
Letters
https://doi.org/10.1038/s41566-019-0395-5

1Institute of Optics, University of Rochester, Rochester, NY, USA. 2Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY, 
USA. 3School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY, USA. 4Department of Physics and Astronomy, University of 
Rochester, Rochester, NY, USA. 5Los Alamos National Laboratory, Los Alamos, NM, USA. 6Materials Science Program, University of Rochester, Rochester, 
NY, USA. *e-mail: rpettit@ur.rochester.edu; wenchaoge.tamu@gmail.com; mxbsps@rit.edu; nick.vamivakas@rochester.edu

Phonon lasers are mechanical analogues of the ubiquitous 
optical laser and have been realized in a variety of contexts1–12. 
However, no such demonstration exists for mesoscopic levi-
tated optomechanical systems, which are emerging as impor-
tant platforms for conducting fundamental tests of quantum 
mechanics13–15 and gravity16, as well as for developing sensing 
modalities that couple mechanical motion to electron spin17–20 
and charge21. Inspired by the pioneering work of Arthur Ashkin 
on optical tweezers22,23, we introduce a mesoscopic, frequency-
tunable phonon laser based on the centre-of-mass oscillation 
of a silica nanosphere levitated in an optical tweezer under 
vacuum. Unlike previous levitated realizations, our scheme is 
general enough to be used on single electrons, liquid droplets 
or even small biological organisms24. Our device thus provides 
a pathway for a coherent source of phonons on the mesoscale 
that can be applied to both fundamental problems in quantum 
mechanics as well as tasks of precision metrology25–27.

The study of coherence, as a fundamental phenomenon as well as 
an enabler of technology, is a major research area in contemporary 
physics28. In the context of mesoscopic levitated optomechanical 
systems, efforts to prepare (ground-state) quantum coherence are 
under way29,30 and parametrically driven classical systems have been 
studied31–33. However, no demonstration of laser-like coherence yet 
exists. Successful implementations with trapped ions have utilized 
Doppler forces resulting from optical beams red- and blue-detuned 
from an atomic resonance4; however, this method fails if the levi-
tated object has no discrete internal energy structure.

In this Letter we demonstrate a levitated optomechanical ana-
logue to an optical laser. The dynamics result from the controlled 
interplay of loss, gain and nonlinearity. A phase transition from 
Brownian motion to sustained coherent oscillation is observed with 
a clear threshold between the two regimes. Phonon laser systems 
have previously been explored in atomic systems (mass ~1 × 10−25 kg) 
and microscale (mass ~1 × 10−9 kg) oscillators1–12. Here we provide 
the first step towards the generation of coherent as well as non-
classical states of motion in levitated mesoscopic systems (mass 
~1 × 10−18 kg) that also exhibit in situ frequency tunabiliy.

The experimental apparatus is based on a free-space optical 
dipole trap as illustrated in Fig. 1 (see Supplementary Section 1 for 
more details). Light scattering provides a position measurement that 
is processed to derive feedback signals that control the centre-of-
mass dynamics. One signal provides nonlinear parametric cooling 
of centre-of-mass phonons, while the other induces linear amplifi-
cation of centre-of-mass phonons. The feedback-induced nonlin-
earity is tunable, and allows for control over the steady-state phonon 
population, in principle into the quantum regime29. Furthermore, 
the specific form of the feedback nonlinearity is chosen to realize 

a near-perfect analogy to the canonical optical laser34 (for which 
scientists have accumulated over 50 years of experience). Finally, 
we note that our feedback technique does not rely on any internal 
resonances of the nanoparticle, unlike ionic experiments4. The inset 
in Fig. 1 shows density maps of the particle’s position in the plane 
transverse to beam propagation below (left) and above (right) the 
oscillation threshold, respectively. The left inset shows Brownian 
motion with a centre-of-mass temperature of 250 mK for each axis, 
while the right inset shows a double-lobed pattern indicative of the 
induced coherent oscillation along the x axis.

The system is modelled by a master equation that includes the 
unitary dynamics of the oscillator, diffusive and dissipative interac-
tions with the environment and the effects of feedback (including 
backaction). The master equation is discussed in Supplementary 
Section 2 and is used to derive a dynamical equation for the mean 
phonon population in a single oscillatory mode

⟨ ̇ ⟩ = ⟨ ⟩− ⟨ ⟩ +N C N B N A (1)2

in which ≡ †N b b is the phonon occupation number of the mode 
where b (b†) is the phonon annihilation (creation) operator. 
〈N〉 is related to measurable quantities through the relationship 
〈N〉 = MΩ0〈x2〉/ħ, where M is the mass of the levitated particle, Ω0 is 
the oscillation frequency of the mode, x is the displacement of the 
particle’s centre of mass with respect to the centre of the trap, and ħ is 
the reduced Planck’s constant. The coefficients are A = γa + Dt − 6γc, 
B = 24γc and C = 2(γa − γg − 12γc) where parameters γa, γc and γg rep-
resent the rates associated with linear feedback amplification, non-
linear feedback cooling and gas damping, respectively, while Dt 
incorporates diffusion due to optical and gas scattering. All param-
eters are experimentally controllable. Importantly, for the oscilla-
tion amplitudes considered here, there is no coupling between the 
particle’s three modes of oscillation.

Equation (1) makes a direct connection to single-mode optical 
laser theory34. The first term on the right-hand side (∝〈N〉) pro-
duces amplification of centre-of-mass phonons above threshold: 
γa > γg + 12γc. This amplification is proportional to the mean phonon 
population, analogous to stimulated photon emission. The second 
term on the right-hand side (∝〈N〉2) provides nonlinearity leading 
to saturation of the amplification and stability of the oscillator. The 
third term is responsible for phonon number fluctuations and is 
not present in classical optical models34. It allows the mean phonon 
population to build up even if 〈N〉 = 0.

We demonstrate threshold behaviour in Fig. 2a by increas-
ing the modulation depth of the amplification feedback signal 
Ma = δPa/P0, where P0 is the power of the trapping beam and δPa 
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is the power modulation induced by the feedback amplification, 
for various set values of γc at a constant pressure of 6 × 10−5 mbar 
(gas scattering dominates over radiation pressure shot noise). We 
infer feedback amplification rates from the modulation depth by 
γa = MaΩ0 and feedback cooling rates from the steady-state phonon 
population without amplification29. Increasing γc has the effect of 
reducing the phonon population of the oscillatory mode. For the 
data presented in Fig. 2a, γc was tuned for the trap’s x axis, thereby 
tuning the initial steady-state phonon population, before the feed-
back amplification was turned on. The oscillation frequency along 
the trap’s x axis is Ω0 = 2π × 128.5 kHz. All three data sets are com-
pared with a steady-state solution to equation (1) obtained by tak-
ing ⟨ ̇ ⟩N  = 0, which yields

⟨ ⟩ = + +N
B

C C AB1
2

( 4 ) (2)ss
2

Each value of γc therefore provides a unique threshold condition for 
the phonon laser as Ma is increased, and, since the trap d.c. optical 
power controls the oscillation frequency, it is possible to frequency-
tune the optical tweezer phonon laser. Figure 2b illustrates this 
capability for three different optical powers.

In Fig. 2c we examine the steady-state statistics of the system 
in more detail and show the second-order phonon autocorrelation 
function at zero time delay, g(2)(0) = (〈N2〉 − 〈N〉)/〈N〉2, where 〈N2〉 
is the second moment of the distribution. Note that g(2)(0) = 2 for 
a thermal state and g(2)(0) = 1 for a coherent state35. Experimental 
distributions were recorded by monitoring oscillator dynamics in a 
time window of 20 ms for each value of Ma. The length of the error 
bars represents ±1 s.d. of 100 such measurements. The solid lines 
represent the theoretical expectation for our system. Below thresh-
old, g(2)(0) = 2, confirming the expected thermal statistics. Once 
the feedback amplification rate greatly exceeds the threshold value, 
g(2)(0) approaches 1, which is expected for a laser operating far above 
threshold. For the case of γc/(2π) = 4.4 × 10−4 Hz, the recorded data 
deviate slightly from the theoretical expectation for higher values of 
Ma, probably due to phase error in the electronic feedback system.

Figure 2d presents two of the measured phonon probability dis-
tributions used in Fig. 2c. Markers (i) and (ii) indicate distributions 
recorded for Ma below and far above threshold, respectively. Below 
threshold the distribution is well described by a thermal Boltzmann 
distribution, but as the amplification rate is increased through 
threshold the statistics change. Far above threshold the distribu-

tion shifts and is centred about the mean. However, the observed 
statistics far above threshold are not Poissonian. The distributions 
we observe are characterized by a variance that is greater than the 
mean and well described by a Gaussian distribution truncated at 
n = 0. Such a distribution is predicted by our theoretical modelling 
(Supplementary Section 2.3) to be
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where n0 = 〈N〉, nmax = 2n0QM and QM is the Mandel Q parameter 
where QM = n0(g(2)(0) − 1). Using the measured values of g(2)(0), the 
phonon probability distribution far above threshold in Fig. 2d is 
well matched by equation (3). We note that the variance of the dis-
tribution is smaller than that of a thermal state with the same mean 
phonon number, indicating subthermal number squeezing. Higher 
degrees of subthermal number squeezing, leading to Poissonian 
phonon statistics, are predicted by our model for chamber pressures 
on the order of 1 × 10−8 mbar and feedback amplification rates simi-
lar to those demonstrated in this Letter.

For the same cases (i) and (ii), we examine the steady-state 
phase-space distributions of the oscillator (Fig. 2e) by measuring 
the in-phase and quadrature components of the oscillator’s motion 
with a lock-in amplifier. The top panels show data, while the bot-
tom panels show theoretical expectations based on the oscillator’s 
P-function representation (Supplementary Section 3). The axes are 
defined by the coordinates Q and P, where Q = q/q0 and P = p/p0 
are the in-phase and quadrature components of the motion scaled 
by the zero point position and momentum spread of the oscillator. 
Below threshold the P-function is that of a thermal state, while far 
above threshold the P-function, close to that of a coherent state, can 
be expressed using equation (3) by substituting n → (Q2 + P2)/2.

The transient dynamics of the system as the gain is switched on 
along the trap’s x axis are explored in Fig. 3. After a period of ampli-
fication, the gain was switched off and the oscillator was allowed 
to cool under the influence of the feedback cooling loop to re-ini-
tialize the state of the particle. Repetition of this cycle through 500 
iterations allowed statistical distributions of the oscillator’s phonon 
population to be constructed as the system evolved, and from these 
distributions the mean could be calculated. In Fig. 3a, the mean pho-
non occupation of the mode is monitored over a window of 200 ms, 
including the point at which the gain is turned on at a time t = 0, for 
two different values of Ma above threshold. The obtained data can be 
tested against the time-dependent solution to equation (1)







τ τ

θ⟨ ⟩ = + +N t C
B B

t( )
2

1 tanh (4)

where θ τ= − ∕− BN Ctanh ( ( 2))1
0 , N0 is the initial phonon popula-

tion, and the characteristic timescale is τ = 2(C2 + 4AB)−1/2. Good 
agreement is found between both experiment and theory in Fig. 3a. 
In each case, the initial phonon population was N0 = 5.75 ± 0.23 × 104, 
and on application of the linear gain, the population experienced a 
period of exponential growth followed by saturation due to the non-
linear feedback cooling, finally reaching the steady-state value. The 
evolution of the phonon probability distribution can be monitored 
from the obtained data and compared against theoretical expecta-
tions (Fig. 3b). Distributions for various delays after the linear gain 
was switched on are shown for the case where Ma = 5.6 × 10−3. The 
distribution is shown to evolve from a thermal Boltzmann distribu-
tion in case (i) to a distribution well described by equation (3) in 
case (iv) when the phonon laser reaches the steady state. In cases 
(ii) and (iii), the theoretical expectations are computed from the 
Fokker–Planck equation (Supplementary Section 3).

x

y
z

Fig. 1 | optical tweezer illustration and system model. Artistic rendering of 
a silica nanosphere levitated in vacuum by an optical tweezer. Inset: motion 
of the levitated sphere’s centre of mass observed in the plane transverse 
to beam propagation, showing Brownian motion below threshold (left) and 
coherent oscillation along the x axis above threshold (right).
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Fig. 2 | Steady-state properties. a, The mean phonon population of the oscillation as a function of the amplifying modulation depth, Ma, for different values 
of the feedback cooling rate, γc. Solid lines are theoretical expectations based on equation (2). Error bars represent one standard deviation (s.d.) of each 
measurement, consisting of 282,700 samples. b, In situ tuning of the single-mode phonon laser frequency, normalized by the mean of the two outlying spectra. 
Optical powers considered are 72 mW, 80 mW and 85 mW. c, Second-order phonon autocorrelation function at zero delay, g(2)(0), as Ma is increased across the 
threshold for two different values of the feedback cooling rate, γc. Error bars represent s.d. from 100 measurements. The dotted lines at g(2)(0) = 2 and 1 indicate 
the expected values for a thermal state and a coherent state, respectively, while the solid lines are theoretical expectations. Markers (i) and (ii) indicate values 
of Ma where the oscillator is below and above threshold, respectively. d, Phonon probability distributions for the selected values of Ma. Solid lines are theoretical 
expectations for (i) a Boltzmann distribution and (ii) a distribution based on equation (3). The horizontal axis is split to better show both distributions. e, 
Comparison of experimentally measured quadratures of the oscillator’s motion (top) with theoretically expected phase-space distribution based on the P-
function (bottom) for the selected values of Ma. A phase transition between (i) Brownian motion and (ii) coherent oscillation is evident.
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Fig. 3 | Transient behaviour after the linear gain is switched on. a, Mean phonon population monitored in time for two different values of Ma, calculated from 
500 experimental iterations of the switching experiment in which the linear gain is switched on at time t = 0. Solid curves are theoretical expectations based 
on equation (4), and the markers indicate the system’s evolution at (i) 0 ms, (ii) 23.7 ms, (iii) 62.2 ms and (iv) 130.5 ms from the time the gain was switched 
on. b, Evolution of the oscillator’s phonon probability distribution shown for the selected times. Solid curves are theoretical expectations for (i) a Boltzmann 
distribution, (ii,iii) distributions based on solutions of the Fokker–Planck equation and (iv) a distribution based on equation (3) in the steady state.
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In this Letter we have introduced a levitated nanoparticle pho-
non laser using an optical tweezer. We have presented experimental 
evidence for threshold behaviour and saturation, frequency tunabil-
ity, as well as subthermal number squeezing by measuring phonon 
autocorrelations of g2(0) ~ 1. Both transient and steady-state data are 
in excellent agreement with a theoretical model that includes spon-
taneous as well as stimulated emission of phonons. We expect the 
development of this phonon laser to have applications for levitated 
mechanical systems analogous to those that the opical laser has for 
optics. These could therefore include metrology36, non-classical 
state engineering37 and information processing38. Our technique is 
general, requiring only the ability to perform position measurement 
and feedback on a mechanical oscillator with a high quality factor, 
and therefore can be readily extended to other levitated or mechani-
cally clamped optomechanical systems.
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Methods
Nanosphere preparation and trapping. Silica nanospheres with a nominal 
diameter of 150 nm were purchased from MSP Corporation (NanoSilica NS-
0150A) in aqueous suspension. Before trapping, approximately 40 μl of the 
suspension was dispersed into 1 ml of absolute ethanol and sonicated for 2 min. The 
dispersed solution was then further diluted with an additional 1 ml of ethanol and 
vaporized with an ultrasonic nebulizer into the vacuum chamber for trapping. The 
spheres were trapped at atmospheric pressure. Once a sphere was trapped, pressure 
in the chamber was reduced to the desired experimental level.

Particle size and displacement calibration. The particle size and displacement 
sensitivity of the apparatus can be calibrated with a measurement of the noise 
power spectral density with the particle at thermal equilibrium with the 
background gas and with zero feedback. The measured spectral density of the 
displacement noise for a single oscillatory mode is then given by the form
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Ω Ω Γ Ω
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a
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0
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where Γ0 = 2γg is the damping due to the background gas, a = C2kBT0/πM, kB is 
Boltzmann’s constant, T0 is the temperature of the background gas, M is the mass 
of the particle and C is a constant with units V m−1. Equation (5) takes a, Γ0 and 
Ω0 as free parameters. The constant C can then be determined with knowledge of 
the particle’s mass. Measurements of the displacement noise power spectrum for 
calibration purposes were typically recorded at a chamber pressure of 10 mbar, such 
that Γ0 < Ω0, which provides a well-resolved peak.

The size of the particle can be inferred directly from the measured damping 
rate, Γ0. The damping rate for a particle with a radius comparable to or smaller 
than the mean free path of the gas, l, is given by39
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where μ is the dynamic viscosity of air, r is the particle’s radius, ρm is the particle’s 
material density, and Kn ≡ l/r is the Knudsen number. Solving equation (6) for r 
then provides a means to determine both the particle’s radius as well as it’s mass, 
M = ρm(4πr3/3). Values determined in this way can be compared with values 
provided by the manufacturer, which give the nominal particle radius to be 
73.5 ± 2 nm. In this study, the particle was calibrated to have a radius of 68.3 ± 7 nm.

To ensure that only a single sphere was trapped, measurements of the natural 
damping rate were carried out for each centre-of-mass degree of freedom. A single 
spherical particle will experience equal damping along all three centre-of-mass 
degrees of freedom. However, multiple particles in the trap or non-spherical 
particle morphology can lead to unequal damping rates along the different axes, as 
well as additional degrees of freedom such as torsion and rotation.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding authors upon reasonable request.
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    Experimental design
Please check: are the following details reported in the manuscript?

1.   Threshold

Plots of device output power versus pump power over 
a wide range of values indicating a clear threshold

Yes

No

First paragraph of p. 4 and Figure 2a

2.   Linewidth narrowing
Plots of spectral power density for the emission at pump 
powers below, around, and above the lasing threshold, 
indicating a clear linewidth narrowing at threshold

Yes

No

Supplementary Information section 4 and Figure S3

Resolution of the spectrometer used to make spectral 
measurements

Yes

No

Linewidth narrowing is demonstrated by measuring single side band phase noise of 
the phonon laser for frequency offsets > 10 Hz from the central oscillation frequency. 
The resolution of the measurement is ultimately determined by the sampling rate, 
rather than the resolution of a spectrometer.

3.   Coherent emission

Measurements of the coherence and/or polarization 
of the emission

Yes

No

Final paragraph of p. 4 and Figure 2c

4.   Beam spatial profile
Image and/or measurement of the spatial shape and 
profile of the emission, showing a well-defined beam 
above threshold

Yes

No

The phonon laser does not have a direct analogy to beam spatial profile in the sense 
that an optical laser does. However, we do measure the spatial position of the 
particle's centre-of-mass as it undergoes Brownian motion below threshold and 
coherent oscillation above threshold, shown in Figures 1b and 1c respectively. The 
measured profiles are consistent with each type of motion.

5.   Operating conditions

Description of the laser and pumping conditions 
Continuous-wave, pulsed, temperature of operation

Yes

No

Beginning on p. 4 and in Figure 2 we discuss the continuous wave operation of the 
phonon laser, while on p. 6 and in Figure 3 we discuss the transient "turn-on" 
behavior of the phonon laser.

Threshold values provided as density values (e.g. W cm-2 
or J cm-2) taking into account the area of the device

Yes

No

Threshold values are reported in terms of the modulation depth on the trapping 
beam, which is directly accessible in the experiment. A full description of the 
experimental setup is provided in Supplementary Information section 1 and Figure S1.

6.   Alternative explanations
Reasoning as to why alternative explanations have been 
ruled out as responsible for the emission characteristics 
e.g. amplified spontaneous, directional scattering; 
modification of fluorescence spectrum by the cavity

Yes

No

Fluorescence or directional scattering based explanations and do not apply to our 
phonon laser, nor is there a cavity. Amplified spontaneous emission is ruled out by 
the measurement of coherence (Figure 2c), as well as measurements of the phonon 
probability density (Figure 2d) and phase-space profile (Figure 2e), which are all 
consistent with laser operation.

7.   Theoretical analysis
Theoretical analysis that ensures that the experimental 
values measured are realistic and reasonable 
e.g. laser threshold, linewidth, cavity gain-loss, efficiency

Yes

No

Discussion of the theoretical modeling of our phonon laser is found throughout the 
main text, particularly Equations 1-4. Further discussion of the modeling is found in 
Supplementary Information sections 2 and 3. We have found excellent agreement 
between experiment and theory.

8.   Statistics
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Number of devices fabricated and tested
Yes

No

Data from this paper has all been recorded on a single levitated silica nanosphere to 
ensure consistent calibration of the measurements . However, results have been 
reproduced consistently on well over 20 additional silica nanospheres.   
 
Additionally, we do provide data on two additional levitated silica nanophere phonon 
lasers of different mass to emphasize the generality of our setup. This can be found in 
Supplementary Information section 5.

Statistical analysis of the device performance and 
lifetime (time to failure)

Yes

No

In our experiments spheres can be held in the optical trap indefinitely, thus time to 
failure ,i.e. particle loss, is limited to human error.
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