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In a recent paper (J. Fluid Mech., vol. 861, 2019, pp. 328-348), Benilov derived
equations governing a laminar liquid sheet (a curtain) that emanates from a slot
whose centreline is inclined to the vertical. The equations are valid for slender
sheets whose characteristic length scale in the direction of flow is much larger than
its cross-sectional thickness. For a liquid that leaves a slot with average speed, u,
volumetric flow rate per unit width, g, surface tension, o, and density, p, Benilov
obtains parametric equations that predict steady-state curtain shapes that bend upwards
against gravity provided pquy/20 < 1. Benilov’s parametric equations are shown to
be identical to those derived by Finnicum, Weinstein, and Ruschak (J. Fluid Mech.,
vol. 255, 1993, pp. 647-665). In the latter form, it is straightforward to deduce an
alternative solution of Benilov’s equations where a curtain falls vertically regardless
of the slot’s orientation. This solution is consistent with prior experimental and
theoretical results that show that a liquid curtain can emerge from a slot at an angle
different from that of the slot centreline.

Key words: coating, thin films

1. Introduction

Planar liquid sheets are essential to industrial curtain coating processes (Weinstein
& Ruschak 2004). In such processes, a curtain typically emanates from a coating die,
which in simplest form is a vertical slot with a rectangular cross-section that is wide
and thin. Curtains thin further in the direction of flow as gravity accelerates fluid
elements. Because curtains are thin, and more specifically because the characteristic
lengths are much greater than the curtain thickness, the equations governing the
liquid flow may be simplified significantly. Recently, Benilov (2019) used asymptotic
methods to derive equations that describe the flow of a widthwise-invariant curtain
and analysed configurations in which the die slot is not vertical. Figure 1(a) is
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FIGURE 1. Definition sketch of the curtain geometry. (@) Coordinate system and key
geometric variables, showing a slot whose centreline is inclined with angle «,, where
as drawn, o, < 0. It is assumed that there is no flow or curtain thickness variations in
the y direction, which is oriented into the figure. In the figure, W is the local thickness
of the curtain measured perpendicular to the centreline, 2H is the height of the slot,
and x = F(z) is the parameterization of the curtain centreline. The ambient pressures on
each side of the curtain, P, and P,, are constants. (b) Relationship between the curtain
centreline parameterization, x = F(z), the arclength coordinate, /, and surface angle, «. The
angle of the curtain centreline at the slot is denoted as o, where as drawn, ¢y <0, dx>0
and dz < 0. The coordinate system is chosen to be consistent with that of Benilov (2019).

a sketch of Benilov’s configuration using his coordinate system notation. Benilov’s
time-dependent solutions are valid for large deflections, and he provides high-viscosity
equations in arclength coordinates valid under steady-state conditions. Interestingly,
his high-viscosity equations do not depend on viscosity in the relevant limits; surface
tension and inertia determine the curtain trajectories. A key dimensionless parameter
for characterizing such flows is the slot Weber number, Wey, = pqu/20, where o is
the surface tension, p is the liquid density, u, is the average speed at the slot, and
q is the volumetric flow rate per width in the curtain. For configurations in which
a fluid emanates from a downward-facing slot that is inclined to the vertical and
Wey < 1, Benilov predicts curtain shapes that bend upwards against gravity. Such
shapes are also predicted in the much earlier inviscid analysis of liquid curtains by
Keller & Weitz (1957) for Wey < 1 conditions.

In previous work, Finnicum, Weinstein & Ruschak (1993) examined the effect of
a constant pressure drop on a liquid curtain thinning under the influence of gravity
and emanating downwards from a downward-facing vertical slot. This configuration
corresponds to the case in which the slot inclination angle, o, is —m/2, as shown
in figure 1(a). Finnicum et al. (1993) assume that the curtain flow is inviscid, which
is supported by the experiments of Brown (1961) and Clarke et al. (1997). This
assumption is also supported by an examination of G. 1. Taylor’s equation (the
equation is found in the appendix of Brown (1961)) in Weinstein et al. (1997). Like
Benilov, Finnicum et al. (1993) derive equations in arclength coordinates that account
for large deflections; Finnicum et al. (1993) then convert these equations into a single
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equation in Cartesian coordinates that governs the response of the curtain centreline
(x=F(z) in figure 1) to a steady difference in pressure applied to the faces of the
curtain (i.e. Py # P, in figure 1). Finnicum et al. (1993) validate their theoretical
predictions with experiments for both supercritical (Wey > 1) and subcritical (Wey < 1)
cases. They find that when the curtain leaves the vertical slot as a supercritical flow,
the angle that the curtain centreline makes with the horizontal, &, in figure 1(b), is the
same as the angle that the slot centreline makes with the horizontal, «; in figure 1(a).
However, when fluid leaves the slot as a subcritical flow, the curtain centreline angle,
oy in figure 1(b), does not equal that of the slot, o;. A key feature of the curtain
equation is that it is singular where the local Weber number, We = pqu/20, expressed
in terms of the free-fall speed, u = (u3 — 2gz)"/?, equals 1. The specific angle taken
by the curtain centreline at the slot, «g, is determined such that the singularity in
the curtain is removed. The result is a continuously differentiable curtain shape that
traverses the singularity.

Weinstein et al. (1997) derive time-dependent equations for a thinning liquid
curtain that emanates from a vertical slot and is subjected to an ambient pressure
drop; these equations are derived for small deflections of the curtain centreline
from vertical. The equation governing the centreline location is a second-order
hyperbolic partial differential equation (PDE), and thus its structure may be deduced
by examining the two characteristics that specify the velocity of wave propagation
in the curtain. In Weinstein et al. (1997, §IV), the location of boundary conditions
in the above-described problem of Finnicum et al. (1993) are justified based on
the direction of propagation associated with these characteristics. Although the
configuration of Finnicum et al. (1993) is steady, it must arise through a transient
behaviour that follows these characteristics. Weinstein et al. (1997) argue that the
location of boundary conditions, even in the steady problem, must thus be consistent
with the characteristics of the transient. In the supercritical regime (that is, the case
in which We, > 1), both characteristics specify downward propagation of waves
in the curtain from the location z = 0 (figure la); thus, two boundary conditions
must be applied in accordance with hyperbolic theory (John 1982). However, in the
subcritical regime (that is, the case in which the slot Weber number We, < 1), only
one characteristic specifies downward propagation of waves from the location z = 0.
Thus, only one boundary condition may be applied at that location: namely that the
curtain centreline coincides with that of the slot. At the downstream location in the
curtain where the local Weber number satisfies We = 1, one characteristic specifies
downward propagating waves, but another is identically zero. Below the We = 1
location in the curtain, both characteristics specify the downstream propagation of
waves. Note that the singularity location at We =1 found in the steady problem of
Finnicum et al. (1993) is precisely the location in the transient problem where the
speed of one of the characteristics switches sign; this delineates the location above
which waves may propagate upwards. In this case, a constraint may be applied such
that the curtain remains finite at this location. This boundary condition placement
and singularity elimination is utilized in the recent analysis of time-dependent liquid
curtains (Girfoglio et al. 2017). A similar structure is found in many thin film
problems having subcritical to supercritical transitions in the literature. This is
discussed extensively by Weinstein & Ruschak (1999), who further examine such
transitions in detail through their analysis of rapid dip coating of a thin liquid film
onto a substrate withdrawn from a liquid pool.

In what follows, we first demonstrate in § 2 that the high-viscosity system proposed by
Benilov (2019) is identical to that of the inviscid equation of Finnicum et al. (1993)
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for cases where the ambient gas dynamics are neglected and there is no pressure
drop across the curtain. In §3, we examine this equation closely, and propose that
one of the two boundary conditions utilized by Benilov at the slot exit is disallowed
when fluid exits the slot such that Wey, < 1, based on the underlying propagation
direction of waves in the curtain (as described above). Consequently, curtain shapes
that bend upwards against gravity predicted by Benilov are not physically correct.
In §3, the correct solution is provided. We provide some closing comments on our
analysis in §4.

2. Cartesian representation of the governing equations

The starting point for our analysis is equations (4.2)—(4.6) of Benilov (2019), which
govern the shape of the curtain, and are written here in dimensional form (see figure 1
for definition sketch):

duW
W) _ 4 2.1a)
dl
du i 2.1b)
_— = — n .
U gsina
d
(20 — ,oWuz) d—olt = pgWcosu 2.1¢)
d
di; — cosw 2.1d)
dz . 2.1e)
dl = SIn«. .le

Here u is the local speed in the curtain, W is the curtain thickness, / is the arclength
coordinate, « is the angle that the curtain centreline makes with the horizontal, x and z
are the horizontal and vertical coordinates, g is the gravitational acceleration, o is the
constant surface tension of the air-liquid interfaces, and p is the density of the liquid.
In the derivation of (2.1), the slender curtain approximation is applied, in that the
characteristic length of the curtain (in the / direction) is assumed to be much larger
than W. Our goal is to obtain a single equation that governs the curtain centreline
x=F(z). We consider appropriate boundary conditions for the resulting equation in § 3
below.

Equation (2.1a) expresses the fact that mass is conserved and thus the volumetric
flow rate per unit width, g, is constant. It can be integrated to yield

uW =g =uy2H. (2.2a)

Here, uy is the liquid speed and W = 2H is the thickness of the curtain at x = 0,
assumed to be the same as that of the slot (figure 1). The system (2.1) is strictly valid
in a region displaced downstream from the slot, as the loss in viscous traction from
the slot leads to a flow rearrangement near the slot that violates the slender curtain
assumption. The net effect of the flow rearrangement is a curtain thickness that is
different from that of the slot, and this gives rise to an adjusted value of u, (Weinstein
et al. 1997) appropriate for (2.1). As this assumption does not change the conclusions
drawn in this paper, for definiteness we have neglected this effect in (2.2a).
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Dividing (2.1b) by (2.1¢) to eliminate the arclength coordinate, integrating in z, and
denoting that the speed of the curtain at z=0 is uy, the result is

u=(u® —2g2)""". (2.2b)
Multiplying (2.1b) by p and W and noting that (2.2a) applies, we obtain

1 d
oW = — L dpan) (2.3a)
sinae  dl

Substituting (2.3a) into (2.1¢) and using (2.2a) yields

_ d(pgqu)
dl

d
0 — pqu) (TO; - cot a. (2.3b)

The following relationships hold based on the geometry in figure 1(b):

I
cota = —, (2.3¢)
dz
d’F
d -
do _ dz? - (2.3d)
d! . dF\ 2
dz
d . d (2.3¢)
— = SIno«— .
a - My ¢
1
sind = ——————-. (2.31)
1+ ar
dz
Equations (2.3c—f) are substituted into (2.3b) to yield
d’F drF
— 4 il
T 239)
dF\ 2 dz - (dp>
Equation (2.3g) can be rewritten as
dr
d dz
i (pqu — 20) 7 | = 0. (2.3h)

1+ LAY
dz

Equation (2.3h) is identical to Finnicum et al. (1993, equation (7)) (once adjustments

to the notation and coordinate system are made) for the case where the pressures
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on both faces of the curtain are the same (i.e. P, = P, in figure 1). Finally, we
integrate (2.3/) to obtain

dF
dz C

<dF>2] 27 (pqu—20)’
1+ (—
dz

where C is an integration constant. Equation (2.4) governs the shape of the curtain
centreline, x = F(z), and the local thickness of the curtain about the centreline is given
by (2.2).

u= (uo® —2g2)""°, (2.4)

3. Curtain solutions

We focus here on the configuration of the die examined by Benilov (2019), where
the die centreline is angled as shown in figure 1(a), for which «; < 0 (note that «
is negative in the orientation shown in figure 1b). In this configuration, the distance
downwards from the slot is given as —z, and in accordance with (2.4), the curtain
speed increases in the —z direction monotonically. If the curtain exits the slot such
that pquy > 20 (i.e. Wey > 1), the denominator of the right-hand side of (2.4) is always
positive. This corresponds to a supercritical configuration, and in accordance with the
discussion of prior literature in § 1, two boundary conditions are applied at the slot
exit precisely as stated by Benilov (2019):

F =0, atz=0, 3.1a)
dr
— = cotay, at z=0. (3.1b)
dz

That is, the centreline angle of the curtain, o in figure 1(b), is identical to that at the
slot, «,, and the trajectory of the curtain centreline is well posed. Upon application
of (3.1b), the constant C is given for the slot centreline orientation in figure 1(a) as

C=— (pquy —20) cos oy, (3.2)

(note that the constant C can be written generally for any configuration as C =
sign(sin «,)(pquy — 20) cos o). With this constant defined, equation (2.4) can be
integrated and the curtain shape is fully defined once the constraint (3.1a) is applied.
This leads to curtain shapes that curve downwards, as predicted in Benilov (2019);
these are shown schematically in figure 2. For cases where the curtain exits the slot
with a subcritical flow, characterized by pquy < 20 (i.e. Wey < 1), the denominator
on the right-hand side of (2.4) has a singularity at the location where pqu =20, as
the curtain will accelerate as it moves downwards with increasing —z. When Benilov
(2019) considers this case, equation (3.1b) is applied at the slot as for the supercritical
case, utilizing the constant (3.2). The mathematical solution obtained leads to an
upward-curving curtain, as shown in figure 2. This finite solution necessarily adjusts
to avoid the singularity entirely.

We propose here, in keeping with the prior literature cited in § 1, that the direction
of wave propagation does not allow the specification of (3.1b), and only the boundary
condition (3.1a) may be applied at the slot exit. This leaves the constant, C, in (2.4)
undetermined at this stage. Finnicum et al. (1993) shows that when a fluid exits a
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FIGURE 2. Schematic of curtain centreline solutions of Benilov (2019), x = F(z), showing
the trend in curtain shapes as the slot Weber number, Wey, is varied. For We, > 1, curtain
centrelines curve downwards (solid curves), and their centrelines move towards the z axis.
As We, is decreased further such that Wey, < 1, curtains curve upwards (dashed curves)
with the indicated trend. For all shapes shown, the angle «; is imposed at the slot (located
at x=z=0).

slot in a subcritical manner and is exposed to a pressure drop across it, the curtain
centreline angle at the slot is different from that of the slot centreline (i.e. oy # o
in figure 1). The angle taken at the slot by the curtain is precisely that necessary to
eliminate the singularity in the curtain. Furthermore, the equation of Finnicum et al.
(1993) has been verified experimentally in both subcritical and supercritical cases
when a pressure drop is applied. From symmetry, curtains emanating from a vertical
slot with no pressure drop will have a vertical centreline, and that steady solution
is admitted by (2.4) with C = 0. Under such conditions, note that the distinction
between subcritical and supercritical flows does not affect the centreline solution.

The above discussion supports the contention that when the slot centreline is angled
as shown in figure 1(a) and a curtain exits the die such that Wey, < 1, the curtain
adopts a path such that the singularity at the location where pqu = 20 in (2.4) is
eliminated. This requires that C =0 in (2.4) for all subcritical cases. Thus, regardless
of the angle of inclination of the slot «, in figure 1(a), the angle that the curtain
centreline takes at the slot exit is o = —m/2 in figure 1(b). This result is consistent
with the structure of the second-order hyperbolic time-dependent equation derived by
Weinstein et al. (1997) that governs small deflections of the curtain centreline. Here,
we rewrite this equation to reflect the coordinate system in figure 1(a) and with no
applied pressure (i.e. Py =P, in figure la) as

0°F ) 9°F n 0 20 | OF 0 (3.3)
— —2u——4u— | lu——| — | =0. )
or? 0z0t 9z pq| 0z
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In (3.3), u is the free-fall velocity given by (2.2b). The characteristics of this equation

satisfy
dz 1 pqu
—=—ull:t——Fs ], We=—, 3.4
dr ! < Wel/2> ‘T 20 S

where We is the local Weber number, as defined previously. Noting that the —z
direction is downwards in figures 1 and 2, equation (3.4) indicates that when fluid
exits the slot such that Wey, > 1, two waves associated with the characteristics move
downwards from the slot from z = 0. However, when the curtain exits the slot such
that Wey < 1, equation (3.4) shows that only one wave propagates downstream from
the slot, until reaching the location where fluid has accelerated in the curtain such
that We = 1. In the subcritical problem of Benilov (2019), this hyperbolic structure
dictates that only one boundary condition be applied at the slot (i.e. equation (3.1a)),
as there is only one characteristic associated with wave propagation away from the
boundary at z=0 downwards in the curtain. It is natural to apply a second condition
at the singularity in the curtain because of the upstream influence of the characteristic
associated with that location. This condition sets the constant C in the steady equation
to be zero, which assures that the curtain falls vertically. Thus, returning to figure 2,
the upward-bending curtains (those with dashed lines in the figure) are in fact
disallowed, and for any situation where We, < 1, the curtain centreline is vertical (i.e.
coincident with the x =0 axis in the figure). Physically, what this means is that as
the curtain flow is reduced such that We; — 1 from above, the angle of the curtain
moves closer to the z axis, such that oy =—m/2, at Wey = 1. For additional details that
support the above conclusions and provide the full mathematical structure surrounding
the characteristics of the governing PDE, see Weinstein et al. (1997, §1V).

Although we have argued that upward-curving sheets are not possible in a freely
falling curtain, they are theoretically possible if pqu/20 < 1 everywhere in a sheet,
provided the downstream portion of the sheet is supported in some way. In a fully
subcritical sheet, the two characteristics indicate wave propagation away from each
boundary into the curtain — the first from the slot in the downstream direction and
the second at the end of the curtain in the upstream direction. Thus, one could place
a location boundary condition at each end of such a sheet and thereby hold it in place.
Note that Finnicum et al. (1993) did report the formation of a fully subcritical falling
liquid curtain emanating from a downward-facing vertical slot in their experiments. In
those experiments, a curtain could be created by slowly lowering the flow rate in an
existing curtain that started in the supercritical regime; such subcritical curtains were
sensitive to disturbances and disintegration. In the case of a fully subcritical upward-
curving sheet, a careful experimental technique would be needed, as it is not possible
to manipulate the location of the bottom of the curtain if it is supercritical. The curtain
would need to be fully formed in a subcritical regime and likely would be difficult to
maintain.

4. Summary and closing comments

We show that the parametric equations derived in the high-viscosity limit by Benilov
(2019) are identical to those derived by Finnicum et al. (1993). Although Benilov
predicts upward-curving subcritical curtains in situations where the slot is non-vertical,
an alternative solution is that a subcritical curtain falls vertically regardless of slot
orientation. The proposed solution is consistent with prior experimental and theoretical
literature. This solution is also consistent with the second-order hyperbolic equation
of Weinstein et al. (1997) that governs nearly-vertical curtains, where the number
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of boundary conditions that may be applied must be consistent with the number
of characteristics associated with wave propagation away from any boundary. The
upward-bending subcritical flow solutions of Benilov (2019) are a consequence of the
slot angle being imposed on the centreline of the curtain at the slot; this constraint
is inconsistent with the hyperbolic structure of the curtain flow. Finally, we note that
entrance effects in the vicinity of the slot exit have not been considered in this paper.
If a fluid appreciably wets the lip of the die, the location of the curtain centreline may
be altered from that of the slot exit, and destabilization may occur for curtains that
are subcritical at the slot exit. For low-viscosity curtains emanating under conditions
of laminar flow, as examined by Finnicum et al. (1993) experimentally, entrance
effects are not significant in the application of (2.4), as evidenced by the agreement
of experiment and theory.
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