discuss. 
Some types of abbreviations are harder to detect/expand than 
others. This question will help us understand where different 
types of abbreviations are more likely to occur and will help 
future expansions techniques by informing them of what types 
of abbreviations are more frequent and should be prioritized in 
different locations. 
RQ4: How can an approach to expanding abbreviations use 
what we have learned? The last question ties everything from 
the previous three RQs together. The goal of this question is to 
put the insights from previous questions together such that we 
will have a big-picture view of how all of the data in this paper 
can be synergized to improve future abbreviation expansion 
techniques. 

The results of these research questions can directly impact 
abbreviation expansion techniques by providing am empirical, 
data-driven, answer to what tools can expect when trying to find 
expansions for abbreviations in different locations whether these 
locations be software artifacts or the source code itself. The rest 
of the paper is organized as follows: Section II discusses non-
dictionary words, Section III discusses our research 
methodology, Section IV presents the data from our empirical 
study and answers our research questions, Section V contains 
related work and Section VI concludes. 
 

Table I. Intent-based Non-Dictionary Categorizations 

 

II. NON-DICTIONARY WORDS IN SOFTWARE 

Abbreviations form a subset of non-dictionary words in 
source code and software artifacts. A non-dictionary word is a 
word that has no dictionary definition; they are typically 
shortened versions of dictionary words (i.e., abbrev is a non-
dictionary word that is short for abbreviation, which is a 
dictionary word). A taxonomy of non-dictionary words has been 
published previous [29], and the accuracy of current approaches 
to expanding abbreviations vary depending on the category of 
the abbreviations they are expanding [7][29]. In this section, we 
explain this previous taxonomy along with two complementary 

categories we empirically derived. We also discuss previously-
published approaches to abbreviation expansion, to help the 
reader understand state-of-the-art techniques. 

A. Categorizations of non-dictionary words 

Programming languages use natural language to convey 
meaning to humans. As a professional developer writes code, 
they ultimately construct identifiers, comments, and 
documentation out of words that indicate the role or behavior of 
a part of the software they are constructing. As the creation of 
documentation and identifier names is a partially subjective 
activity, developers are free to choose what words to use. Some 
of the words developers choose to use are non-dictionary words. 

While collecting data for our study, we noticed recurring 
patterns in the way developers use non-dictionary words. We 
show a set of categories that summarize these patterns in Table 
I. There are three categories: Abbreviation, Alias, and 
Distinguisher. These categories capture the relationship between 
the syntax (i.e., the form) of the abbreviation and its intent (i.e., 
what it represents): 

• An abbreviation is a shortened version of a word or phrase. 
Abbreviations generally begin with the same letter as the 
word or phrase it was shortened from. For example, ‘AES’ 
is an abbreviation of Advanced Encryption Standard.  

•  An alias represents a concept but is not a shortened version 
of any dictionary word related to that concept. Aliases are 
syntactically less strict than abbreviations. For example, the 
mathematical variable ‘K’ is often used in the Singular 
Value Decomposition (SVD) technique to refer to the 
dimensionality of the resulting matrix. In this case, K is an 
alias because it is not a shortening of any word or phrase 
that describes the function of K in the context of SVD. 
Another example comes from the Digital Signature 
Algorithm (DSA), which uses variables such as R and S to 
represent components of the encrypted signature. These 
variables are not shortenings of some larger word, but they 
represent a clear concept in the context of the DSA.  

• A distinguisher is a word that is attached to an 
identifier to keep the compiler from registering a name 
collision, which is when two names in the same scope are 
syntactically equivalent. A distinguisher is not a syntactic 
shortening of any word and does not represent a concept in 
any form. Its only purpose is to avoid a name collision. An 
example would be if we have two variables named integer1 
and integer2. The numbers provide no additional 
information about what the variables are doing and are not 
shortenings of any word. Adding them as a suffix simply 
allows the program to compile and distinguish the variables 
from one another.  

This is not the first work to categorize abbreviations. 
Previous work by Hill, et al. [29] categorizes abbreviations 
based solely on an abbreviation’s syntax. They broadly 
categorize abbreviations as Single Word and Multi Word 
abbreviations. Each of these breaks into two sub-categories. For 
single word, these are prefix and dropped letter. For multi word, 
these are acronym and combination multi word. For clarity, we 
show Hill’s abbreviation categories in Table II. The 
categorizations presented in Table I are complementary to these, 
as Hill, et al.’s categorizations are a more fine-grained subset of 
the abbreviation category. 

Category Definition Example 

Abbreviation Word that is the 
shortened form of a 
larger word or phrase. 

See Table II 

Alias Word that represents a 
concept but is not a 
single or multi word 
abbreviation of that 
concept. 

H - Cofactor 
Q – Prime 
X – Independent Variable 
 
These letters are not 
shortened versions of the 
concepts they represent. 

Distinguisher Word which does not 
represent a concept. Its 
only purpose is to 
avoid name-collision 
at compile-time. 

int x, x1, x2;  
 
The numbers 1 and 2 are 
used as distinguishers. 



 

Table II. Syntax-Based Non-Dictionary Word Categorizations 

B. Expanding non-dictionary words 

Expanding non-dictionary words and, in particular, 
expanding abbreviations, has been the topic of numerous 
research papers [7], [8], [29]–[31]. Expanding abbreviations is 
typically done as a part of word preprocessing alongside other 
steps such as splitting, stemming, tokenization, etc. For 
activities that involve information retrieval or natural language 
text analysis, abbreviation expansion adds more information to 
the corpus; giving these techniques more data to work with. The 
most recent techniques for abbreviation expansion take 
advantage of several information sources to try and detect 
correct expansions.  

That is, they use multiple levels of software artifacts. For 
example, LINSEN [7] uses the following sources to find 
expansions: 1) Terms extracted from comments of the source 
file containing the current identifier, 2) terms extracted from 
comments of all source files in the software system, 3) 
dictionary of computer science programming terms, 4) an 
English dictionary. AMAP [29] worked in a very similar way by 
gradually expanding the search scope from very close to the 
abbreviation to less contextualized sources such as relative 
frequency of terms across a large set of open source systems. 
This approach works very well since some terms are not likely 
to show up in a comment within the code but are extremely 
likely to be in a computer science dictionary. Or vice versa; a 
system-specific abbreviation will more likely show up in a 
comment than in a computer science dictionary. 

We note that the work presented here does not represent an 
independent expansion technique similar to those discussed 
above. Instead, results of the empirical analyses presented in this 
paper can be used to improve existing techniques such as 
LINSEN and AMAP. To the authors’ knowledge, no other work 
presents an empirical analysis of abbreviations expansions. 

III. RESEARCH METHDOLOGY 

What sources of information are most effective for finding 
abbreviation expansions? Are there sources we should be 
focusing on more than others? For example, perhaps expansions 
for acronyms are (e.g., JSON) are more likely to show up in 
documentation for the system or programming language 
documentation (e.g., javadocs). In this case, approaches should 
search these locations for potential expansions first or prioritize 

attempting to expand an abbreviation as an acronym when 
searching programming language documentation. As another 
example, perhaps expansions found in source code require a 
more specialized searching mechanism that abbreviations in 
language documentation. If we are going to improve the 
accuracy of expansion techniques, then it is important to 
understand what sources of information are best to use and how 
we should obtain data from those sources to fit our needs. 

We begin to answer these questions in this paper by studying 
the forms and locations of abbreviations and their expansions. 
Our goal is to record patterns of where expansions and different 
types of abbreviations occur. These patterns can then be used to 
improve the way existing techniques search for expansions in 
natural language and source code text. 

Our research approach is separated in to 4 stages. We briefly 
list these stages and then expand upon them in the following 
sections. The steps are as follows: 
1. Collect appropriate systems 
2. Manual splitting of identifiers, manual expansion of the 

abbreviations they contain, and verification of the split and 
expansion(s). 

3. Partially automated collection of system/language 
documentation  

4. Automatically search all forms of documentation and source 
code for expansions manually collected and verified by 
authors. 
We rely on srcML [32] for all automated collection, 

grouping, and preprocessing of identifiers and comments. 
srcML is a markup language that blends AST information into 
source code. Thus, it allows us to find identifiers and statically 
compute where these identifiers occur (e.g., in a class, function). 

 

Table III. System Statistics 

System Name Size (KLOC) Primary 
Language(s) 

Wycheproof 9 Java 

Telegram 781 Java, C 

OpenOffice 4462 C++, Java 

Enscript 59 C 

KDevelop 259 C++ 

 

Category Abbreviation 
Type 

Definition Example 

Single 
Word 

Prefix Abbreviation of a single word that is strictly a prefix of 
the full word; formed by dropping letters from the end 
of the full word 

Pub → Public 
Attr → Attribute 
Abbrev → Abbreviation 

Dropped 
Letter 

Abbreviation of a single word that is formed by 
dropping letters from anywhere within the full word 
except the first letter 

Cfg →Configure 
Ln → Line 
Tty → Teletype 

Multi 
Word 

Acronym Abbreviation made from the first letters of multiple 
words. 

Kv → Key value 
Ip → Internet protocol 
Vr → Virtual reality 

Combination 
Multi-word 

Abbreviation made by dropping letters from multiple 
words 

Oid → Object Identifier 
StdDev→Standard Deviation 
Arg → access rights 



 

Table IV. Example of Abbreviation Data Set 

Table V. Sources of abbreviation expansions in study 

A.  Collecting Systems and Abbreviated Identifiers 

In the first step we pick a set of 5 systems on the following 
three criteria: 1) written in C++, Java, C#, or C due to our 
reliance on srcML. 2) They must contain abbreviations. Our 
goal was to collect at least 100 unique abbreviations per system, 
so at least 100 needed to be present. 3) We wanted small, 
medium and large systems (in terms of KLOC) to see how the 
size/maturity of a system affects the location of its expansions. 
The size of the systems we selected are in Table III. 

After selecting the systems, three of the authors separately 
scanned the source code manually and collected information on 
identifiers that contain abbreviations. Whenever an identifier 
was collected, it was manually split and abbreviations within the 
identifier were expanded by hand. Each annotator reviewed the 
expansions of the other two authors. Abbreviations with 
disagreement over a split or expansion were discussed between 
the authors. If consensus could not be reached, the abbreviation 
was removed from the study.  

To select abbreviations to include in the study, the 
annotators chose a file from the system at random and then went 
from the top of the file to the bottom, collecting all abbreviations 
they could find before reaching the end of the file. At times, the 
randomly selected file was exceptionally large. To mitigate the 
threat of collecting too many abbreviations from a single file, 
the annotators limited the number of unique abbreviations from 
any one file to 25. In one case, Wycheproof, the system was 
small enough that we collected most, if not all abbreviations. An 
example of the manually derived data set is provided in Table 
IV. Notice that the data set tells us how to properly split each 
identifier and the expansions for any abbreviations it contains.  

B. Sources of possible expansions 

Table V lists the sources of abbreviation expansions 
considered in this study. We consider words in the source code, 
comments, system documentation, as well as language 
dictionaries. The computer science and English dictionaries are 
the same as used in previous literature [7], [29].  

For system level documentation, we used any 
documentation included as part of the system’s main source 
code repository and any of the online documentation hosted by 
the system’s governing body. For example, Telegram’s 
documentation is a set of API docs available through the 
webpage, since there were no documents hosted in their 
repository. In the case where we needed documentation from an 
online source, we used the unix command wget to crawl the 
webpage for documentation. All documentation available on the 
page was collected, however, there is a chance that, if some 
documentation was hosted on a different domain, it was missed. 

C. Preprocessing software artifacts and Finding Expansions 

Every artifact except the computer science and English 
dictionaries require varying amounts of preprocessing so they 
can be used for analysis. The first preprocessing step is to apply 
standard text normalization techniques: 1) remove all 
punctuation and special characters, 2) conservatively split on 
camelCase, under_scores, and numbers, and 3) convert all  
characters to lower case. As discussed earlier, we use srcML and 
a specialized (for srcML) version of libxml2’s SAX parser to 
collect all required information about identifiers, comments, 
functions and classes. 

Identifier Abbrev:expansion Proper Split 

mdat (m:media-dat:data) (m) (dat) 

mAddAnimations (m:member) 
(m) add 
animations 

getCurveSpecRef 
(Spec:specification
-Ref:reference) 

get Curve (Spec) 
(Ref) 

wm 
(wm:windows 
manager) (wm) 

quickAckBlock (ack:acknowledge) quick (Ack) Block 

msTime (ms:milliseconds) (ms) time 

args (args:arguments) (args) 

dinf 
(d:data-
inf:information) (d) (inf) 

updateMinMax 
(min:minimum-
max:maximum) 

update (min) 
(max) 

ic_ab_back 
(ic:icon-ab:action 
bar) (ic) (ab) back 

id (id:identifier) (id) 

Artifact Description 

Statement Expansions that are found within statements 
(i.e., declaration statements, expression 
statements, parameter declarations) 
appearing 1) in a function, 2) in a class, or 3) 
in global scope. 

Functions Expansions that are fully matched within the 
scope of a single function 

Classes Expansions that are fully matched within the 
scope of a single class but were not matched 
within any of the class’ methods (matches 
made in method are counted in the function 
category) 

Comments Expansions that are fully matched within the 
text of a single comment 

System 
Documentation 
(non- adjacent) 

Expansions that are fully matched within the 
system documentation. When matching, the 
words do not have to be adjacent (i.e., 
directly next) to one another. 

System 
Documentation 
(adjacent) 

Expansions that are fully matched within the 
system documentation. When matching, the 
words must be adjacent (i.e., directly next) 
to one another 

Language 
Documentation 
(non-adjacent) 

Expansions that are fully matched within the 
language documentation. When matching, 
the words do not have to be adjacent (i.e., 
directly next) to one another. 

Language 
Documentation 
(adjacent) 

Expansions that are fully matched within the 
system documentation. When matching, the 
words must be adjacent (i.e., directly next) 
to one another 

Computer 
Science 
Dictionary 

A dictionary of words commonly used in 
computer science literature, obtained from 
previous literature [7], [29] 

English 
Dictionary 

A dictionary of English words obtained from 
previous literature [7], [29]. 



One problem with identifiers/comments in the source code, 
and words in system/language documents is that words in a 
multi-word expansion do not necessarily appear consecutively 
adjacent to one another. Take the following example. Let us say 
we have an abbreviation named ‘SpecRef’, which expands to 
Specification Reference. If we want to find the expansion, we 
must find the word Specification and the word Reference. 
Naively, we could search for the string “Specification 
Reference”, but there is no reason to assume that they occur right 
next to one another. They could appear several words apart 
within a document. For example, “This reference variable 
handles all access to the specification data”.  

This problem is accentuated in system/language 
documentation because these texts can be thousands of pages in 
length. If one part of an expansion occurs at the beginning of a 
long collection of text and the second part at the end, it is not 
likely they are related. For this reason, we keep track of the 
position of each word inside of system and language documents. 
As an example, take the following sentence: “Record the 
position from left to right right to left from position the record”. 
We would take this sentence and generate the following python-
like dictionary and lists, where each key’s value is the positions 
it occurred in within the sentence.  

 
{Record:[1, 14], the:[2,13], position:[3,12], from:[4,11], 

left:[5,10], to:[6, 9], right:[7,8]} 

 
This sentence has 14 words, record is used in the 1st and 14th 

positions; position in the 3rd and 12th; from in the 4th and 11th, 
etc. This allows us to search for words based on the distance 
between the positions they appeared in. All words in system and 
language documents are assigned a position list. The computer 
science and the English dictionaries do not suffer from this 
problem, as each individual entry in these dictionaries is 
unrelated to the next or previous entry except for the dictionary 
ordering. That is, it makes little sense to count positions. 
Additionally, this problem can appear in comments and source 
code, though it is less of a threat; a single comment or function 
is not typically the same length as a body of system/language 
documentation. Even so, we use the position list technique for 
comments, but take a different approach for source code, which 
we discuss in Section IV. 

The final step is to take the expansions and abbreviations that 
were manually collected and match them in one or more of our 
eight artifacts. To do this, we use the following workflow: 
1. Take an abbreviation and its expansion(s). 
2.  Scan the entire body of code for the system that corresponds 

with the current abbreviation/expansion(s) and record 
where we match the expansion and where we see the 
abbreviation (e.g., in a method, as part of a type name, etc). 

3. Check the system and language documentation position lists 
and record whether we match the expansion. 

4. Check the computer science and English dictionaries and 
record whether we match the expansion. 

To perform the matching, we used prefix trees, which allow 
us to find words with dissimilar stems (e.g., significant vs. 
significantly) and Levenstein edit distance [33], which allows us 
to constrain how far two words can be from one another in terms 
of edit distance before we consider them not a match. We use  

 

Figure 1. Example prefix tree and edit distance 
this to avoid the situation where two words have similar 
prefixes, but their stems make them different words. 

For example, if we decide to limit matches to an edit distance 
of three, then expand and expanding will be considered matches, 
but expand and expansion will not. We give an example of 
prefix trees and edit distance in Figure 1. In this figure, date, 
data, and debt are contained in a prefix tree. They all share the 
same first letter, so the tree is rooted at D. The Levenstein edit 
distance is the number of edit operations it takes to turn one word 
into the other. To turn date into data, replace the e with an a; 
one operation. Date and debt require three operations. For this 
paper, we used an edit distance limit equal to 30% of the size of 
the expansion we are trying to match. For example, expanding 
is a 9-letter word; 30% of 9 is 3 (rounded up).  
Therefore, if we are looking for a match to expand and we find 
expanding, we consider it a match because it is within 30% (3 
letters) of expanding. We chose 30% because it empirically gave 
us a good tradeoff between positive and negative matches.  
 

Table VI. Number of Abbreviations and Expansions per 
System 

IV. EXPERIMENTAL STUDY 

Using the methodology described in the last section, we 
answer our research questions by examining five systems and 
reporting on where abbreviation expansions occur most 
frequently. First, we provide some statistics on the data we 
collected for each system. As discussed above, we manually 
collected abbreviations for the five systems analyzed in our 
study. Table VI shows each system, the number of unique 
abbreviations and the number of unique expansions. 

Because each system may have different amounts of 
documentation and identifiers to search for abbreviation 
expansions, we are careful in drawing conclusions from raw 
numbers of expansions found in each location. For example, if 
we find very few expansions in comments, we might  

 

System # Unique 
Abbreviations 

# Unique 
Expansions 

Telegram 178 260 

Wycheproof 160 133 

Enscript 169 161 

OpenOffice 149 307 

KDevelop 231 327 

Total 887 1188 



Table VII. Total Number of Expansions Found Per System in Source Code Identifiers. 

 

Type 

(declarations) 

Type 

(params) 

Name 

(declarations) 

Name 

(params) 

Name 

(expr) Function  Class  

Global 

Enscript 55 (34%) 21 (13%) 81 (51%) 25 (16%) 84 (53%) 96 (61%) 56 (35%) 84 (53%) 

KDevelop 148 (45%) 124 (38%) 252 (77%) 167 (51%) 213 (65%) 253 (77%) 168 (51%) 237 (72%) 

Open Office 172 (56%) 147 (48%) 229 (75%) 167 (55%) 221 (72%) 245 (80%) 217 (71%) 199 (65%) 

Telegram 83 (37%) 64 (29%) 139 (62%) 113 (50%) 133 (59%) 168 (75%) 143 (64%) 124 (55%) 

Wycheproof 27 (20%) 12 (9%) 28 (21%) 7 (5%) 15 (11%) 53 (40%) 23 (17%) 0 

Mean 97.00 73.60 145.80 95.80 133.20 163.00 121.40 129.40 

Median 83.00 64.00 139.00 113.00 133.00 168.00 143.00 124.00 

StdDev 61.41 60.38 95.29 76.38 87.28 88.65 80.21 92.86 

Coefficient of 

Variation 0.63 0.82 0.65 0.80 0.66 0.54 0.66 0.72 

Table VIII. Total Number of Expansions Found Per System in Comments, system, language, CS, and English corpora 

 Comments 

System  

(non-adjacent)  

System  

(adjacent) 

Language  

(non-adjacent) 

Language 

(adjacent) CS Dict English  

Enscript 41 (26%) 68 (43%) 62 (39%) 123 (77%) 114 (71%) 52 (33%) 96 (60%) 

KDevelop 148 (45%) 210 (64%) 201 (61%) 207 (63%) 186 (57%) 90 (27%) 164 (50%) 

Open Office 207 (68%) 117 (38%) 116 (38%) 111 (36%) 103 (34%) 52 (17%) 92 (30%) 

Telegram 107 (48%) 122 (54%) 104 (46%) 145 (65%) 123 (55%) 56 (25%) 105 (47%) 

Wycheproof 71 (54%) 48 (36%) 41 (31%) 95 (72%) 73 (55%) 31 (23%) 48 (36%) 

Mean 114.80 113.00 104.80 136.20 119.80 56.20 101.00 

Median 107 117 104 123 114 52 96 

StdDev 65.25 62.76 61.81 43.58 41.53 21.29 41.53 

Coefficient of Variation 0.57 0.56 0.59 0.32 0.35 0.38 0.41 

 
 
think that comments for some system are a bad source of 
expansions. However, we must consider the situation where the 
system has no comments; this would obviously cause the 
number of comment-born expansions to be low. This situation 
only applies to artifacts that vary in size between systems. For 
this reason, we calculated comment and system doc density per 

1 KLOC, presented in Table IX. We will refer to this table when 
such context is required to understand the results. 

A. Across all artifacts, where do abbreviation expansions 

most frequently occur in general? 

To answer this question, we look at frequency counts for the 
number of abbreviations found within each artifact. This data is 
broken down per system in Table VII and Table VIII.  

Figure 2. Where Do Abbreviation Expansions Occur?  

(Total of 3487) 
Figure 3 Where Do Abbreviation Expansions Uniquely 

Occur? (Total of 327) 



Table IX. Comment, System, Language document density 
per 1 KLOC for each system 

These values were obtained by recording every location 
where we found the full expansion. For example, if the acronym 
kv expands to key value, we needed to match both the words key 
and value in the same place (e.g., type declaration) for it to 
count. The percentage in parenthesis next to each value is 
obtained by dividing the given value by the number of unique 
expansions (Table VI) for the corresponding system. For 
example, the 45% for Open Office comments is obtained by 
evaluating 148/307. Additionally, we provide the mean, median, 
standard deviation (StdDev), and coefficient of variation (CV). 

To begin, we will look at Figure 2 and Figure 3 to get a high-
level view of the data. Figure 2 shows the distribution of where 
expansions were found in the source code. All in all, 3860 non-
unique expansions (i.e., one expansion can occur in multiple 
places) are in this set. Figure 3 shows the distribution of unique 
expansions (i.e., expansions that were found in only one artifact) 
of which there were 294. Figure 2 shows that the language 
corpus had the highest number of expansions followed by 
comments, system documentation, and source code statements. 
If we compare this to Figure 3, we see something interesting: 
Statements contained the most unique expansions by a large 
margin. That is, it contained the most expansions that did not 
appear anywhere else. The next three best sources were 
comments, functions (i.e., identifiers that were not in statements 
are included here), and language documentation. 

The tables give a finer-grain view of the data in the figures; 
we will analyze these now. We start with Table VII, which 
contains counts for the number of expansions found in different 
parts of the source code. The first five categories present 
expansions found in the type/name of declarations (e.g., int x; 
where int is the type and x is the name), function parameter 
type/names, and expressions such as x = x+y or functionCall(x, 
y).  

Table X Number of Adjacent Multi-Word Expansions 

 

These categories are strict in that the full expansion needed to be 
found in the corresponding location (i.e., fully within the type, 
fully within a declaration name). In some cases, different parts 
of an expansion appeared in different locations (e.g., one part in 
a type and one part in a name); these are recorded in the last three 
categories: function, class, and global, since even if one part of 
an expansion is in a type, and one part is in a name, the full 
expansion still occurred within 1) the body of a function, 2) the 
body of a class or 3) in global scope. Note that if an expansion 
is found in a method (i.e., a function in a class), it is not recorded 
as being in a class; the function, class, and global categories are 
mutually exclusive.  

 The results in Table VII show the function category 
performed best in terms of CV (0.54), with declaration types 
second (0.63), and declaration names third (0.65).This result is 
not surprising; functions are where most identifiers are found so 
it is natural that they have a high number of expansions 
compared to finer levels of granularity (i.e., the first five 
categories) and even classes/globals.  

However, it is worth noting that upwards of 30% of all 
expansions consistently found in declaration types and 
declaration names in 4 out of the 5 systems studied. This number 
increases to >50% of all expansions in 4 out of 5 systems for 
expression names and globals. The data implies that, when 
examining just source code, larger systems’ (i.e., KDevelop, 
Open Office, and Telegram) expansions occur throughout the 
code frequently; upwards of 30% in all but one case (Telegram 
type params). It is harder to draw conclusions for smaller 
systems. The one trend that seems to appear is that smaller 
systems’ expansions are more focused around specific locations 
in the source code. In particular, they were found in functions 
rather than classes or globals (note that Wycheproof is written 
in Java; there are no globals).  

We now look at non-source-code artifacts. These are in 
Table VIII. The data shows that the language corpus performs 
best in terms of its coefficient of variation in either adjacent or 
non-adjacent (0.32 and 0.35 resp.) relative to other artifacts in 
this table. This indicates that the language corpus tended to 
perform well in all systems big or small and we postulate that 
this is because language documentation in C, C++, Java and 
likely other population languages have had a long period of time 
to mature and so their documentation is of high quality.  

Arguably, the next closest runners-up are the CS and English 
dictionaries with a CV of 0.38 and 0.41 respectively. While 
many expansions are available in these dictionaries, they suffer 
one major drawback: They contain no domain/system 
information, which is important for expansion [31]. These 
dictionaries are necessarily system and domain agnostic 
(perhaps less-so for the CS dictionary), meaning that a tool that 
wants to find expansions in these dictionaries may have a harder 
time choosing between multiple, equally likely expansion 

candidates. That is, the 
information surrounding 
potential expansion 
candidates can help a tool in 
choosing which expansion 
is appropriate and these 
dictionaries may lack some 
of that information. 

 
Comment Density 

(in #comments 

per 1 KLOC) 

System Document 

Density (in #words 

per 1 KLOC) 

Telegram 14 4201 

Wycheproof 134 439 

Enscript 77 245 

OpenOffice 161 1410 

KDevelop 88 7428 

 Type 

(parameters) 

Type 

(declarations) 

Name 

(declarations) 

Name 

(expressions) 

Name 

(parameters) 

Total 

Enscript 1 3 3 3 0 10 

KDevelop 3 6 8 3 2 22 

Open Office 1 5 4 6 3 19 

Telegram 6 9 14 15 12 56 

Wycheproof 2 8 3 2 0 15 



The system and comment categories are the weakest in Table 
VIII. However, there is one important note to make. In both 
tables, when there are outliers, Enscript and Wycheproof tend to 
be those outliers and are a significant drag on the CV for both 
comments and system data. They are also the two smallest 
systems we studied, with Wycheproof at 9 KLOC and Enscript 
at 59 KLOC. If we remove these systems from consideration, 
the StdDev for the system (non-adjacent) and comment corpora 
become: 52.31 and 50.27 respectively. Additionally, their CV 
become: .35 and .33 respectively. This indicates that these can 
be high-quality sources for expansions, but they are highly 
dependent on the quality of documentation and comments 
within the systems themselves.  

Interestingly, there does not seem to be any clear correlation 
between comment/system density (Table IX) and the number of 
expansions found in comments or system documents. For 
example, Telegram has low comment density but more 
percentage-wise comment expansions than Enscript and 
KDevelop (Table VIII), both of which had higher comment 
density. This implies that increased comment or system 
document density does not mean more expansions are matched; 
the number of expansions found may have more to do with 
specific documentation and commenting practices; what these 
practices are requires further research. 

The answer to RQ1 is that the quality of artifacts such as 
comments and system documentation will determine how much 
mileage an expansion technique gets out of these sources of 
information. However, there are a few sources that are 
consistently high-quality: the source code itself and language 
documentation. Not only that, but it is the source code and 
language documentation that contain the most unique 
abbreviation expansions. These are where approaches should 
focus when trying to find and filter appropriate expansions. 

B. RQ2: Do words that make up abbreviation expansions 

typically occur adjacent to one another? 

One important aspect of finding abbreviation expansions is 
the fact that words in an expansion do not always sit adjacent to 
one another. For example, the identifier ptHex in wycheproof 
expands to plaintext hexadecimal. However, the words 
‘plaintext’ and ‘hexadecimal’ do not occur next to one another 
in their expanded forms. The question is whether this happens 
frequently or not. If it is frequent, then approaches that 
automatically expand identifiers will need to consider this when 
trying to find appropriate expansion candidates.  

To answer this research question, we will turn our attention 
to Table VIII and Table X. The only source code artifacts where 
adjacency is an issue are the language documentation, system 
documentation, comments, and source code (e.g., part of an 
expansion found in type and part found in name). Table VIII has 
data about adjacent and non-adjacent words in the system and 
language dictionaries. We do not report comments as adjacent 
and non-adjacent since the numbers were the same for both (i.e., 
if we found a multi-word expansion in a comment, every word 
was adjacent). Looking at language and system documentations, 
most multi-word expansions were adjacent to one another 
overall. The largest difference was found in telegram and 

wycheproof, where the non-adjacent column matched 22 (10%) 
more expansions than the adjacent in telegram and 22 (17%) 
more in wycheproof.  

While assuming adjacency will still allow an approach to 
find most expansions, it is clear that there are some expansions 
that may only be reachable by considering non-adjacent words 
for expansions. There is one difficult issue with considering 
non-adjacent words, however, and that is: How can we tell if two 
words are related to one another if they are not adjacent? This is 
a question that will need to be addressed with non-adjacent 
expansions. Next, we look at Table X, which contains data about 
multi-word expansions that were adjacent to one another in 
source code. This is similar to the data in Table VII but only 
counts multi-word expansions, where Table VII records single-
word expansions as well as multi-word. There was a total of 257 
expansions that were made up of multiple words. We define 
adjacency in source code slightly differently than in free text. 
We consider words in an expansion adjacent in code if they 
occurred in the same location (i.e., in the type, in the name). 

Looking at the table, the results show that a fair number of 
multi-word expansions found in source code occur adjacent to 
one another, but that the majority are non-adjacent. This means 
that approaches to expanding these will need to pay attention to 
surrounding statements and expressions in the source code. 

The answer to RQ2 is that words in documentation-type 
sources are more likely to occur adjacent to one another, while 
words in source code are more likely to be non-adjacent. This 
difference in the way expansions are found will need to be 
incorporated into searching strategies; prioritizing non-
adjacent matches in source code while doing the opposite in 
documentation. 

C. RQ3: Do expansions for abbreviations of varying type 

occur in some artifacts more often than others? 

Different types of abbreviations require different techniques 
for performing the expansion. Prefix abbreviations are the 
simplest to expand whereas combination multi-word is the 
hardest [2]. We created a small program to automatically 
categorize abbreviations as one of the four categories first 
introduced in Table II. It simply looks at the form of the 
abbreviation versus its expansion (i.e., the expansions we 
empirically obtained) to perform the categorization. We 
manually checked the results of the categorization to make sure 
the algorithm worked properly. We present the total number of 
abbreviations in each category in Table XIII. The results of the 
categorization are broken down in Table XI, which contains the 
results for expansions found in the source code, and Table XII, 
which presents the results for expansions found in 
documentation.  

Starting with Table XI, prefix abbreviations are the most 
common everywhere within the source code. Dropped-letter 
abbreviations are second, acronyms are third, and there were 0 
combination multi-words and it is worth noting that we collected 
extremely few of these; only 11 in total across all systems. The 
only other thing worth noting in this table is that there is a 
noticeable spike in the number of acronyms in the function 
category. Because these numbers are low in the statement-level 



Table XI. Frequency at which Different Types of Abbreviations Occur in Different Source Code Locations 

Table XII. Frequency at which Different Types of Abbreviations Occur in Different Software Artifacts 

 

Table XIII Total Number of Abbreviations in Each 

Category 

Combination 
Multi-Word 

Dropped 
letter 

Prefix Acronym 

11 266 701 170 

 
categories before function, this implies that elements such as 
function names and return types are more likely to contain 
acronyms. 

The more interesting patterns are found in Table XII, where 
we are looking at documentation. Prefix abbreviations are the 
most popular, but by a slimmer margin. There are many more 
acronyms, with the most appearing in the language document 
corpus. Additionally, we find our multi-combination words in 
this table; with the most showing up in the system and language 
corpora. In fact, between the system and language corpora, there 
is almost an even distribution of each type of abbreviation 
(though, of course, we found very few multi-combination 
abbreviations).  

There are a few takeaways we can glean from this data. The 
first is that documentation will require more varied methods of 
matching and filtering candidate abbreviation expansions; 
especially language and system documents. The second is that 
the majority of expansions found in source code are single-word, 
since prefix and dropped-letter abbreviations (which are the 
single-word categories). This means that when these approaches 
are using information found in the source code, they might first 
assume that abbreviations that could go either way (i.e., could 
be single word or multi-word) are single-word and, if that 
assumption fails, then investigate multi-word options. 

The answer to RQ3 is that, yes, different types of 
abbreviations are more likely to appear in source code versus 
documentation. This characteristic means that tools may be able 
to prioritize expansions for types of abbreviations that are more 
likely to appear given the artifact being searched, which could 
both simplify the searching method and increase accuracy. 

D. RQ4: How can an approach to expanding abbreviations 

use what we have learned? 

In RQ1, we learned that language documentation and 
functions are the most consistently high-quality places to find 
abbreviation expansions. Language documentation tends to be 
high quality because the languages used by the systems in our 
study are popular, mature, and well-documented. This means 
that it is always a good source regardless of the quality of the 
system itself. Functions outperformed other source code 
locations and artifacts. Despite this being by a slim margin, we 
also learned that source code statements have the highest 
number of unique abbreviation expansions; expansions that are 
found in no other place. This tips the scale in the favor of 
functions, though it does not mean that comments or system 
documentation should not be included. The problem with 
comments and system documentation is that they are more 
dependent on the maturity of the system and on developer 
practices. This is true for code, to some extent—however, 
generally speaking, source code is updated more frequently than 
documentation. This indicates that language documentation and 
functions are the most reliable sources. 

Using RQ2, we were able to determine that multi-word 
expansions in source code are less likely to occur adjacent (i.e., 
in the same source code element) as one another compared to 
documentation, where they were highly likely to be adjacent. 
Further, using RQ3, we know that these multi-word expansions 
are less likely to happen in code than in documentation. We can 
theorize that, when trying to find expansions in source code, it 
is better to assume that abbreviations are single-word 
abbreviations (i.e., dropped or prefix). However, if that fails, 
then when we try to find a multi-word expansion for the 
abbreviation, we should keep in mind that the expansion words 
are more likely to sit non-adjacent to one another. On the other 
hand, RQ2 and RQ3 indicate that expansions in documentation 
are more likely to be adjacent to one another and that there is a 
more even distribution between types of abbreviations. 

The answer to RQ4 is that techniques that expand 
abbreviations can take advantage of the differing characteristics 

 

Type 

(declarations) 

Type 

(params) 

Name 

(declarations) 

Name 

(params) 

Name 

(expr) Function  Class  

Global 

Prefix 347 (50%) 275 (39%) 540 (77%) 354 (50%) 493 (70%) 562 (80%) 440 (63%) 472 (67%) 

Dropped 109 (41%) 84 (32%) 160 (60%) 111 (42%) 150 (56%) 181 (68%) 131 (49%) 140 (53%) 

Acronym 27 (16%) 8 (5%) 25 (15%) 12 (7%) 19 (11%) 72 (42%) 36 (21%) 35 (21%) 

Combo Multi-word 0 0 0 0 0 0 0 0 

 Comments 

System  

(non-adjacent)  

Language  

(non-adjacent) CS Dict English  

Prefix 406 (58%) 339 (48%) 395 (56%) 187 (27%) 391 (56%) 

Dropped 134 (50%) 124 (47%)  149 (56%)  63 (24%) 113 (42%) 

Acronym 33 (19%) 94 (55%) 130 (76%) 30 (18%) 0 

Combo Multi-word 1 (9%) 8 (73%) 7 (64%) 1 (9%) 0 



of source code and documentation to help find expansions that 
are more likely to be correct and filter out less likely candidates.  

E. Threats to Validity 

The primary threats to our experimental setup are in the way 
we collected data. We selected files to collect abbreviations from 
at random and went from top to bottom, collecting every 
abbreviation we saw, while occasionally skipping those we had 
seen before. It is possible that there were abbreviations we 
missed due to not recognizing them or simply not seeing them. 
Another threat is in the form of the systems we selected. We 
tried to select systems that were not all in the same domain, 
varied in size, and were written in differing languages. However, 
all languages we used were still imperative and most support 
some form of object-oriented programming. For this reason, our 
results may not extend to systems written in, for example, 
functional languages. Our sample size is 5 systems. While these 
systems vary in size, domain, and language, the sample may not 
generalize. However, we think the number of systems is justified 
due to the manual component of the study; collecting a set of 
abbreviations is very time consuming. 

V. RELATED WORK 

The goal of this paper is an empirical analysis on the nature 
of abbreviation expansion for the improvement of existing 
expansion techniques. To the authors’ knowledge, no other 
existing literature has performed a similar analysis. As such, we 
report here on related work on program comprehension and 
abbreviation expansion techniques. 

Normalizing words in identifiers is a major interest in 
literature. Previous work shows how normalizing words 
positively impacts program comprehension [26]–[28]. Yang and 
Tan [34] have used a technique for finding general semantically 
related word pairs (rPairs), including abbreviations, from a 
software context analysis view.  They leverage the context of 
software comprising words in comments and identifiers to get 
more precise insights about those artifacts.  

Guerrouj et al. [25] proposed an approach named TIDIER 
(Term IDentifier RecognIzER) for recognizing words 
composing source code identifiers. Part of this tool is used for 
splitting/expanding identifiers, which TIDIER successfully 
accomplishes in about 48% of cases studied. The same authors 
also investigated the effect of contextual information on 
identifier expansion, in terms of mapping soft words to their 
corresponding domain concepts. Their results show that 
contextual information significantly impacts identifier 
expansion [31]. Lawrie et al. [30] propose an algorithm for 
normalizing source code vocabulary. It uses a splitter, called 
GenTest, and is tested on a corpus of 8000 words. They 
additionally perform expansion using wildcard string matching 
and phrase finder. 

Lawrie et al. [9] also proposed an expansion algorithm that 
uses four lists of potential expansions: a list of natural-language 
words extracted from the code, a list of phrases extracted from 
the code, a list of programming language specific words referred 
to as a stoplist, and a natural-language dictionary. The quality of 
the expansion algorithm is evaluated through comparing the tool 
generated expansion of 64 identifiers with ‘by-hand’ expansion 
of the same identifiers. Results shows the importance of context 

in the expansion process, and co-occurrence models plays a role 
in choosing the correct expansions. 

Hill et al. [29] propose AMAP, a tool for expanding 
abbreviations. They categorize types of abbreviations found in 
software and describe the challenges in automatically expanding 
them. Their approach used the idea of most frequent expansion 
along with levels of software dictionaries to identify expansions. 
They evaluated their approach on 250 abbreviations, and the 
results showed an improvement of 57% in accuracy compared 
to an approach by Lawrie [9].  

Fry [8] developed an algorithm for choosing an abbreviation 
expansion if more than one expansion possibility is identified. 
This work is a refinement of work presented in [29]. The results 
show that they improved expansion accuracy by 23.4% over the 
state-of-the-art at the time. 

Corazza et al. [7] proposed an approach called LINSEN 
(Linear IdeNtifier Splitting and Expansion) that is used for 
identifier expansion and splitting. They evaluate their expansion 
approach against AMAP [29] on 250 randomly selected 
abbreviations. Results shows that their approach performs better 
than AMAP on some types of abbreviations, with a reported 
improvement of about 5% in terms of terms of accuracy.  

Lawrie and Binkley [10] extend work in [30] by improving 
the abbreviation expansion. Here, they use a strategy that 
determines the most likely expansion by considering word co-
occurrence. They report an accuracy of up to 66% 

Guerrouj et al. [35] propose TRIS, a Tree-based 
representation approach which pre-compiles a set of dictionary 
words into a tree representation and associates a cost to each 
transformation. It treats the splitting/expansion problem as an 
optimization problem; optimizing splitting/expansion by 
treating it as a shortest path problem. Results show that TRIS is 
more accurate compared to other approaches [10] while 
remaining efficient in terms of computation time. 

VI. CONCLUSIONS & FUTURE WORK 

In this paper, we presented an empirical study of 
abbreviations in source code. We manually collected and 
expanded 887 unique abbreviations from five different open 
source systems. We then used these manually expanded 
abbreviations to empirically characterize the distribution 
different types of abbreviations and their expansions in source 
code and software artifacts. The goal of this study is to highlight 
these characteristics such that future approaches to expanding 
abbreviations can use them to become more accurate. 

In the future, we plan to use this data to improve on the state 
of the art for abbreviation expansion. Our goal is to use what we 
have learned to focus in on collecting expansions from 
complementary sources of information, with appropriate 
techniques for the types of abbreviations we expect to find. We 
will also continue our investigation by analyzing other types of 
non-dictionary words, such as aliases and distinguishers. While 
we did not explore these thoroughly in this paper, it is our 
opinion that identification and, when appropriate, expansion of 
aliases and distinguishers is of high importance. While this 
empirical study is not necessarily exhaustive, it highlights clear 
are trends that the authors believe are worth studying further 
through application. 
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