
Complementing Course Contents Between IT/CS:
A Case Study on Database Courses

Jai W. Kang
 Information Sciences

and Technologies
Rochester Institute of

Technology
Rochester, NY USA
 jai.kang@rit.edu

Qi Yu
 Information Sciences

and Technologies
Rochester Institute of

Technology
Rochester, NY USA

 qi.yu@rit.edu

Edward P. Holden
 Information Sciences

and Technologies
Rochester Institute of

Technology
Rochester, NY USA

edward.holden@rit.edu

Xumin Liu
Computer Science

Rochester Institute of
Technology

Rochester, NY USA
 xmlics@rit.edu

ABSTRACT
Information Technology (IT) and Computer Science (CS) are two
well regarded computing programs that produce hundreds of
thousands of graduates in each year to meet the diverse needs in
the IT industry. Despite being treated as two distinct disciplines, IT
and CS do share commonalities as with other computing
disciplines (e.g., CE, SE, and IS). In this paper, we provide a
detailed analysis on the commonalities and differences between IT
and CS along with their respective teaching methodologies, aiming
to identify opportunities to complement these two computing
disciplines so that they can benefit from each other’s unique
advantages to better train future computing professionals. A case
study on the database courses from both IT and CS helps reveal
deeper insights on both the common and different aspects of these
two disciplines. These insights are then leveraged to reach
important recommendations for future computing curriculum
development.

CCS Concepts: • Computing education • Computing
education programs • Information technology education

Keywords: Information technology; computer science; course
content; curriculum; teaching methodology; database.

ACM Reference format:

Jai W. Kang, Qi Yu, Edward P. Holden and Xumin Liu. 2019.
Complementing Course Contents Between IT/CS: A Case Study
on Database Courses. In Proceedings of ACM Special Interest Group
in IT Education Conference (SIGITE’19), October 3-5, 2019, Tacoma,
Washington, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3349266.3351414.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SIGITE ‘19, October 3–5, 2019, Tacoma, WA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6921-3/19/10…$15.00
https://doi.org/10.1145/3349266.3351414

1. INTRODUCTION
Information Technology (IT) educators develop courses for
baccalaureate programs to meet the IT curriculum guidelines,
which were first published in 2008 (IT2008) [9] and revised in 2017
(IT2017) [10] by ACM/IEEE Computer Society. We maintain the
course materials as much, promptly and best as we can. Then one
can ask questions such as “are the sources we utilize to update the
course materials exhaustive?”, “are there any other sources
available than the IT curriculum guidelines?”, and “if there are
other sources, how to use them to benefit the IT curriculum?”.
This paper attempts to answer these research questions.

The IT discipline has become a separate baccalaureate program
over the past few decades. For the first time, the Computing
Curricula 2005 [3] included IT as a separate disciple in addition to
Computer Engineering (CE), Computer Science (CS), Software
Engineering (SE) and Information System (IS). This Computing
Curricular document provides commonalities and differences
among these five computing disciplines by characterizing
graphically what students typically do after graduation. It also
offers numerical values ranging between 0 (lowest) and 5 (highest)
per knowledge topic for each of the five disciplines. These
numerical values represent the relative emphasis each discipline
would expect to place on each knowledge topic.

Another method of identifying the commonalities and differences
among the computing disciplines is applying Bloom’s taxonomy
levels per knowledge topic for each discipline [5]. The Bloom’s
taxonomy represents three levels of capability of a student after
graduation:

 ‘v’ (vocabulary): a student should be to understand the
terminology to delegate to others if necessary;

 ‘c’ (comprehension): a student should be able to intelligently
discuss the topic and perform basic tasks;

 ‘a’ (application): a student should be able to apply knowledge
to perform tasks competently as required in a work
environment.

The remainder of the paper is organized as follows. We begin by
discussing how to complement course contents between IT and CS
using their commonalities and differences, and related teaching

Session 1A Paper SIGITE ’19, October 3–5, 2019, Tacoma, WA, USA.

10

https://doi.org/10.1145/3349266.3351414
mailto:Permissions@acm.org
https://doi.org/10.1145/3349266.3351414

methodology in Section 2. Section 3 uses a case study to
demonstrate how database course contents are complemented
between IT and CS. Section 4 discusses how the IT and CS
curricula can benefit from each other before concluding the paper
in Section 5.

2. COMPLEMENTING COURSE CONTENTS
BETWEEN IT & CS

The IT discipline has become a separate baccalaureate program
over the past few decades. Even though [14] has empirically found
that the IT discipline is significantly different from CS, there are
commonalities between IT and CS. This section discusses how
complementing course contents between IT and CS benefits both
students and educators.

2.1 Motivation
Computing Curricula 2001 [2] divided the
computing-related disciplines into four separate
ones: Computer Engineering (CE), Computer
Science (CS), Software Engineering (SE), and
Information System (IS). Information Technology
(IT) has joined the family of the computing as a
separate discipline in the Computing Curricula
2005 (CC2005) [3]. An empirical study also
supported that IT programs are significantly
different from CS or IS [14].

Even though IT and CS are different enough to be
offered as separate baccalaureate programs, it does
not imply that their curricula are completely
different from each other. CC2005 illustrated the commonalities
and differences among computing disciplines graphically as shown
in Figure 1, which displays what students in each discipline
typically do after graduation. The X-axis displays from Theory,
Principles, Innovation on the left, to Application, Development,
Configuration on the right. CS graduates would fit to work in a
discipline toward the left, and students who graduate from IT
would fit to work in the discipline toward the right. The Y-axis
runs from Computer Hardware and Architecture at the bottom, to
Organizational Issues and Information Systems at the top. Figure 1
demonstrates commonalities and differences between IT and CS
based upon the types of work that graduates from each discipline
conduct. In other words, IT courses can be complemented by
theoretical concepts, and conversely more applied topics can apply
to CS courses, which provide students with more insights or
motivations for not only understanding the course contents better
but also performing better at work after graduation.

Another way of identifying commonalities and differences among
computing disciplines is applying Blooms taxonomy levels: ‘v’, ‘c’
or ‘a’ to a specific discipline or education program, where the
Bloom’s knowledge levels are presented as follows [5]:

 Vocabulary (v): a graduate understands the terminology in a
conversation about the topic enough so that graduate can
delegate to others.

Figure 1. Problem space of IT & CS [3]

 Comprehension (c): a graduate should be able to intelligently

discuss the topic and perform basic tasks.
 Application (a): a graduate can apply the knowledge in order

to perform tasks in the area with a level of competence as
expected in a work environment.

Table 1 includes a partial list of Blooms taxonomy levels of a Body
of Knowledges (BoK) that defines the technical knowledge for CS
and IT. A complete list of taxonomy levels can be found in [5] for
eight knowledge areas of Professionalism & Ethics, Law &
Regulations, Mathematics Foundations, Technical Knowledge,
Quality Issues, Process Knowledge, and Business Knowledge for
Computing and IT. For example, as shown in Table 1, CS
graduates go out to the real world with the Bloom’s taxonomy
level of ‘a’ on Algorithms (D8), and IT graduates start their career
with ‘a’ level of technology knowledge on Database (D10). We can
complement course contents of Algorithms and Database between
IT and CS to extend students’ capacity towards job performance or
graduate study.

2.2 IT & CS Course Resources for
Complementation
Among resources like textbooks, reference books, websites,
journal and conference papers, ACM SIGITE and SIGCSE
conference papers published for IT and CS, respectively, are
important for complementing course contents. For example, Table

Table 1. Bloom’s taxonomy levels of technical knowledge [5].

ID Technical Knowledge CS IT

General
engineer/
software

developer

Embedded
systems
designer

Business/ IT
systems
designer

Interaction/
UI designer

Service
Support

Busines
s

analyst

D6 Programming language types a v a a a c c c
D7 Data Structure a c a a a a a a
D8 Algorithms a c a a a a a a
D9 Info & data modeling a c a a a a a a
D10 Databases c a a a a a a a
D11 Bus process & activity

modeling
c a a c a c a a

D13 Enterprise architecture &
modeling

v c c c c c c c

D14 Networking c v c c c c c c

Session 1A Paper SIGITE ’19, October 3–5, 2019, Tacoma, WA, USA.

11

2 lists a number of papers related to technical knowledge of
databases published in SIGITE and SIGCSE by Pedagogical
Objectives: curriculum, course, lab, research, and assessment over
the past 15 years.

IT database papers published in SIGITE for potential
complementation for CS courses include: Using Oracle & SQL
Server to teach SQL [13]; In-process object-oriented database
design for .NET [17]; and Integrating mobile storage into database
courses [11].

CS database papers published in SIGCSE for potential
complementation for IT courses include: Integrating XML into a
database systems course [16]; A query simulation system to
illustrate database query execution [4]; and Design patterns for
database pedagogy [12].

Table 2. DB publications in SIGITE & SIGCSE (‘03-’18).

Pedagogical Objectives SIGITE SIGCSE

Curriculum 0 3

Course 7 14

Lab 1 0

Research 3 3

Assessment 1 1

Total 12 21

2.3 Teaching Methodology
[1] discusses teaching methodologies when the focus of the course
is based on Theory; Practice; Project; or All-
encompassing/comprehensive (Theory + Practice + Project). This
approach is especially appropriate as discussed in Section 2.1: CS
courses are more theoretical than IT, and IT courses are more
practical than CS.

In summary, complementing course contents among different
degree programs such as IT and CS benefit from
enhancing/broadening students’ understanding of knowledge for
better career opportunities including pursuing higher education;
helping students become a lifelong learner; and having educators

offer additional topics to challenge overachieving students.

3. CASE STUDY
This section will demonstrate how the IT and CS programs
complement each other. We will use the database curricula in both
programs at our university as a case study and discuss the
application of the skills learned in the programs after graduation.

3.1 DB Curriculum in IT and CS
3.1.1 IT DB Curriculum. Among the BS programs offered by
our IT discipline is the BS-Computing and Information
Technologies (CIT). The original basis for the program was “The
five-pillars of IT” later referenced in Information Technology 2008
(IT2008) [9]. The CIT program conforms to the Information
Technology Curricula 2017 (IT2017) [10]. The core includes two
database (DB) courses and it has a strong DB concentration.

The first core DB course, Introduction to Database and Data
Modeling (ISTE-230), covers the basics of the DB environment.
Topics include the theoretical foundations of data organization
and the relational model, relational mapping and normalization,
basic EER modeling and SQL. The second core DB course,
Information Requirements Modeling (ISTE-430), includes topics
such as requirements gathering, lifecycles, documenting
requirements, conceptual, logical and physical views, as well as,
process, data, and state analysis and modeling.

After the core database courses, students choosing to concentrate
in database applications take three of the following courses to
deepen their skills.

Database Connectivity and Access (ISTE-330) covers topics such as
cloud computing, database drivers, basic operations and error
handling, prepared statements, transactions and using stored
procedures, security and integrity including SQL injection and
audit trails, security, and basic extract, transformation and load
(ETL) operations.

This course could be followed by Database Application
Development (ISTE-432), which includes software testing, locking
schemes, handling dirty data, performance and statement pooling,
domain specific issues, authorization and authentication, and
working with multiple data and business layers.

Data Warehousing (ISTE434) covers topics including the star
schema and more advanced topics such as advanced dimension
design, special types of fact tables, slowly changing dimensions,
and in-depth coverage of the ETL process. Implementation of a
data warehouse is also required.

Data Management and Access (ISTE-436) is a course aimed at
database administration. It includes an examination of the physical
and logical views of a database, logical and physical database
layout, access to metadata, users, privileges and roles, and backup
and recovery.

Contemporary Databases (ISTE-438) covers a variety of topics that
are evolving in the big data world including big data storage,
NoSQL databases (document, graph, memory resident, column). It
includes the advantages and disadvantages of using a NoSQL
database, geographic data storage and retrieval, and storage of
large objects.

Data Mining and Exploration (ISTE-470) covers data mining and
visualization, data-driven discovery, ethical concerns, association
rule mining, clustering and classification methods, anomaly
detection, and the analysis of results.

The CIT core database courses cover the IT2017 Essential Domain
of ITE-IMA Information Management while the concentration
courses cover the IT2017 Supplemental domain of ITS-DSA Data
Scalability and Analytics.

3.1.2 CS DB Curriculum. The CS Department offers the BS
program in Computer Science (CS/BS) with the specializations in
areas such as artificial intelligence, computer graphics, computer
theory, networking, security, robotics, parallel computing, data
management and mining, computer architecture, and system
software. The database courses that correspond to Information

Session 1A Paper SIGITE ’19, October 3–5, 2019, Tacoma, WA, USA.

12

Management (IM) in ACM CS curricula 2013 [6] include,
Principles of Data Management (CSCI-320) and Database System
Implementation (CSCI-621). CSCI-320 is a core course for all CS
majors and CSCI-621 is an elective course for both graduate and
undergraduate students.
CSCI-320 provides a broad introduction to the principles and
practice of modern data management. It focuses on relational
database models with the combination of theoretical and practical
knowledge. Topic-wise, it covers the entire data management
cycles, starting from data management concepts, database systems,
database applications, data modeling, to indexing, query language,
security and access control, transaction management, information
retrieval, and data mining.

After taking CSCI-320, students can take CSCI-621 to learn
database systems in a different perspective, i.e., from how to use it
to how to design and develop it. Similar to CSCI-320, CSCI-621
focuses on relational database systems. It covers the topics related
to the design of core DBMS functions related to physical data
storage, file systems and buffer management, query processing
and optimization, transaction management, access methods, and
recovery. It also covers the topics related to managing large
volumes of data through NoSQL databases and MapReduce.

The core CS database course, CSCI-320, covers the fundamental
aspects of Information Management (IM) component of ACM CS
curricular 2013 [6], i.e., the core-tier 1 hours, core-tier 2 hours, and
some electives related to the understanding and using databases.
The elective CS database course, CSCI-621, covers the theoretical
and implementation aspects of the IM component with the major
focus on physical database design, query language, and transaction
processing.

3.2 Complementing IT and CS
Anecdotal evidence from conversations with employers in the US
and Europe indicates that employers with certain entry positions
prefer IT graduates because the students can be productive
immediately. CS students, on the other hand, take more time to
learn the application of the technology. In the long view, they can
be more useful in other technologies because CS graduates have a
deeper understanding of the theory behind the technology.

Figure 1 shows the reason for this. If we look at the IT discipline,
the program emphasizes the “more applied” end of the x-axis;
application, deployment and configuration. In the database courses
that the CIT program offers, we emphasize those skills using
MySQL, Oracle, MongoDB, Neo4j and other database products.
When first on the job, graduates are already well versed in using
the technology and can be immediately productive. Also, since the
integration of technologies and the “human side“ of computing is
the focus of the IT degree, the IT graduates can be more immediate
in looking at the information systems approach than the CS
graduates as shown on the y-axis. On the other hand, the CS
graduates have a better understanding of the theory and its
application to the technology. They will be better at writing
algorithms and examining complex problems. In this way, the two
disciplines will complement each other on the job. The goal of

each should be for the IT graduate to pull the CS graduate up and
to the right on the figure 1 graph while the CS graduate pulls the
IT graduate to the left, as they work together on the job.

The way that each program is set up enhances the skills in their
respective roles; CIT applied and CS theoretical. One example is
the CIT course, Introduction to Database and Data Modeling
(ISTE-230). This course covers basic database theory and practice.
The theory is covered by lectures and reading material. This would
include topics such as normalization and relational algebra.
Practice exercises, often completed in class, reinforce the theory.
Lecture by example and practice exercises in areas like SQL, which
are completed before practical homework, emphasizes the
application of the technology. The emphasis in the course is
mostly on the practical application of the database concepts.

As motivated in section 2, the skills learned in the IT program
complement those of a CS program. There are areas where
changes in the IT curriculum could benefit the communication
among IT and CS professionals in the workforce. A database
example would be looking at SQL query efficiency. In the CIT
course, there is a discussion of query efficiency but it is not
emphasized. In Bloom’s taxonomy, we would say that the IT
student would know the vocabulary or possibly comprehension of
query efficiency. Today’s servers and RDBMS query optimizers are
so effective that efficiently coding the query is less important in
many applications. That is, unless the query runs repeatedly in a
large number of iterations. The CS student would understand the
application of query efficiency.

 3.2.1 Complementing IT DB with CS.
Various papers suggest that query efficiency is important in CS
courses and the theory is covered. [4] suggests that CS students
need to be familiar with the query execution process because it
affects the query optimization process and other critical database
factors. [8] goes on to show comparison of response times from
queries yielding the same results but coded differently. Different
ways to write selected queries to improve performance are then
demonstrated, using WHERE instead of HAVING where
applicable in GROUP BY queries, for example. [7] discuss the
factors that affect the efficiency of the queries such as missing or
excessively fragmented indexes, inexact database statistics, poorly
written queries, deadlocks, and frequent query compilation. IT
database courses touch these topics, but do not cover them
extensively. Again, IT students are at the vocabulary or
comprehension level of Bloom’s taxonomy.
We would suggest that there is a benefit to cover topics such as
indexing, database statistics, optimization of query coding
practices and analyzing query execution plans more heavily in the
IT database courses so that an IT professional’s communication
with CS graduates can be more productive in improving database
performance or comparing different database products. The IT
courses would still be very heavy on practice but provide a deeper
understanding of the theory underlying the practice. In terms of
Bloom’s taxonomy for improving query efficiency, the IT students
may move into the comprehension or application knowledge
levels from the current vocabulary level.

Session 1A Paper SIGITE ’19, October 3–5, 2019, Tacoma, WA, USA.

13

3.2.2 Complementing CS DB with IT.
It is common that students in IT database courses are also taught
specific databases. [13] shows that teaching a specific database,
such as Oracle, and SQL together can help students better
understand ANSI-standard SQL. By learning how an
implementation can be deviated from SQL standard, students
would not only better understand the general SQL knowledge, but
be better prepared to use any specific database after the class.

We would suggest that the CS database course, while still focusing
on teaching general database concepts and techniques, could
benefit from including topics related to specific database systems.
In addition to learning a concrete implementation of SQL standard,
students can benefit from learning specific data management
features offered by individual databases. For example, Oracle
supports optimization tuning, allowing users to proactively
monitor a system’s performance, analyze statistics related to
database, application, operating system, network, and disk I/O, and
tune performance through the SQL tuning advisor. Introducing
those topics into CS courses would help students better
understand data queries through the link from those queries to
their concrete executions and help them learn the strategies of
improving the quality of those queries.

4. DISCUSSION
From the above analysis, we have reached several important
observations. We first summarize these observations and then
offer our suggestions on how the IT and CS curricula can benefit
from each other, which may help shape the future IT and CS
curricular development.

First, both CS and IT students start to learn a similar set of
foundational topics in the entry level courses and then deviate
from each other when it comes to more advanced topics. For
example, the topic list of the introduction to database courses from
both CS and IT shows a significant overlap with over 90% of topics
appear in both lists. This is reasonable as students need to get to
know the basic vocabularies, fundamental concepts, and standard
functionalities to gain a good overall understanding on how a
database management system (DBMS) works. However, the focus
becomes very different in an advanced elective course in database.
In the database implementation course that is usually offered to CS
students in their senior year, topics show a strong algorithmic
flavor. In many institutions, CS students need to implement a
small-scale DBMS or its major technical components. In contrast,
the advanced elective database course in the IT curriculum (e.g.,
the Database Management and Access course as discussed in this
paper) typically focuses on the practical usage of a popular DBMS,
such as Oracle or SQL Server. In such a course, students are
usually exposed to a popular DBMS that is commonly used in the
industry and gain practical skills of how to use and manage the
system. The distinct training that students receive from these two
different curricula may help determine the workforce readiness
and lead to different career paths for IT and CS students, which
will be discussed later in this section.

Second, the delivery methods also tend to be different. In
particular, hands-on exercises usually play an important role when
teaching courses in an IT curriculum. The difference in the
teaching methodology is essentially driven by the different focus
of the IT and CS curricula. As discussed in Section 2, IT courses
tend to have a more practical focus as compared to CS courses
which are more theoretical. The difference in the focus can be
directly reflected from the actual subjects covered in the
corresponding courses. For example, in the advanced database
courses as discussed above, IT courses usually cover specific
technologies through one or two popular DBMSs while CS courses
focus more on the fundamental building blocks and their
foundational underpinnings and tend not to discuss any specific
database products. Additional evidence can also be found in the
published SIGITE and SIGCSE papers. Most of the database
related SIGITE papers discuss specific technologies or database
products, including Oracle, SQL Server, and .NET while
corresponding SIGCSE papers tend to discuss general
concepts/theories, such as XML, query simulation/execution, and
design patterns, which are not restricted to any specific system or
product. A key benefit of the hands-on delivery of teaching
materials is that students learn the best practice from the course
instructors and get exposed to the right way of doing things. By
following the course instructor’s well-designed examples, students
can effectively avoid making many common mistakes. However,
one potential downside of such teaching approach is that students
may get used to following course instructors’ way of doing things
instead of being challenged to develop their own version of best
practice through a trial-and-error process. In addition, as the
hands-on practice will take a large portion of the class, students
may not have the opportunity to learn more and deeper concepts
that can further extend their knowledge.

Third, the difference in the curricular content and teaching
methodology will lead to IT and CS graduates with quite different
skill sets. In particular, for the IT graduates, due to the practical
focus of the IT curriculum and the rich hands-on experience that
they have developed during the learning process, they are very
well prepared for the job that they are hired to do and require little
or no additional training. As a result, IT graduates have a high
reputation in terms of their workforce readiness. In contrast, most
CS graduates need some transition time and/or training when
moving from school to their job environment. Since the CS
curriculum primarily focuses on the underlying theories and the
general foundation, it is usually hard for CS students to develop
systematic knowledge on a specific system or product.
Nonetheless, since the theories and foundation are typically shared
across different systems and products, after the transition and
training, most CS graduates will be able to perform very well in
their jobs. Furthermore, thanks to their deeper knowledge in
various subjects and systematic training and practice in algorithm
development, CS students usually demonstrate stronger capability
to adapt to new technological advances, which can significantly
benefit their career path in a longer term.

Based on the above observations and our own experience as IT
and CS educators, we would like to offer some suggestions that

Session 1A Paper SIGITE ’19, October 3–5, 2019, Tacoma, WA, USA.

14

can help improve the design of future IT and CS curricula and
better prepare graduates from both programs for their feature
career. First, it appears that complementing both the course
content and the teaching methodology from IT and CS will bring
additional benefit to both IT and CS students. In fact, in the
authors’ institution, there are always a good number of CS
students in each term that choose to take some IT courses and the
same situation also applies to the IT students. In essence, students
are trying to using their own ways to receive complementing
training from both IT and CS curricula. Second, extra caution
should be given when choosing topics for complementing these
two curricula because it is still of critical importance to keep the
unique characteristics of each curriculum so that they can
properly serve students with different background and interest.
Ultimately, IT and CS graduates should not possess completely
overlapping skills so that they can serve different needs from their
future employers. Last but not least, the complementing design
should provide enough flexibility that accommodates diverse
needs from students with different background and skill sets. It
may be beneficial to follow a modular design that groups similar
topics into course modules, where some modules may have a
theoretical focus and other may have a practical one. Given the
needs and requirements from the students, different modules can
be offered in a flexible way. Some courses could be intentionally
designed to offer to both CS and IT students, where they have the
opportunity to work together on some team project to learn from
each other. Such team projects will also help better prepare
students for their future working environment, where people with
different skills collaborate to accomplish a large-scale project.

5. CONCLUSION
In this paper, we use database courses offered by both IT and CS
curricula as a case study to identify commonalities and differences
between these two important computing disciplines. Our analysis
further helps reveal the root reason that causes those differences,
which eventually show significant impact on the graduates’ future
career paths. In particular, a strong emphasis on the practical skills
better prepares IT graduates for their workforce readiness while a
deeper theoretical knowledge base puts CS graduates in a better
position to adapt to technological advances that benefits them in a
longer term. Given the identified differences in terms of both
topics and teaching methodologies, we provide important
recommendations that may help shape the future IT and CS
curricular development.

REFERENCES
[1] Adnan Abid, Muhammad Shoaib Farooq, Ishaq Raza, Uzma Farooq,

and Kamran Abid. 2015. Variants of Teaching First Course in
Database Systems, Bulletin of Education and Research, December
2015, Vol. 37, No. 2 pp. 1-17.

[2] ACM/IEEE-Curriculum 2001 Task Force. Computing Curricula 2001,
Computer Science. IEEE Computer Society Press and ACM Press,
December 2001.
https://www.acm.org/binaries/content/assets/education/curricula-
recommendations/cc2001.pdf.

[3] ACM/IEEE-Curriculum 2005 Task Force. Computing Curricula 2005,
Computer Science. IEEE Computer Society Press and ACM Press,
September 2005.
https://ieeecs-media.computer.org/assets/pdf/CC2005-
March06Final.pdf.

[4] Brett Allenstein, Andrew Yost, Paul Wagner, and Joline Morrison.
2008. A query simulation system to illustrate database query
execution. In Proceedings of the 39th SIGCSE technical symposium
on Computer science education (SIGCSE ‘08). ACM, New York, NY,
USA, 493-497.
DOI: https://doi.org/10.1145/1352135.1352301.

[5] Canada’s Association of Information Technology (IT) Professionals,
“A Guide to the Common Body of Knowledge for Computing and IT
(CBOK)”, Canadian Information Processing Society, Canada retrieved
May 24, 2019 from http://www.cips.ca/CBOK.

[6] Computer Science Curricula 2013 - Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science. The Joint
Task Force on Computing Curricula Association for Computing
Machinery (ACM), Dec. 2013.

[7] Costel Gabriel Corlăţan, Marius Mihai Lazăr, Valentina Luca,
and Octavian Teodor Petricică. 2014. Query Optimization
Techniques in Microsoft SQL Server. Database Systems Journal vol. V,
no. 2/2014.

[8] Jean Habimana. 2015. Query Optimization Techniques - Tips for
Writing Efficient And Faster SQL Queries. International Journal of
Scientific & Technology Research Volume 4, Issue 10, October 2015.

[9] IT2008 Task Group. 2008. Curriculum Guidelines for Baccalaureate
Degree Programs in Information Technology.
http://pin.epsig.uniovi.es/informatica/GradoII-
TI/IT2008%20Curriculum.pdf.

[10] IT2017 Task Group. 2017. Curriculum Guidelines for Baccalaureate
Degree Programs in Information Technology. DOI:
http://it2017.acm.org.

[11] Qusay H. Mahmoud, Shaun Zanin, and Thanh Ngo. 2012. Integrating
mobile storage into database systems courses. In Proceedings of the
13th annual conference on Information technology education (SIGITE
‘12). ACM, New York, NY, USA, 165-170.
DOI: https://doi.org/10.1145/2380552.2380602.

[12] Thomas J. Marlowe, Cyril S. Ku, and James W. Benham. 2005. Design
patterns for database pedagogy: a proposal. In Proceedings of the
36th SIGCSE technical symposium on Computer science education
(SIGCSE ‘05). ACM, New York, NY, USA, 48-52.
DOI: https://doi.org/10.1145/1047344.1047375.

[13] Gary B. Randolph. 2003. The forest and the trees: using oracle and
SQL server together to teach ANSI-standard SQL. In Proceedings of
the 4th conference on Information technology curriculum (CITC4 ‘03).
ACM, New York, NY, USA, 234-236. DOI:
https://doi.org/10.1145/947121.947174.

[14] Han Reichgelt, Barry Lunt, Tina Ashford, Andy Phelp, Erik Slazinski,
and Cheryl Willis. 2004. A comparison of baccalaureate programs in
Information Technology with baccalaureate programs in Computer
Science and Information Systems, Journal of Information Technology
Education, 3, 19-34, 2004.

[15] Russell Shackelford, Andrew McGettrick, Robert Sloan, Heikki Topi,
Gordon Davies, Reza Kamali, James Cross, John Impagliazzo, Richard
LeBlanc, and Barry Lunt. 2006. Computing Curricula 2005: The
Overview Report. In Proceedings of the 37th SIGCSE technical
symposium on Computer science education (SIGCSE ‘06). ACM, New
York, NY, USA, 456-457. DOI:
https://doi.org/10.1145/1121341.1121482.

[16] Paul J. Wagner and Thomas K. Moore. 2003. Integrating XML into a
database systems course. SIGCSE Bull. 35, 1 (January 2003), 26-30.
DOI: https://doi.org/10.1145/792548.611924.

[17] Yanhao Zhu, James Crouch, and Mohammad H. N. Tabrizi. 2005. In-
process object-oriented database design for .NET. In Proceedings of
the 6th conference on Information technology education (SIGITE ‘05).
ACM, New York, NY, USA, 139-142.
DOI=http://dx.doi.org/10.1145/1095714.1095747.

Session 1A Paper SIGITE ’19, October 3–5, 2019, Tacoma, WA, USA.

15

https://ieeecs-media.computer.org/assets/pdf/CC2005-March06Final.pdf
https://ieeecs-media.computer.org/assets/pdf/CC2005-March06Final.pdf
https://doi.org/10.1145/1352135.1352301
http://www.cips.ca/CBOK
http://pin.epsig.uniovi.es/informatica/GradoII-TI/IT2008%20Curriculum.pdf
http://pin.epsig.uniovi.es/informatica/GradoII-TI/IT2008%20Curriculum.pdf
http://it2017.acm.org/
https://doi.org/10.1145/2380552.2380602
https://doi.org/10.1145/1047344.1047375

