
Automating the Detection of Third-Party Java Library Migration
At The Function Level

ABSTRACT
The process of migrating between different third-party libraries is
very complex. Typically, developers need to find functions in the
new library that are most adequate in replacing the functions of
the retired library. This process is subjective and time-consuming
as developers need to fully understand the documentation of both
libraries’ Application Programming Interfaces, and find the right
match between their functions if it exists. In this context, several
studies rely on mining existing library migrations to provide de-
velopers with by-example approaches for similar scenarios. In this
paper, we propose a mining approach that extracts all the manually-
performed function replacements for a given library migration.
Our approach combines the mined function-change patterns with
function-related lexical similarity to accurately detect mappings
between replacing/replaced functions. Using our enhanced mining
process, we perform a comparative study between state-of-art ap-
proaches for detecting migration traces at the function level. Our
findings have shown its efficiency in accurately detecting migra-
tion fragments and it has enhanced the accuracy of state-of-art
approaches in finding correct functions changes. We finally provide
the community with a dataset of migrations between popular Java
libraries, and their corresponding code changes at the function
level.
ACM Reference Format:
Hussein Alrubaye, and Mohamed Wiem Mkaouer. 1997. Automating the
Detection of Third-Party Java Library Migration At The Function Level. In
Proceedings of the 28th Annual International Conference on Computer Science
and Software Engineering (CASCON’18). ACM, New York, NY, USA, Article 4,
12 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Software systems heavily rely on the functionality of the third-
party library as a mean to save time, reduce implementation cost,
and increase quality when offering robust services. On the other
hand, using third-party code has its own challenges, mainly related
to its maintenance and evolution since using outdated libraries
augments the bug proneness of the code; furthermore, with the
explosion of mobile applications, using inappropriate libraries in-
creases the attack surface and security vulnerabilities [2]. Thus,
as software systems evolve, the need for better services and more

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’18, October 2018, Markham, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

secure and reliable functionalities causes developers to often re-
place one library with another library. This process of replacing
one library with a completely different library, while preserving
the same functionality, is known as library migration [15].

During the migration process, developers are required to find the
right replacing function(s) for each removed function belonging to
the retired library. Developers are also required to verify whether
the newly introduced functions are delivering the same expected
functionalities of the retired library. These tasks tend to be sub-
jective, time-consuming, and error-prone, as developers need to
fully understand how both libraries function and be aware of their
structures. This may include exploring their documentation and
searching online for practical examples of their usages. Moreover,
the matching process between the replacing and replaced functions,
belonging respectively to the retiring and retired libraries, is not
straightforward. Even if libraries offer similar functionalities, they
eventually differ in their design and documentation [1].

Library migration differs from library upgrade, since the latter is
conceived as a migration between two different releases of the same
library. Both library upgrade and migration have been attracting
several research studies that focus on the evolution of third-party
libraries in software systems. They mainly analyze the challenges
that software engineers face as libraries evolve, in general, to re-
duce the cost of their maintainability by preserving their backward
compatibility and preventing them from introducing malfunctions
and breaking changes. Even if library migration is considered part
of library evolution, it differs from the upgrade since developers
have made the decision of retiring a library and replacing it with a
syntactically and structurally different one, and they are ready to
apply the necessary code changes to support the migration.

The purpose of our research is to help the developer better com-
prehend how the migration process is to be fulfilled, by providing
the software engineering community with real-world migration
examples, extracted from a wide set open source projects. However,
the detection of an existing migration is challenging. There is no
systematic way to detect the developers’ intention of applying a
migration without them explicitly performing it at the source code
level. Thus, the detection of library migration requires extensive
analysis of the history of code changes while searching for spe-
cific patterns. Furthermore, in contrast with library upgrade, the
migration process may be applied on one or multiple series of code
changes, as developers are removing and adding functions that
may be distributed throughout several source files of the project.
Since these migration-related changes can be easily interleaved
with other code changes, distinguishing them becomes challenging.

Existing studies [5, 11, 12] have been focusing on searching
for the most adequate replacing library for a given one to retire.

Hussein Alrubaye
Rochester Institute of Technology

Rochester, New York
{hat662,mwmvse}@rit.edu

Mohamed Wiem Mkaouer
Rochester Institute of Technology

Rochester, New York
{hat662,mwmvse}@rit.edu

60

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

CASCON’18, October 2018, Markham, Canada H. Alrubaye, and M. Wiem Mkaouer

Approaches recommend libraries to migrate to based on several fea-
tures linked to semantic similarity, API documentation similarity,
identical functionalities, common hosting projects etc. However,
this recommendation is limited to the library level without recom-
mending the necessary changes at the function level. Thus, the
need of automating the migration has attracted researchers to mine
existing migrations in order to understand how they are performed
and to extract the features that can be utilized to automate the
recommendation of libraries at the function level [4, 5, 13, 15]. The
main features used to approximate the migration traces at the func-
tion level rely on (1) identifying frequent change patterns between
replacing/replaced functions, (2) calculating the similarity between
functions based on their signatures, internal or external documenta-
tion, and (3) detecting the function’s similar usage context(s). How-
ever, these features heavily rely on correctly identifying migration
fragments in the source code, which is challenging to mine. Based
on our study, developers do not necessarily explicitly mention their
intention to migrate libraries, and when they do, they generally
announce the migration between libraries without documenting
all the code changes made at the function level. Moreover, there is
no existing datasets of migrations between libraries to support the
learning and automation of the migration.

To cope with the above-mentioned challenges, this paper identi-
fies the migration traces between a pair of given libraries. It takes as
input a pair of libraries and extracts the developer’s decisions with
respect to changes at the function level. Each removed function
belonging to the replaced library is mapped, if detected, to one or
multiple added functions, belonging to the replacing library. To do
so, we propose to extend the study of Teyton et al. [16] as follows:

• We enhance the existing mining approach to increase the
accuracy of detecting migration fragments in the period of
migration.

• We compare the function mapping generator algorithm pro-
posed in the previous study with two other state-of-art ap-
proaches that we adapted for this problem.

• We extend the number of studied migration pairs from 4
to 12 and we extend the number of analyzed projects when
searching for migrations from 12,000 to 57,447 projects.

• We perform a comparative study between state-of-art ap-
proaches that identify the migrations at the function-level.

• We provide the generated migration results as a dataset for
the research community to better comprehend how develop-
ers achieve this practice.

The results have shown that our proposed mining algorithm
reveals a higher number of migration traces on the source code
level. This allows us to increase the performance of state of the art
algorithms in terms of accurately detecting migration traces. We
also found that there is no approach that outperforms all the other
approaches in all scenarios.

The paper is structured as follows: Section 2 presents the ter-
minology that is used throughout the paper. Section 8 enumerates
the studies relevant to our problem. Section 3 explains the chal-
lenges related to extracting existing library migrations. The mining
approach is detailed in Section 4, it also issues an example to illus-
trate how each of the approaches under comparison generates the
mappings at the function level. Section 5 shows our experimental

methodology in collecting the necessary data for the experiments
that are discussed in Section 6, followed by the conclusion and
future directions in Section 9.

2 BACKGROUND
This section presents definitions of keywords that are used through-
out this paper.

Library. A library encapsulates a set of resources, in the form
of objects and functions, publicly accessible through the library’s
Application Programming Interface (API). Just like any traditional
software, a library has multiple releases. Note that in this study,
we identify libraries by the composition of their GroupID, Arti-
facID and version, but since we are interested in the in-between
library evolution, we label libraries by their artifactID for the sake
of simplicity.

Library Migration. A migration process occurs when a target
library is replacing a source library. The source library is consid-
ered retired if all of functions dependencies are removed from the
software. This definition does not require the source library to be
physically removed from the project, it just enforces that none of
its functions are actually used to be considered a migration.

Migration Rule. the pair of a source (retired) library and a
target (replacing) library. (jmock to mockito) is an example of a
migration rule. Table 4 has the list of all migration rules considered
in this study.

Function Mapping. A migration rule is a set of function map-
pings between the source and the target library. The mapping be-
tween functions is the process of replacing a least one function from
the source library by one or multiple functions belonging to the
target library. Fig 5 contains some examples of function mappings
that are generated using different approaches.

Fragment. A code block witnessing at least one function map-
ping. It is generated by contrasting the code before and after the
migration to only keep the code block containing the removed
(resp.added) functions linked to the source (resp. target) library.
Fig 5 contains three fragments, each fragment contains a set of
added/removed functions.

Segment. It constitutes the migration period. It is a sequence
of one or multiple code changes (e.g., commits), containing one or
multiple fragments. A segment can be constituted by at least one
commit, if the migration occurs instantly, or it can be propagated
through several commits, if the migration was gradually performed
over time. For example, in Figure 1, commit number 5 has contained
all function mappings between the removed json and the added
gson, so it is considered the segment of that migration.

The next section applies this terminology when defining the
problem of mining migration between libraries.

3 PROBLEM STATEMENT
The problem of inferring function mappings between two given
libraries raises many challenges related to the following scenarios:

Types of migration. During our analysis of the mined migra-
tions, we noticed mainly two migration patterns: We label the first
pattern instant migration. It occurs when developers add the target
library, perform all function replacements within the same code
revision unit, e.g., commit. Taking the examplf of ps2-parser project

61

Automating the Detection of Third-Party Java Library Migration At The Function Level CASCON’18, October 2018, Markham, Canada

Figure 1: Example of segments in instant and delayed migrations.

1, the junit library was removed, and the testng library was added in
the same commit. The second pattern is denoted delayed migration.
In this case, developers add the target library, periodically perform
function replacements through multiple revision units, until the
project is no longer dependent on the source library. Obviously,
the first pattern is straightforward for extracting migration frag-
ments to be mined. But interestingly, the second pattern tends to
be popular since developers may opt to gradually perform these
changes while observing the system’s behavior. In the redmine-
java-api project 2, json has replaced gson, but the latter was not
removed from the project.

To handle this challenge we extended the mining algorithm
proposed by Teyton et al. [15, 16] by analyzing each project at the
revision unit level instead of the version-level, i.e., we compare all
pairs of project commits when searching for potential fragments
instead of comparing between two version commits, in which, the
latter one has all in-between commits merged.

Multiple function replacements. Ideally, every source library
function is replaced with at most one target library function, and
their function signature is identical. In reality, due to the difference
in libraries design and vocabulary, we observed several situations
where one function is being replaced with more than one func-
tion. In this example3, on line 122, the method put(key, value) has
been replaced with two methods, namely addProperty(key, new
Gson().toJson(value).

To address this challenge we implemented 3 mapping generation
algorithms [11, 14, 16] that are evaluated in terms of their accuracy
later in the experiments. To ensure the comparison fairness, we

1https://goo.gl/Svy2o2
2https://goo.gl/KADNoK
3https://goo.gl/febhX3

Figure 2: Severalmigrations between testng and Junit. occur-
ing between various releases

provide the same fragments for each migration rule as input to each
algorithm.

4 APPROACH
In this section, we decompose our research methodology into three
main phases: (1) Detection, (2) Mapping, and (3) Validation.

4.1 Detection.
In this phase, we input a list of open source Java projects. We clone
and check out all commits for all projects. For every commit, we
collect its properties, such as commit ID, commit date, developer
name, and commit text. We also keep track of all changes in the
project library configuration file, known as Project Object Model

62

https://goo.gl/Svy2o2
https://goo.gl/KADNoK
https://goo.gl/febhX3

CASCON’18, October 2018, Markham, Canada

(pom.xml). All mined project data is saved in a database for faster
querying when identifying of segments and fragments.

Segment Detection. The purpose of our next search is to locate
for each migration rule, its migration segments in all projects. As
defined in the background section, a segment is composed of one
or many commits involved in the migration process by containing
fragments. As shown in Figure 3, the Segment Detector starts by
checking whether both libraries exist in the list of added/removed
project libraries. It locates the end of the segment by scanning all
commits while looking for any commit in which all project source
files are no longer dependent on the library to retire. It performs
this deep scan because our migration definition does not require
physically removing the library from the project to be considered
retired. Once the segment end is located, we keep scanning pre-
vious commits in a backward fashion, looking for the beginning
commit which contains the first fragment i.e., first replacement of
any retired library function. After locating all segments for a given
migration rule, it is critical to keep track of the source and target
library versions for each segment to avoid the false positive detec-
tion of an API change between two versions of the same library as a
migration. Figure 2 reveals all recorded migrations between several
versions of testng and Junit. Note that this migration is symmetric,
i.e., there is a migration going from testng to Junit and vice versa.
However, for a given migration rule, only segments from the source
to the target are considered.

Figure 3: Overview of the Automated functionmapping gen-
eration.

Fragment Detection. The Fragment Detector in Figure 3 is re-
sponsible for the fragment extraction. It clones the project source
files that are changed in the commits belonging to the segment.
It applies the Unified Diff Utility command between the files that
changed to generate fragments. A fragment is a continuous set of
lines that have been changed along with contextual unchanged

lines. Only fragments containing removed (resp. added) functions
from the source (resp. target) library are considered valid.

The fine-grained comparison between commit pairs is computa-
tionally expensive and becomes challenging for projects containing
a large set of commits. Fortunately, these comparisons are indepen-
dent and so they can be parallelized.

Table 1: Illustrative example of Two libraries, and their func-
tions.

Library Functions
JSONParser()
String toJSONString()

json long getLong(String)
String get(int)
void add(String)
JsonParser()
String toString()

gson long getAsLong()
JsonElement get(String)
void add(String, JsonElement)

Table 2: List of Fragments detected for (jmock →mockito).

Fragment Added/Removed Function
1 - String toJSONString()

- String get(int)
- void add(String)
+ String toString()
+ JsonElement get(String)
+ void add(String, JsonElement)

2 - String toJSONString()
+ String toString()

3 - String get(int)
+ long getAsLong()

As an illustrative example, in Figure 4, we run diff between
two versions of class Eval.java4 to generate Diff Eval.java. Since
the fragment is composed of interleaved changed and unchanged
code, we discard any lines of unchanged code unrelated to the
migration. We extract the function signature for every method
call in the fragment, using the Abstract Syntax Tree (AST) of the
library classes and methods signatures, as shown in Figure 4 (D).
We only keep fragments containing at least one function call from
each source and (target library. Once fragments are sanitized from
unrelated changes, they are transferred to the next phase of function
mapping generation. Since we are using a larger set of projects, in
comparison with the previous study [16], We retained a total of
8,938 fragments from the migration segments while the previous
study retained 285 fragments.

4https://goo.gl/mqsshW

63

H. Alrubaye, and M. Wiem Mkaouer

https://goo.gl/mqsshW

Automating the Detection of Third-Party Java Library Migration At The Function Level CASCON’18, October 2018, Markham, Canada

Figure 4: Fragment detection in Eval.java from json →gson.

Figure 5: Function mapping generation for the json →gson migration rule, the functions are provided in Table 1, and the
migration fragments are provided in Table 2.

4.2 Mapping.
The purpose of this phase is to producemappings between functions
for given input fragments. A high-level overview of the process is
described in Figure 3.

As shown in Figure 5, we feed the same set of fragments for the
three algorithms. For the sake of simplicity, we label the approach
of Teyton et al. [16] Fragment Context (FC). Similarly, we label the

64

CASCON’18, October 2018, Markham, Canada

approach of Schäfer et al. [14] and Nguyen et al. [11] respectively
Function Context (MC) and Function Signature (FS).

Fragment Context (FC). To extract all the possible combina-
tions between the set of added and removed functions the Cartesian
Product (CP) is performed between the set of functions in the frag-
ments. Figure 5.1 (A) demonstrates the CP process in the form
of a graph. Every node in the graph represents a function while
the edge represents its corresponding mapping to another func-
tion. For instance, the edge between toJSONString() to toString()
has a weight of two because this mapping exists in the first two
fragments. Since the CP generates every possible combination of
mappings, its results contain a large number of false positives.
Thus, a filtering process [10] is performed: as shown in Figure 5.1
(B), the weights are normalized by the highest outgoing weight
per node, then the only mappings kept are those with a normal-
ized weight that is higher than a user defined filtering threshold
value tr el ∈ [0, 1]. The value of tr el controls the selection strict-
ness. For example, when the filter tr el = 1, the toJSONString()
to toString(), get(String) to getAsLong(), and add(String) to (getAs-
Long(String),toString(),add(String,jsonElement)) mappings are se-
lected.

Function Signature (FS). This approach calculates the function
signature similarity for each combination of functions as follows
[11]:
FS(f ct1, f ct2) = 0.25sm(f ct1_{returnType}, f ct2_{returnType})

+ 0.5 lcs(f ct1_{name}, f ct2_{name})
+ 0.25 lcs(f ct1_{param}, f ct2_{param})

(1)

where sm() calculates the token-level similarity [8] between the
two return types and lcs() computes the longest common subse-
quence between the two given input function names [6]. Figure 5.2
plots the graph of functions pairs with their associated similarity
values. Finally, for each source function, only target function(s)
with the highest similarity score is kept. As shown in Figure 5.2,
three mappings were generated.

Method Context (MC). Given a set of fragments as input, this
approach considers only one-to-one function mapping with the
highest edge weight. Figure 5.3 is the generated graph. Note that
the edge between toJSONString() to toString() and get(String) to
getAsLong() has the weight of 1 as each of these functions exists on
a separate fragment. This approach generates 2 function mappings
from toJSONString() to toString() and from get(String) to getAs-
Long().

We observe from the previous illustrative example that the 3
approaches give different results. This motivates us to perform a
comparative study which is detailed in the following section.

4.3 Validation.
To validate the function mappings generated by three approaches,
we conducted the manual validation process similar to the valida-
tion process in the previous study [16]. We performed the manual
validation of unique mappings that are generated by the three ap-
proaches by building a web portal 5 that shows every function

5http://migrationlab.net/index.php?cf=cascon2018

mapping with a list of the projects’ commits that contain each map-
ping when found. The authors then decide the correctness of the
rule by verifying the function mapping in the list of commits. For
example, line 55 in this commit 6 has a valid mapping between
toJSONString() and toString(). The number of mappings generated
by the three approaches is shown in Table 4. Also, the mined mi-
grations, along with their manual validation are available in the
above-mentioned web portal for replication and extension purposes.
The manually verified mappings constitute the ground-truth that
we use in our experiments when conducting the comparative study
between state-of-art mapping generation approaches.

5 EXPERIMENTAL DESIGN
We design our experiments to mainly compare the three function
mapping approaches, namely FC, MC, and FS. Then, we investigate
the impact of tr el on the performance of FC. Lastly, we evaluate
our commit-based extraction approach in terms of its accuracy in
revealing existing migrations. We design our methodology through
the definition of the following research questions.

Research Methodology. Our study aims at addressing the fol-
lowing research questions outlined below:

• RQ1 (Comparison). How do the 3 algorithms perform in
the generation of correct function mappings?

• RQ2 (Tuning). How does the value of the filter tr el impact
the performance of the Fragment Context approach?

• RQ3 (Efficiency). To what extent can commit-based extrac-
tion identify relevant fragments for a given migration rule?

To answer the RQ1, we conduct a comparative study of the
approaches. Since 2 of the 3 approaches rely on the frequency of
detected mappings in deciding on their validity, it is important for
our experiment to provide them with a large sample of fragments.
For this purpose, we mined 57,447 Java projects. Furthermore, we
varied the rules from 4 to 12 to challenge the algorithms with
a diverse set of libraries. These migration rules were manually
validated and provided by Teyton et al. [17]. As for RQ2, wemeasure
the performance of FC while varying the values of tr el . Answering
the RQ3 is two-fold, we first verify the correctness of our mining
algorithm that we label the commit-based approach by its ability to
detect a set of manually verified fragments. Second, we compare
it with the original mining algorithm of the previous study which
we label the version-based approach. In addressing the RQs, the
following metrics are used:

Precision. It denotes the ratio of correct extracted function
mappings of all generated mappings.

Precision(x) =
Vx

Vx + Ix

where Vx the total number of valid mappings that are found by an
algorithm and Ix is the total invalid mapping that is found by an
algorithm.

Recall. It denotes the ratio of correct extracted function map-
pings of all expected mappings.

Recall (x) =
Vx

Ox

6https://goo.gl/kWnLk8

65

H. Alrubaye, and M. Wiem Mkaouer

https://goo.gl/kWnLk8

Automating the Detection of Third-Party Java Library Migration At The Function Level CASCON’18, October 2018, Markham, Canada

Figure 6: Precision and recall using union and correct mappings.

where O denotes the group of expected mappings, if (O = C) then
the group of expected mappings is composed of all, manually veri-
fied, (C)orrect mappings. If (O = U) then the set of expected map-
pings is a subset of C , containing only the (U)nion of the correct
mappings found by the algorithms under comparison.

6 RESULTS
Results for RQ1.We applied the FC,MC, and FS approaches on our
extended set of 8,938 fragments. We then calculated the precision
and recall based on the ability of each approach to replicate the
manually validated mappings. Since the FC approach relies on
user-defined filtering threshold tr el , it is important to tune it with
respect to each input i.e., migration rule. Thus, for the fairness of
the comparison, we measure the performance of FC in terms of
precision and recall while varying tr el between 0 and 1, for each
migration rule. Then, we select the filtering value of tr el for which
FC has the highest accuracy, per migration rule. The complete list
of accuracies for all migration rules is available online7.

Table 3: Average Precision and recall of FC and MC using
union mappings.

Union (U)
FC MC

Precision Recall Precision Recall
Our study 52% 94% 40% 76%
Teyton et al. [16] 50% 85% 27% 68%

Figure 6 replicates the previous study’s comparison of FC with
MC when generating migrations for the 4 rules used in the previous
experiment [16]. They are initially evaluated using the union of
correct mappings already found by FC and MC. We extend Figure 6
to include their performance in generating the manually validated
mappings that we denoted correct. We also compare our findings in
7http://migrationlab.net/index.php?cf=cascon2018

terms of the average precision and recall with the previous study
in Table 3. We observe that we were able to reproduce relatively
similar but relatively higher precision for FC which was around
50% in the previous study while it is 52% in our study. Also, FC
scored a recall of 94%, 9% higher than the previous study. This is
an indicator of the closeness of our algorithms in reproducing the
previous study results. We notice a general increase of precision
and recall values for all the approaches, as shown in Table 3, as a
consequence of diversifying the set of fragments, and so allowing
both algorithms to accurately detect repetitive mappings. Similarly
to the previous study, we also notice, in both scenarios, that FC
outperformed MC in terms of precision and recall, but its recall
has drastically decreased when computed using correct mappings.
This is due to the nature of union that may miss several correct
mappings, not being detected by either of the approaches. In this
case, we manually checked that FC correctly identified 192 out of
314 correct function mappings.

As we align our findings with the previous paper’s since FC
has outperformed MC, we extend the comparison to include FS in
the comparison. Table 5 reports the precision and recall of the 3
algorithms. Interestingly, FS generated a comparable set of correct
mappings across all migrations with a significantly fewer set of
wrong mappings, when compared with the wrong set of FC.

Table 5 shows that FC, MC and FS performed differently depend-
ing on the migration rules. First, we notice that the number of
functions per-fragment (or fragment density) has a high effect on
FC and MC. When a migration rule is dominated by one-to-one
mappings, it significantly increases the precision and recall of FC
since the Cartesian product will generate only one mapping, which
is correct. Similarly, for MC, the existence of one added and one
removed function per fragment represents its best case scenario
which explains its high precision and recall as well.

For example, for the migration rule google -collections→guava ,
the recall for both approaches is 78%. Table 4 reveals that all the

66

CASCON’18, October 2018, Markham, Canada

Table 4: Minedmigration rules, their number of unique segments, fragments, functionmappings, and functions per-fragment
across all projects.

of (Segments/Fragments/Mappings) # of Functions Per Fragment
Rule (Source →Target) Segment Fragment Mapping 0-2 3 4-6 7-10 >10
commons-logging→slf4j 102 4037 54 3975 19 23 11 9
easymock→mockito 65 2643 52 1300 725 514 88 16
testng→junit 31 963 71 947 6 9 1 0
slf4j→log4j 11 101 14 98 3 0 0 0
json→gson 12 75 30 64 5 5 0 1
json-simple→gson 4 49 10 42 3 4 0 0
google-collections→guava 8 39 19 39 0 0 0 0
jsf→javax.faces 4 35 5 34 0 0 0 0
gson→jackson 17 32 24 28 1 1 1 1
commons-lang→slf4j 12 28 8 21 4 1 0 2
sesame→rdf4j 1 18 4 16 1 1 0 0
jets3t→aws-sdk 2 7 12 5 1 0 0 1

Table 5: Precision and recall of the function mappings. The recall is computed using correct mappings.

Fragment Context Method Context Function Signature
Rule (Source →Target) Prec. Rec. Ac. Prec. Rec. Ac. Prec. Rec. Ac.
commons-logging→slf4j 46% 35% 25% 20% 29% 13% 89% 31% 30%
easymock→mockito 56% 57% 44% 20% 46% 19% 76% 20% 33%
testng→junit 52% 56% 37% 34% 49% 25% 90% 76% 63%
slf4j→log4j 64% 78% 55% 68% 73% 57% 72% 57% 47%
json→gson 30% 76% 27% 31% 36% 20% 68% 43% 36%
json-simple→gson 40% 70% 33% 26% 40% 19% 62% 50% 38%
google-collections→guava 60% 78% 51% 83% 78% 68% 82% 73% 63%
jsf→javax.faces 21% 100% 21% 66% 80% 57% 71% 100% 71%
gson→jackson 28% 50% 22% 42% 37% 25% 81% 54% 48%
commons-lang→slf4j 48% 100% 46% 31% 50% 27% 27% 62% 23%
sesame→rdf4j 57% 100% 57% 57% 100% 57% 100% 88% 80%
jets3t→aws-sdk 20% 75% 19% 28% 16% 11% 80% 83% 83%
Total 47% 73% 31% 45% 52% 31% 74% 61% 55%

39 fragments of this rule are dominated by one-to-one and one-to-
two mappings. On the other hand, considering the rule commons-
logging→slf4j, which has a larger number of n-to-m mappings, per
fragment, we realize that FC (resp. MC) precision and recall are
lower than 64%, even with only 6% of fragments, having more than
1-to-2 mappings per-fragment. Yet, this has no observed effect on
FS.

FS has uniform precision and recall percentages across all the
migration rules that we analyzed. Interestingly, FS’s accuracy of 55%
was the highest between all approaches, on average. It is important
to note that FS’s performance didn’t decrease when the density of
fragments increases. This means that the function signature simi-
larity is a good measurement to distinguish pairs of mappings on a
tangled migration. Theoretically, this approach suffers in case of
discrepancy of vocabulary used to describe API functions, which
is practically rare, at least for the set of popular libraries that we
are investigating. On the other hand, FS scored a precision of 100%
for detecting mappings of the rule sesame→rdf4j. A closer look at

this rule shows that sesame is the predecessor of rdf4j, as shown
in Table 4, there are only 4 mappings identified, and these map-
pings link functions with identical signatures from both libraries,
which explains the optimal performance of FS. In general, FS’s good
precision infers the high similarity in the naming and vocabulary
of libraries providing similar functionalities, which explains the
heavy reliance on lexical similarity as a fitness for the problem of
recommending similar libraries [12, 13].

In contrast with the previous study, we conclude that FC does
not outperforms the other approaches across all libraries. Although,
FC has the highest recall value of 73%, FS has the best precision
value of 74%. Thus, the decision of championing an approach over
another is subjective. Considering the usage scenario where a de-
veloper is relying on the mapped functions to conduct a migration,
providing the results of FC, with low precision, leads to potential
introduction of many wrong mappings, which hinders its practical-
ity as developers are less likely to trust it. In this situation, higher
precision is critical, even at the cost of a lower recall. On the other

67

H. Alrubaye, and M. Wiem Mkaouer

Automating the Detection of Third-Party Java Library Migration At The Function Level CASCON’18, October 2018, Markham, Canada

Figure 7: Density of precision and recall of FC for all tr el
values.

hand, considering a scenario where there is a large set of diverse
functions to be replaced, FC is more likely to provide candidate
replacing function(s), for each retired function, as its high recall
allows a better coverage of all previously replaced functions.

To summarize, the high precision of FS and the high recall of
FC naturally drives our future research into designing a hybrid
mapping generation algorithm that benefits from combining both
approaches to provide the community with a more practical set of
mappings.

Results for RQ2. Since the FC approach relies on a user-defined
filtering threshold tr el , it is important to tune it with respect to each
input i.e., migration rule. Thus, for a fair comparison, we measure
the performance of FC in terms of precision and recall while varying
tr el between 0 and 1, for each migration rule. Figure 7 reports the
density of precision and recall while varying tr el between 0 and 1.

The FC is flexible in allowing a predefined filtering value that
aims in reducing the number of false positives. For each migration
rule, Figure 8 shows the impact of tr el on the precision and recall
of the correct mappings.

Interestingly, the number of mappings per-fragment affects se-
lecting tr el for the best precision and recall. For example, when the
number of mappings per-fragment is less than or equal to 2, such
as fragments found in sesame→rdf4j, commons-lang→slf4j, and
jsf→javax.faces in Table 4, the filtering value tr el has no impact
on precision and recall. We can conclude the tuning becomes irrel-
evant when the number of mappings per-fragment is low. On the
other hand, few fragments have more than 1-to-2 mappings, such
as commons-lang→slf4j, and jets3t→aws-sdk, are affected by the
variation of tr el . We experience such impact at its highest in easy-
mock→mockito, where every tr el gives a different precision and
recall ratio.

Based on the above-mentioned observations, we are in line with
the previous study that there is no golden value of tr el for achieving
an acceptable trade-off between precision and recall, for all rules
combined.

Results for RQ3. To answer the RQ3, we selected 4 migrations
with the least number of fragments. The existence of mappings was
already validated during the validation process described in subsec-
tion 4.3, but in this case, we are searching for anymissing fragments:
for the removed library, we automatically collect all commits con-
taining the removal of its dependencies and then manually verify
whether they were all captured in the fragments. Then we calculate
the precision and recall to assess the performance of our mining
process. Precision is calculated as the ratio between the number
of correctly-included removed functions and the total number of
included removed functions. The recall is the measurement of the
ratio between the number of correctly-included removed functions
and the total number of manually-verified removed functions. We
report our findings in terms of precision and recall in Table 6.

We observe in Table 6 that both approaches were successful
in avoiding false positives when extracting fragments. Also, they
didn’t miss any fragment when the number of fragments to extract
is relatively low (7 and 18 respectively for jets3t and sesame), except
for finding a higher number of fragments. In this case, capturing
all fragments is important to increase the overall accuracy of the
mappings and to cover as many migrated functions as possible. As
shown in Table 6, both approaches extract correct fragments as
their precision for the 4 rules is maximal, but the commit-based
approach outperformed the version-based approach in detecting a
higher number of true positive fragments. This can be explained by
the fact that the number of versions is, in general, significantly lower
than the number of commits. For example, the Hudson8 project has
10 versions and 11,332 commits. Using the version-based extraction
algorithm a comparison between two version commits is actually
searching for fragments in several thousands of merged commits,
which adds changes unrelated to the migration. Thus, this makes
the detection of fragments difficult when the set of removed and
added functions may no longer be co-located in the same block. On
the other hand, the commit-based extraction algorithm compares
consecutive commits, which facilitate the detection of changes
between files, and so, reduces the chance of missing any fragment.
Note that, in this study, the ratio of overall instant migrations is 37%
while the ratio of overall delayed migrations is 63%. Table 7 depicts
the fragments extraction frequency of both approaches along with
the percentage of instant and delayed migration segments for each
rule.

According to Table 7, when the percentage of instant migrations
is close to the delayed migrations, like in easymock→mockito and
json→gson, where the percentage is respectively 52% and 34.5%,
the average number of fragments extracted by the version-based
extraction is close to the commit-based frequency. However, for
commons-lang→slf4j and slf4j→log4j, where percentages of in-
stant migrations are 0.7% and 17.8%, respectively, the version-based
extraction frequency has drastically decreased compared to the
commit-based frequency. This fact is due to the difficulty for the
version-based approach of locating fragments when they are dis-
tributed across multiple commits. In fact, the percentage of instant
and delayed migrations vary from one rule to another since it de-
pends on multiple factors such as the number of projects involved
per rule, the length of segments and the number of source files

8https://goo.gl/A9Mnui

68

https://goo.gl/A9Mnui

CASCON’18, October 2018, Markham, Canada

Figure 8: Distribution of Precision and Recall in all projects combined for all tr el values.

Table 6: Precision and recall of the fragment extraction.

Version-Based Commit-Based
Rule (Source →Target) U-Precision U-Recall U-Precision U-Recall
slf4j→log4j 100% 83% 100% 100%
commons-lang→slf4j 100% 89% 100% 100%
json→gson 100% 100% 100% 100%
easymock→mockito 100% 100% 100% 100%

Table 7: Average number of fragments per migration rule.

Average number of fragments Migration Type
Rule (Source →Target) Version-based Commit-based Instant Delayed
slf4j→log4j 5.75 9.1 17.8% 83.2%
commons-lang→slf4j 4.7 8.3 0.7% 99.3%
json→gson 5 6.2 34.5% 56.5%
easymock→mockito 34 40 52% 48%

changed in each segment. It is hard to draw conclusions without
deeper analysis of the fragment extractionwhen taking into account
these factors.

Overall, we can conclude that the commit-based approach was
more successful in localizing fragments, regardless of the ratio
of the delayed migration, which is very important for improving
the accuracy of the process of generating mappings. This explains

how we were successful in increasing the overall performance of
state-of-art approaches in comparison with the previous study.

7 THREATS TO VALIDITY
We report the following factors that may negatively influence our
replication study. We classify them into construct, internal, and
external factors.

69

H. Alrubaye, and M. Wiem Mkaouer

Automating the Detection of Third-Party Java Library Migration At The Function Level CASCON’18, October 2018, Markham, Canada

Construct Validity. The qualitative analysis was performed by
the authors who manually validated every unique mapping then
used an automated script to validate all its occurrences in the other
fragments. There is a risk of missing fragments which we believe
will not significantly impact the outcomes of the algorithms since
two of them rely on multiple occurrences of similar mappings,
and missing a few will not propagate through all migration rules.
Also, the third algorithm does not depend on the frequency of
occurrences. We also may have mis-evaluated some mappings. This
will uniformly impact the 3 approaches, but, will not favor one over
the others. To mitigate this, we made sure to analyze commits from
different projects, for the same migration rule, to be sure of the
mapping.

Internal Validity.One of the most critical threats to our work is
the utilization of the Diff function to approximate the changed code
blocks. We implemented all the data collection and the approaches
under comparison from scratch. We believe that the function is
well-recognized and used often in the industry. Furthermore, it is
the built-in function for existing operating systems and most impor-
tantly for GitHub, the host of all the projects we parsed. Using this
function drastically facilitates our mining process. Moreover, there
may be errors in our tool that may engender missing some com-
mits. We carefully paid attention when implementing the mapping
generation algorithms. We verified our findings with the original
findings of the previous paper as one way to ensure correctness.
We considered the developer’s decisions, which we mine, as the
ground truth for generating ideal function mappings. Thus, our
approach is subject to developers errors. We believe that this may
not be problematic since we are mining a large number of projects
developed by a diverse set of developers.

When mining open source projects, we rely on the Project Object
Model file for the identification of used libraries, which limits our
studies to projects using Maven 9. Yet, we were able to shortlist a
large number of projects for the experiments. Also, the detection
of a project’s hidden dependencies is out of our scope.

Another important threat is the choice of migration rules, we
have relied on existing studies to extend the set of migrations be-
tween libraries, and some of thesemigrationsmay not be necessarily
correct, for example, jsf-api→javax.faces has been detected in the
previous studies as a migration rule but as we perform the manual
validation, we identified them as two different implementations of
the same API library. Our mining algorithm identified segments for
this migration as the two instances of the same API have different
identifiers.

External Validity. Our study was limited to one-to-one migra-
tion rules, which does not reflect the reality of the existence of
one-to-many library migrations. This represents a threat to the
generalization of our approach. We plan in the future to take into
account any library migration regardless of its cardinality. Another
threat concerns the chosen projects, which are an exclusively open
source. Thus, our results cannot be generalized for all types of
projects.

9https://maven.apache.org/what-is-maven.html

8 RELATEDWORK
Several studies focused on understanding how developers per-
ceive API related function changes. In the context of library up-
dates, many studies have been proposed to capture the needed
changes on the client source code applied along with API migra-
tion [9, 11, 18, 19]. They used textual similarity between structures
and function signatures as a means to identify identical functions
between multiple library versions. This approach can be adapted
in the context of library migration if applied on code fragments.
This drove us to consider it as a potential approach to map sim-
ilar libraries [11]. Another study relevant to our work has been
conducted by Schäfer et al. [14]. They analyze changes in function
call locations to extract the fragments of added/removed functions.
They compute the associated rules from fragments before filtering
them using the similarity of function signatures. Their approach
allocates one function to each function call. This favors the 1-1
function mapping and hinders the existence of other added (resp.
removed) functions in case of N-M function mapping i.e., replacing
one or many functions with one of many functions within the same
fragment. Teyton et al. [16] extended this to support all possible
cardinalities of functions mappings. For a given input migration
rule, they extracted all fragments, then applied the Cartesian Prod-
uct between the two sets of removed and added functions. This
generates all the possible combinations of mappings that may have
occurred between the set of source and target library functions. The
frequency of identical combinations is calculated throughout all the
studied projects. Finally, an acceptance threshold is set so that any
combination whose frequency is higher than the threshold is consid-
ered a correct function mapping. In contrast with previous studies,
this approach was similarity agnostic since it is robust to libraries
variations in design, naming conventions and vocabulary. On the
other hand, it exclusively relies on existing migrations between
two given libraries to provide mappings. Lastly, its performance,
in terms of accuracy, depends on the frequency of such migrations
across projects, as demonstrated later in the experiments.

A dynamic analysis was also used by Gokhale et al. [3] to infer
likely mappings between the APIs of Java2 Mobile Edition and
Android graphics. Their approach was specific to the given libraries.
Kabinna et al. [7] mined the migration of 9 logging libraries in
Apache software foundation projects. Their findings show that
the majority of the 49 detected migrations were successful, but
the process is error-prone with an average of two post-migration
bugs even when experienced developers were accomplishing the
migration task.

In this paper, we conduct a comparative study between Teyton
et al. [16] and Schäfer et al. [14] by including one study that is rep-
resenting the set of similarity-based approaches. We adopted the
approach of Nguyen et al. [11] to the context of detecting mappings.
In the next section, we provide the challenges of detecting map-
pings at the function level along with detailing how each approach
generates the mappings using an illustrative example.

9 CONCLUSION
This paper enhanced an existing study for addressing the problem
of mining developer decisions in migrating third-party libraries.
We included a larger set of migration rules and a wider set of open

70

https://maven.apache.org/what-is-maven.html

CASCON’18, October 2018, Markham, Canada

source projects. Furthermore, we extended the fragment extraction
process to generate a larger set of potential candidate mappings
between functions which provide more coverage for migrations
between APIs. Additionally, we challenged the previous study’s
approach by adapting one state-of-art function similarity approach,
namely FS.

Our main findings include increasing the range of function map-
pings, and so providing the community with a richer set of changes
between libraries. Our results show that the performance of the
compared approaches depends essentially on the density of frag-
ments and the number of unique removed/added functions per
fragments. These factors drastically change the performance of the
3 algorithms. As for tuning the algorithm of the previous study,
there is no silver bullet that guarantees its performance for a given
migration rule and a set of input projects. In addition, our proposed
commit-based extraction generates a higher, yet correct, number
of fragments, which improved the performance of the previous al-
gorithm compared to the original paper as well as the performance
of the competitive approaches.

In our future work, we plan on mainly merging the three ap-
proaches by combining their threemeasurements into one weighted
fitness. We also plan on tackling the one to many library migra-
tions and address its related challenges. We plan on extending our
current analysis to better understand how the density of fragments
impacts the performance of the existing algorithms. Also, we plan
on extending the analysis conducted in RQ3, by including all the
migration rules, and analyzing the performance of commit-based
and version-based approaches while tracing other factors such as
the number of changes files per segment.

Since the application of FC requires the tuning of the tr el , the
lack of golden value may negatively impact on the overall matching
performance and could be a barrier for adopting FS in practical
scenarios. Therefore, we plan on automating the finding of an
acceptable threshold value.

As previously indicated, commit-level mining is expensive, we
plan on re-designing our tool to run on multiple instances, by par-
allelizing the comparison of commits pairs. This will drastically
decrease the time needed to mine all projects for a given migra-
tion rule. Finally, we will also explore the possibility of building a
library recommendation system at the function level that learns
from developers previous decisions to recommend similar library
functions in similar contexts.

REFERENCES
[1] H. Alrubaye, M. W. Mkaouer, and A. Peruma. Variability in library evolution:

An exploratory study in java libraries. In B. M. Ivan MistrÃŋk, Matthias Galster,
editor, Software Engineering for Variability Intensive Systems: Foundations and
Applications, chapter 13. Taylor & Francis Group, LLC/CRC Press, 2018.

[2] H. P. Enterprise. Hpe security research: Cyber risk report 2016. Hewlett Packard
Enterprise Security Research, Bracknell, UK, 2016.

[3] A. Gokhale, V. Ganapathy, and Y. Padmanaban. Inferring likelymappings between
apis. In Proceedings of the 2013 International Conference on Software Engineering,
pages 82–91. IEEE Press, 2013.

[4] A. Hora, A. Etien, N. Anquetil, S. Ducasse, and M. T. Valente. Apievolutionminer:
Keeping api evolution under control. In Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE Conference
on, pages 420–424. IEEE, 2014.

[5] A. Hora andM. T. Valente. apiwave: Keeping track of api popularity andmigration.
In SoftwareMaintenance and Evolution (ICSME), 2015 IEEE International Conference
on, pages 321–323. IEEE, 2015.

[6] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20(5):350–353, 1977.

[7] S. Kabinna, C.-P. Bezemer,W. Shang, andA. E. Hassan. Logging librarymigrations:
a case study for the apache software foundation projects. In Mining Software
Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on, pages 154–164.
IEEE, 2016.

[8] M. Kim, D. Notkin, and D. Grossman. Automatic inference of structural changes
for matching across program versions. In ICSE, volume 7, pages 333–343. Citeseer,
2007.

[9] S. Kim, K. Pan, and E. J. Whitehead. When functions change their names: Auto-
matic detection of origin relationships. In In Reverse Engineering, 12th Working
Conference on, pages 10–pp. IEEE, 2005.

[10] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Data Engineering,
2002. Proceedings. 18th International Conference on, pages 117–128. IEEE, 2002.

[11] H. A. Nguyen, T. T. Nguyen, G. Wilson Jr, A. T. Nguyen, M. Kim, and T. N.
Nguyen. A graph-based approach to api usage adaptation. In ACM Sigplan
Notices, volume 45, pages 302–321. ACM, 2010.

[12] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. German, and K. Inoue. Search-
based software library recommendation using multi-objective optimization. In-
formation and Software Technology, 83:55–75, 2017.

[13] R. Pandita, R. P. Jetley, S. D. Sudarsan, and L. Williams. Discovering likely map-
pings between apis using text mining. In Source Code Analysis and Manipulation
(SCAM), 2015 IEEE 15th International Working Conference on, pages 231–240. IEEE,
2015.

[14] T. Schäfer, J. Jonas, and M. Mezini. Mining framework usage changes from
instantiation code. In Proceedings of the 30th international conference on Software
engineering, pages 471–480. ACM, 2008.

[15] C. Teyton, J.-R. Falleri, and X. Blanc. Mining library migration graphs. In Reverse
Engineering (WCRE), 2012 19th Working Conference on, pages 289–298. IEEE, 2012.

[16] C. Teyton, J.-R. Falleri, and X. Blanc. Automatic discovery of function mappings
between similar libraries. In In Reverse Engineering (WCRE), 2013 20th Working
Conference on, pages 192–201. IEEE, 2013.

[17] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc. A study of library migrations in
java. Journal of Software: Evolution and Process, 26(11):1030–1052, 2014.

[18] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim. Aura: a hybrid approach
to identify framework evolution. In Software Engineering, 2010 ACM/IEEE 32nd
International Conference on, volume 1, pages 325–334. IEEE, 2010.

[19] Z. Xing and E. Stroulia. Api-evolution support with diff-catchup. IEEE Transac-
tions on Software Engineering, 33(12):818–836, 2007.

71

H. Alrubaye, and M. Wiem Mkaouer

